Introduction to statistics / statistical tools & the HistFitter framework

Max Baak (CERN), Geert-Jan Besjes (Nijmegen/Nikhef), Jeanette Lorenz (LMU/Excellence Cluster Universe), Sophio Pataraia (Bergische Universitaet Wuppertal)

+ many other people

15 April 2015

Overview

- Introduction to statistics (short)
- Introduction to statistical analysis (RooFit, RooStats, HistFactory)
- HistFitter overview
 - Introduction & strategy
- HistFitter tutorial
 - Running a fit & visualization
 - Calculating limits

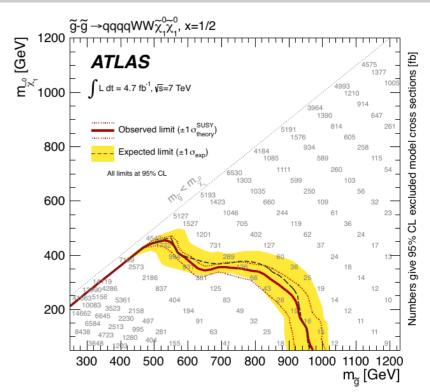
Introduction to HEP statistics

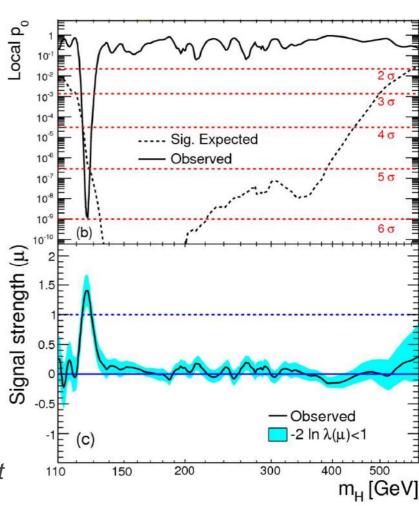
Largely borrowed from lectures/slides by W. Verkerke

Basic questions

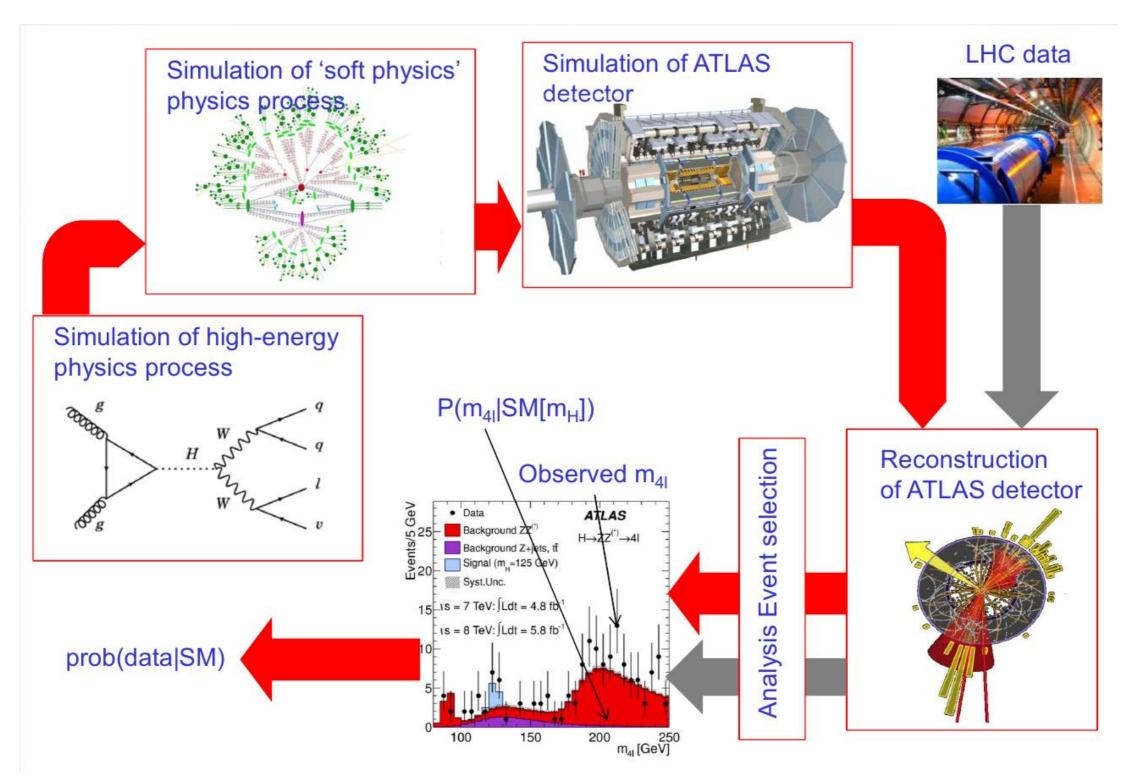
- Physics questions we want to answer...
 - Is the new discovered particle a 'vanilla' Higgs boson?
 - What is its production cross section and couplings?
 - Is there any SUSY in ATLAS data?
 - If not, what models do not agree with data?
- Enormous efforts in many channels, millions of plots with signal/backgrounds expectations, with systematics and observed data
- How do you conclude on these questions?
- Statistical tests construct probabilistic statements/models on P(theory|data) or P(data|theory)
 - Likelihood fits
 - Systematics/uncertainties
 - Hypothesis testing
 - · Setting limits ...
- Result: decisions based on these tests

