BLOCKKURS: SOFTWARE IN DER TEILCHENPHYSIK

Johannes Elmsheuser, Günter Duckeck

Ludwig-Maximilians-Universität München

02 May 2011

INHALT

1 Organisatorisches

2 LHC, ATLAS UND ANALYSE

OUTLINE

1 Organisatorisches

2 LHC, ATLAS UND ANALYSE

ORGANISATORISCHES

Dozenten:

Günter Duckeck, guenter.duckeck@physik.uni-muenchen.de
Johannes Elmsheuser, johannes.elmsheuser@physik.uni-muenchen.de
Unterstützung: Christoph Mitterer, Christoper Schmitt, Thomas
Müller, Otto Schaile
Lehrstuhl Schaile, Experimentelle Teilchenphysik

Übungen und Kursvorlesungen:
 Mo-Fr 9:30-12:30 Uhr, 14-17:00 Uhr,
 2.Stock, Zi 227 Am Coulombwall 1, Garching

 Vorlesungswebseite: http://www.etp.physik.uni-muenchen.de/kurs/comp11/

Klausur/Schein:
 Am Ende des Semesters

Inhalt: Software-Kurs und Teilchenphysik Vorlesung

INHALT

- Ein/Ausgabe von Daten
- Graphische Darstellung
- ATLAS ATLANTIS Event Display
- ROOT tuples und eine kleine Analyse
- Analyse von OPAL Z0 daten
- Fitten von Daten
- HistPresent

Für die Übungen wird das ROOT Programmpaket verwendet, das eine umfangreiche Klassen- und Funktionenbibliothek in C++ bereitstellt.

ÜBUNGEN

- Übungen zu Themen der Vorlesung an Hand vom konkreten Beispielen
- Programmierung von kleinen Beispielen in C/C++ (für Experten auch in Python)
- Verwendung von ROOT:
 - Object-Oriented Data Analysis Framework
 - Standard-Werkzeug in Teilchenphysik und darüber hinaus
 - http://root.cern.ch/
- Anleitungen zu C/C++:
 - u.a. Kurs: C++ für Physiker
 http://www.etp.physik.uni-muenchen.de/kurs/Computing/ckurs

LITERATUR

- ATLAS Experiment:
 - http://www.iop.org/EJ/abstract/1748-0221/3/08/S08003/bzw.http://www.iop.org/EJ/article/1748-0221/3/08/S08003/jinst8_08_s08003.pdf
- ATLAS Physik: http://arxiv.org/abs/0901.0512 bzw. http://arxiv.org/pdf/0901.0512v2
- B.Blobel/E.Lohrmann, Statistische und numerische Methoden der Datenanalyse, Teubner, 1998
- W.-M. Yao et al., The Review of Particle Physics, Journal of Physics, G 33, 1 (2006), Anfangskapitel http://pdg.lbl.gov/

Weitere Veranstaltungen

 Teilchenphysik an Hadron Collidern für Bachelor/Master Studenten Vorlesung: Physik am Tevatron und LHC Termin: Mo 10:00-12:30, Hörsaal EG, Thomas Nunnemann, Johannes Elmsheuser

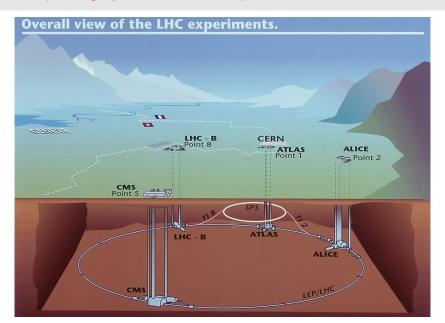
 Seminar: Moderne Aspekte der Teilchenphysik Termin: Fr 10-12 Michiel Sanders Vorbesprechung: Mo 2.5. 17:00 Uhr, Raum 219

BACHELORARBEIT

- Verbindlich: Abgabe der Bachelorarbeit in gebundener Form nach 10 Wochen
- 10 Wochen: 9.Mai-18. Juli; Abgabe bis spätestens 18.7. bei Frau Epp
 2 Exemplare in gebundener Form.
- Stil der Arbeit: max. 20-30 Seiten

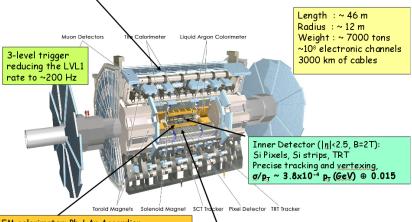
- Arbeitsplatz im 3. Stock, Am Coulombwall 1, Garching
- Haus ist ab 8 Uhr offen, wer nach 16-16:30 (Fr. 13:00) noch mal rein möchte, braucht die Telefonnummer von jemand, der ihn reinlässt.
- Gruppenschlüssel vorhanden