As a layman I would now say, I think we have it





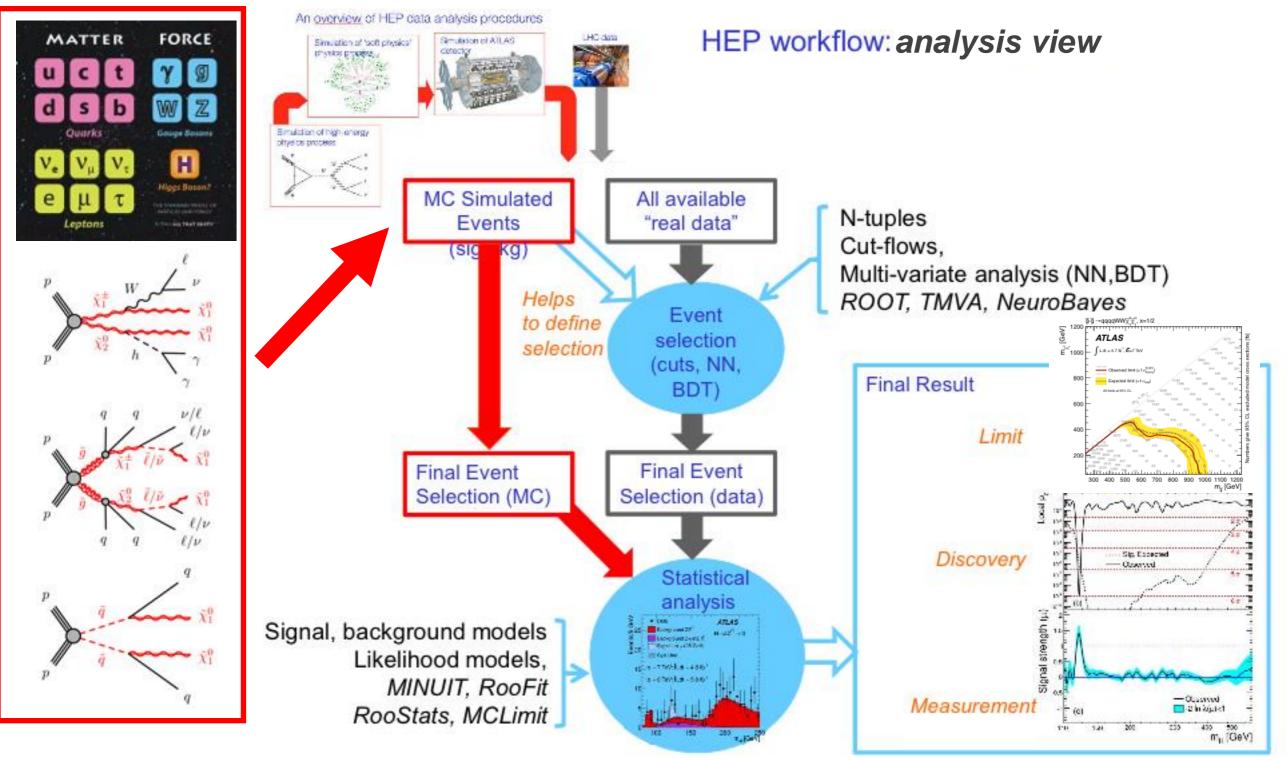
HEP workflow



W. Verkerke

If you paid attention in xAOD tutorial, this should be a piece of cake...

HEP data analysis

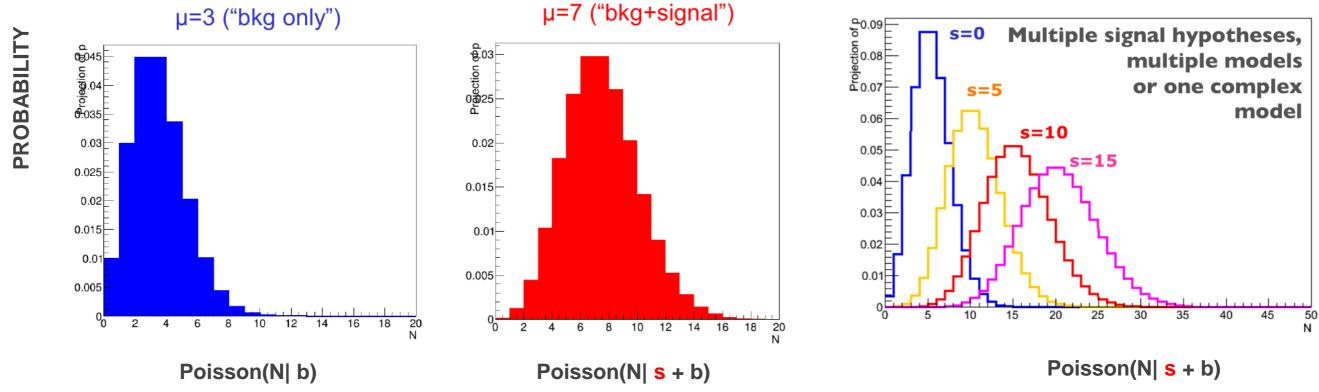


W. Verkerke

- HEP Data Analysis is (should be) for a large part the reduction of a physics theory(s) to a statistical model
- Statistical/probability model: Given a measurement x (eg N events), what is the probability to observe
 each possible x, under the hypothesis that the physics theory is true?

Simple statistical example

- · Central concept in statistics is the 'probability model' : assigns a probability to each possible experimental outcome
- Example: a HEP counting experiment
 - Count number of events in your signal region (SR) in your data (specific lumi): Poisson distribution $P(N|\mu) = \frac{\mu^N e^{-\mu}}{N!}$
 - Given the expected(MC) event count, the probability model is fully specified



- Suppose we measure N = 7 events (Nobs), then can calculate the probability
- P(Nobs|hypothesis) is called <u>LIKELIHOOD</u> L(Nobs|b), L(Nobs|s+b), L(observed data|theory)

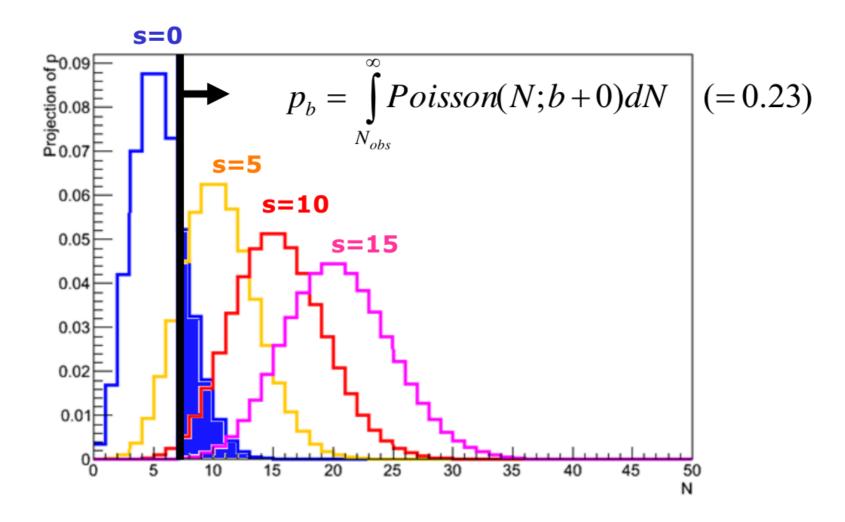
$$p(Nobs|b) = 2.2\%$$
 $p(Nobs|s+b) = 14.9\%$