OUTLINE


ORGANISATORISCHES

2 LHC, ATLAS UND ANALYSE

DER LHC UND DIE EXPERIMENTE I

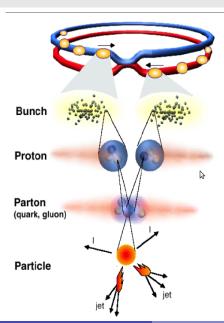


DER LHC UND DIE EXPERIMENTE II

DAS ATLAS EXPERIMENT

Muon Spectrometer ($|\eta|<2.7$): air-core toroids with gas-based muon chambers Muon trigger and measurement with momentum resolution < 10% up to $\mathbf{E}_{\mu}\sim \mathbf{1}$ TeV

EM calorimeter: Pb_LAr Accordion
e/y trigger, identification and measurement
E-resolution: g/E ~ 10%//E ⊕ 0.007
granularity : 025 x .025 ⊕ strips


HAD calorimetry (|n|<3): segmentation 0.1 x 0.1 Fe/scintillator Tiles (central), Cu/W_LAr (fwd) E-resolution:g/E ~ 50%/E ⊕ 0.03 FWD calorimetry:W/LAr g/E ~ 90%/F ⊕ 0.07

DAS ATLAS EXPERIMENT

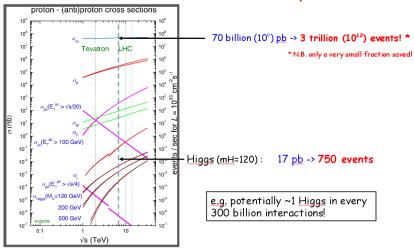
~3000 scientists from 174 Institutions and 38 Countries

KOLLISIONEN IM LHC

Proton-Proton-Kollisionen 2835 Teilchenbündel (Bunch)

10¹¹ Protonen / Bunch Kollisionsrate 40 MHz (25 ns)

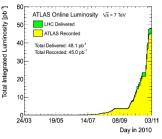
Schwerpunktsenergie 14 TeV (= 7400 x Ruheenergie der kollidierenden Teilchen)

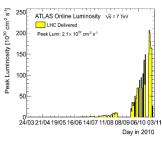

Schwerpunktsenergie der kollidierenden Quarks und Gluonen bis einige TeV

~25 pp-Kollisionen pro Bunch-Kollision

Interessante Ereignisse: 10⁻⁹ – 10⁻¹¹ unterdrückt!

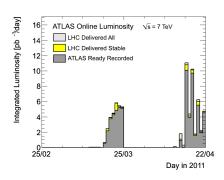
Wirkungsquerschnitte I

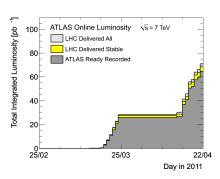

Number of events in 45pb⁻¹

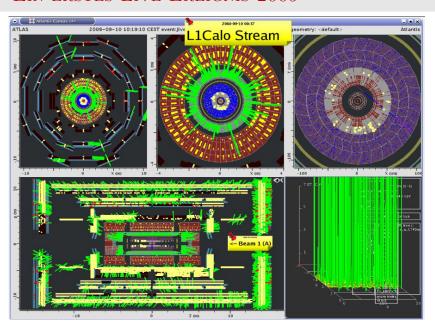


ATLAS STATUS

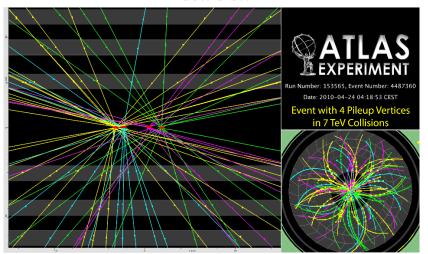
ATLAS status and operations


- Year 2009: pp collisions at √s=0.9, 2.36 TeV: ~12µb⁻¹
- Year 2010: pp collisions at √s=7 TeV, ~45pb⁻¹ collected by ATLAS