Data is more likely under s+b hypothesis than bkg-only

W. Verkerke

p-value

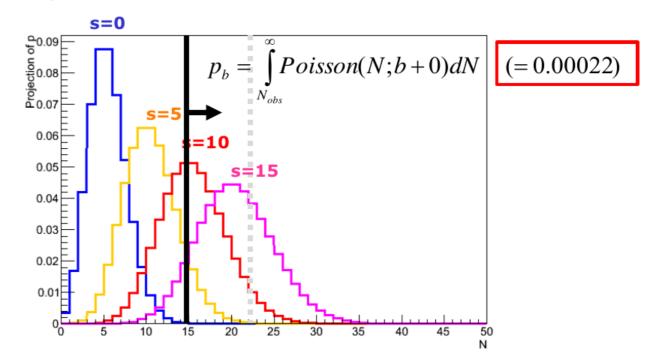
- P-VALUE: probability to obtain observed data, or more extreme, given the hypothesis
 in future repeated identical experiments
- For our example from previous page:
 - For the bkg-only hypothesis: p_b = Fraction of future measurements with N=Nobs (or larger) if s=0



Frequentist p-values (apologies to Bayesians) -- see links later

Excess over background

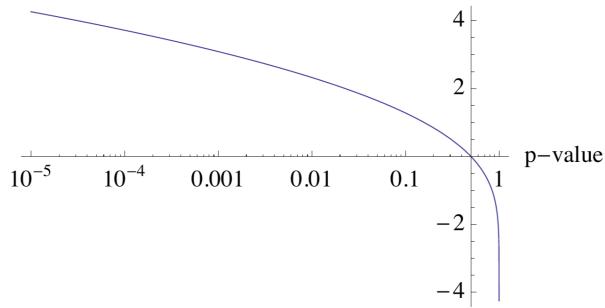
- Pb or p-values of background hypothesis is used to quantify 'discovery'
- 'discovery' = excess of events over background expectation
- One more example:
 - Nobs=15 for same model, what is p_b?



z-value

- · Results customarily expressed as odds of a Gaussian fluctuation with equal p-value: significance, Zn, z-value
- Nobs = $15 \rightarrow Zn = 3.5\sigma$

• Nobs = $22 \rightarrow Zn = 5\sigma$ or $p_b < 2.87 \times 10^{-7}$



p-value = $\int_{z\text{-value}}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx$,

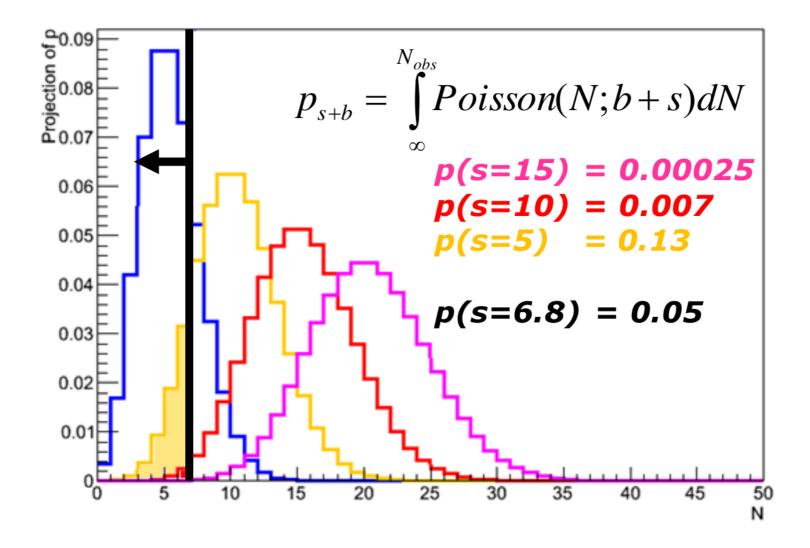
sqrt(2.) * TMath :: ErfInverse(1. - 2. * pvalue)

z-value =

Fig. 1. Relationship between *p*-value and *z*-value.

Upper limits

- Can also define p-value for s+b hypothesis p_{s+b}
 - Note convention change: integration range in \mathbf{p}_{s+b} is flipped



- Convention: express result as value (upper limit) of s for which p_{s+b} = 5% or excluded at 95% confidence level (95% C.L.)
- Our example:
 - s>6.8 is excluded at 95% C.L.

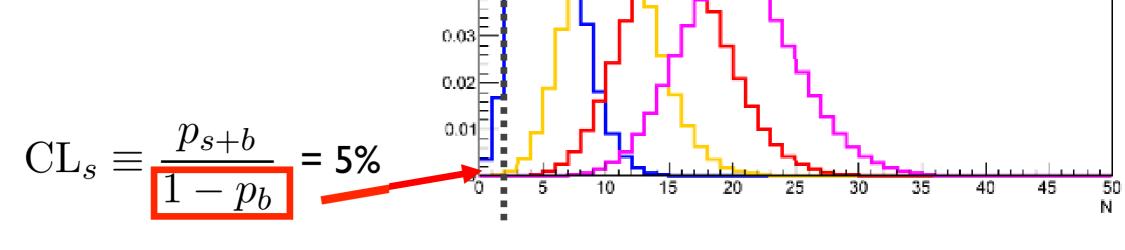
Modified Upper limits: CLs

0.06

0.05 | -

0.04

- Interpretation of p_{s+b} in terms of inference on signal only is problematic
 - Since p_{s+b} quantifies consistency with data of signal + background
 - Problem apparent when observed data has downward fluctuation wrt background expectation
- Example: Nobs = $2 \to p_{s+b}(s=0) = 0.04$
 - s≥0 excluded at 95% C.L. ???
- Modified approach to protect against such inference on signal (LHC convention):
 - Instead of requiring p_{s+b} = 5%,
 require



s=0

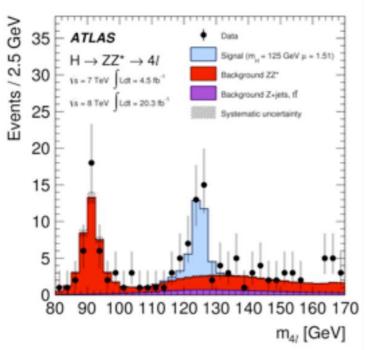
s=5

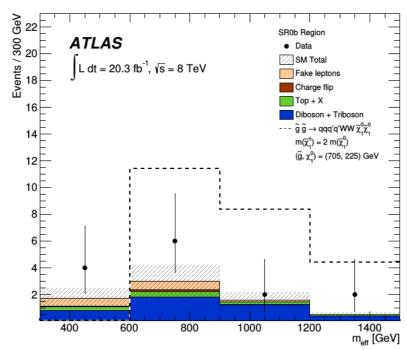
s = 15

- Example: Nobs = $2 \rightarrow s>3.4$ excluded at 95% CLs
- For large Nobs effect on limit is small as $\mathbf{p}_b \to 0$
- https://twiki.cern.ch/twiki/pub/AtlasProtected/StatisticsTools/CLsInfo.pdf

More complex examples

- Typical analysis is not a simple counting experiment
 - · Many intrinsic uncertainties on signal and bkg
 - Result is a distribution, not a single number
 - SUSY searches: discovery is cut&count, but many exclusion limits are shape-fits/multi-bin





- Any result can be converted into a single number by constructing a test statistic
 - · A test statistic compresses all signal-to-background discrimination power into one number
 - Most powerful discriminators are *Likelihood Ratios* (Neyman-Pearson lemma)
 - q_μ is a common test statistic
 (LHC convention)

$$q_{\mu} = -2 \ln \frac{L(data \mid \mu)}{L(data \mid \hat{\mu})}$$

Likelihood ratio test statistic

- Signal strength μ = signal rate / nominal signal rate (also know as μsις)
 - Bkg-only hypothesis: µ = 0
 - Bkg + signal hypo: $\mu = 1$
 - Bkg + 2 X signal hypo: $\mu = 2$
- Likelihood with nominal signal strength ($\mu = 1$)