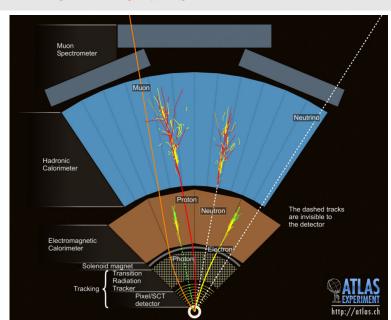



- ~97-100% of detector elements in operation
- Peak luminosity: 2.07*10³²cm⁻²s⁻¹
- · Highest mean 3.8 interactions/crossing
- Almost 1 billion pp events recorded → 1 PB RAW data

ATLAS STATUS 2011



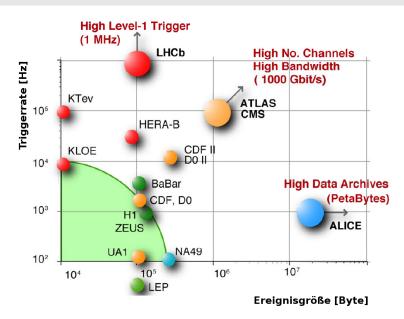
EIN ERSTES LIVE-EREIGNIS 2009

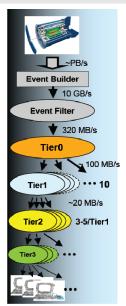


Weiteres ATLAS Ereignis

Event with 4 pileup <u>vertices</u> in same ppcollision

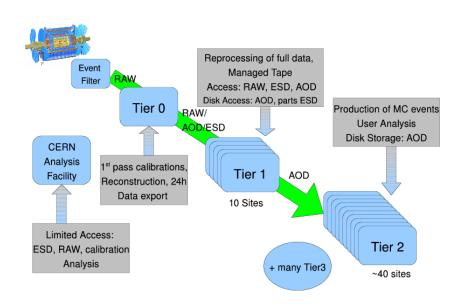
TEILCHENNACHWEIS



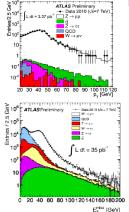

Trigger/DAQ parameters

, , , , , , , , , , , , , , , , , , ,					
INC. OFOLIANDRE	No.Levels Trigger	Level-0,1,2 Rate (Hz)	Event Size (Byte)	Readout Bandw.(GB/s)	HLT Out MB/s (Event/s)
ALICE MANAGEMENT OF THE PROPERTY OF THE PROPER	4 Pb-F	ъь 500 10 ³	5x10 ⁷ 2x10 ⁶	25	1250 (10 ²) 200 (10 ²)
ATLAS		.1 10 ⁵ .2 3x10 ³	1.5x10 ⁶	4.5	300 (2x10 ²)
CMS	2 LV-	.1 10 ⁵	10 ⁶	100	~1000 (10 ²)
LHCb	2 Lv.6	106	3.5x10 ⁴	35	70 (2x10 ³)
	, luci	DAO CHEDOS - Niko Noufe	old		_

Trigger und Ereignis-Größe



RECHENZENTREN- UND GRIDKA-ORGANISATION


DATEN VERTEILUNG: ATLAS

ANALYSEABLAUF I

Analysis ingredients in a nutshell

Cross section measurement:

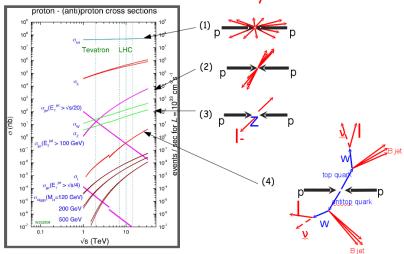
$$\sigma = \frac{N_{\textit{Observed}} - N_{\textit{BG}}}{\epsilon_{\textit{Total}} * L}$$

N_{Observed}: number of observed events
N_{se}: Number of background events
ε_{total}: Overall detection efficiency
L: Luminosity provided by <u>collider</u>

Select interesting events based signal event characteristics:

• e.g. leptons, jets, E_____, angular correlations etc.

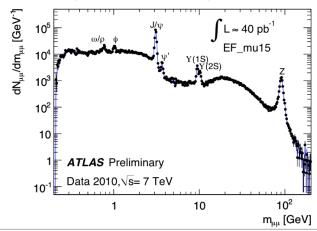
Example: Z->µµ:


Determine $N_{\rm BG}$ or Signal prediction from Monte Carlo or data driven methods

Etatal: Combination of Efficiencies:

•Trigger, Reconstruction, Acceptance, Cuts etc.

Analyseablauf II


Different Analysis

Analyseablauf III

Di-muon invariant mass

Leading muon, p,>15 GeV, second muon, p,>2.5 GeV