'likelihood assuming nominal signal strength'

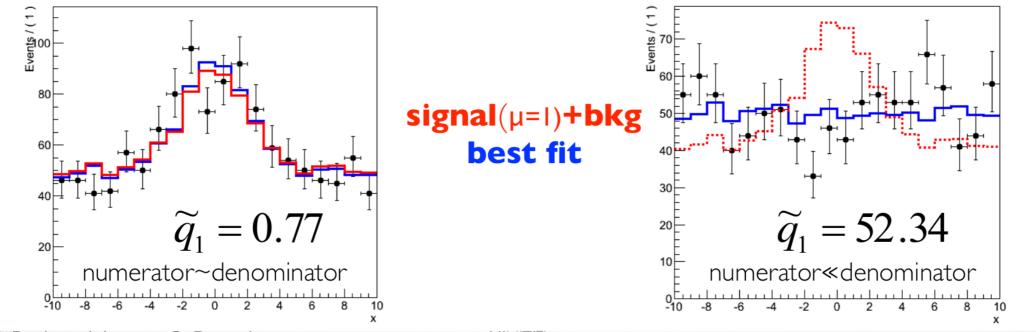
$$q_1 = -2 \ln \frac{L(data \mid \mu = 1)}{L(data \mid \hat{\mu})} \hat{\mu} \text{ is best fit value of } \mu$$

'likelihood of best fit'

Example: simple s + b model with no uncertainties

On signal-like data q1 is **small**

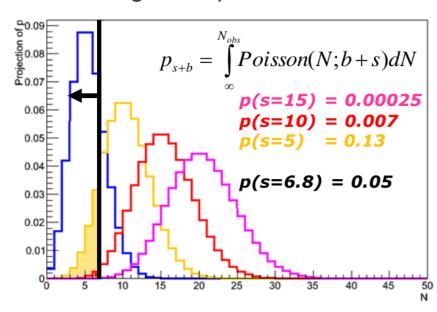
On background-like data q1 is large

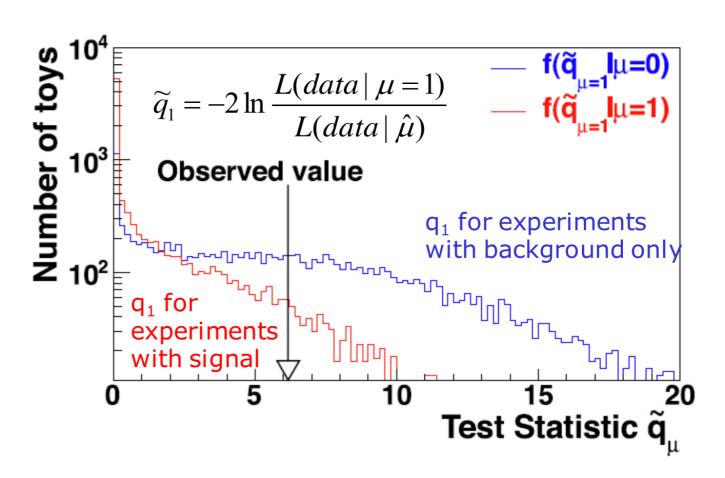


Distribution of test statistic

- Value of q₁ on data is now the measurement
- Distribution of q₁ is not calculable → But can be obtained from pseudo-experiments (toys)
 - Generate a large number of pseudo-experiments with a given value of μ , calculate q_1 for each, plot distribution

Note analogy to Poisson counting example





- From q_{obs} and these test statistic distributions, $f(q_{\mu})$, can then set limits or calculate discovery significance similar to what was shown for Poisson example
- Typically CPU-intensive to run many toy-experiments → approximate with asymptotic formulae, aka asimov data (only works in cases when Nobs≥10, see links for details)

Systematic uncertainties

Typically HEP models will have uncertainties: experimental (JES,trigger eff.) or theoretical (Q,σ)

$$L(data \mid \mu) \rightarrow L(data \mid \mu, \vec{\theta})$$

$$L(data | \mu, \theta) = Poisson(N_i | \mu \cdot s_i(\theta) + b_i(\theta)) \cdot p(\widetilde{\theta}, \theta)$$

- Models w/ uncertainties, described by additional parameters θ that describe effect of uncert.
- Likelihood includes auxiliary measurement terms that constrain the nuisance parameters θ
 - Auxiliary measurement given by performance group (jet perf.) or theory variations (renorm. scale up/down)

Likewise uncertainties quantified by nuisance parameters are incorporated into test statistic using
 Profile Likelihood Ratio

$$q_{\mu} = -2 \ln \frac{L(data \mid \mu)}{L(data \mid \hat{\mu})}$$

$$\widetilde{q}_{\mu} = -2 \ln \frac{L(data \mid \mu, \hat{\theta}_{\mu})}{L(data \mid \hat{\mu}, \hat{\theta})}$$

'likelihood of best fit for a given fixed value of μ'

'likelihood of best fit'

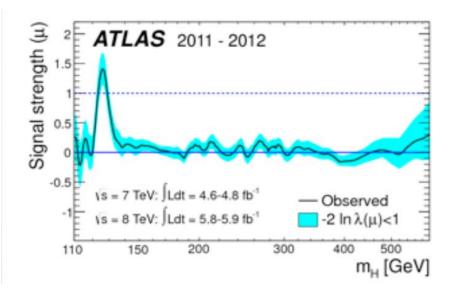
(with a constraint $0 \le \hat{\mu} \le \mu$)

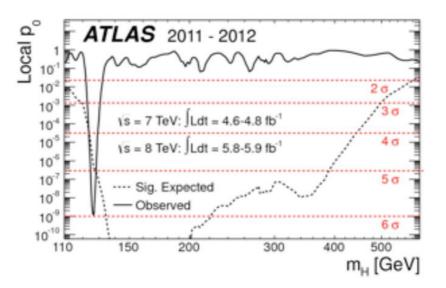
Overview for a search

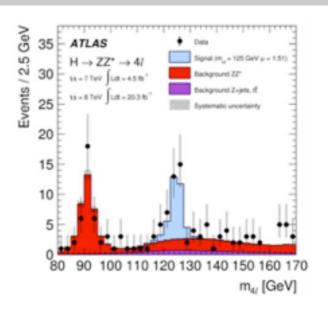
- Take Higgs search as example, and put it all together
- Result from data is a distribution (eg m(4l))
- Model signal and background by PDF (probability density function) for a given Higgs mass hypothesis
- Construct likelihood(s) by joining data and model(s)
- Construct test statistic q_μ from likelihoods

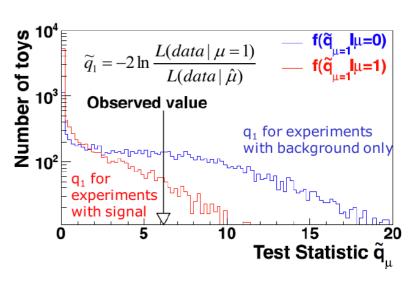
$$\widetilde{q}_{\mu}(m_H) = -2 \ln \frac{L(data \mid \mu, m_H \hat{\theta}_{\mu})}{L(data \mid \hat{\mu}, m_H \hat{\theta})}$$

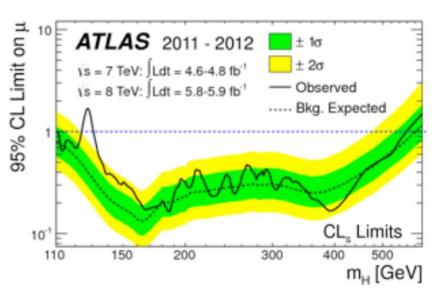
- Obtain expected distributions of q_{μ}
- Determine discovery p₀ and signal exclusion limit
- Repeat for each assumed m_H











Links

- Statistics lectures (CERN school, 2014, W. Verkerke):
 - Part-1: https://indico.cern.ch/event/287744/contribution/7/material/slides/0.pdf
 - Part-2: https://indico.cern.ch/event/287744/contribution/11/material/slides/1.pdf
 - Part-3: https://indico.cern.ch/event/287744/contribution/14/material/slides/0.pdf
- Plotting the Differences Between Data and Expectation, G. Choudalakis, D. Casadei http://arxiv.org/abs/1111.2062
- CLs: https://twiki.cern.ch/twiki/pub/AtlasProtected/StatisticsTools/CLsInfo.pdf

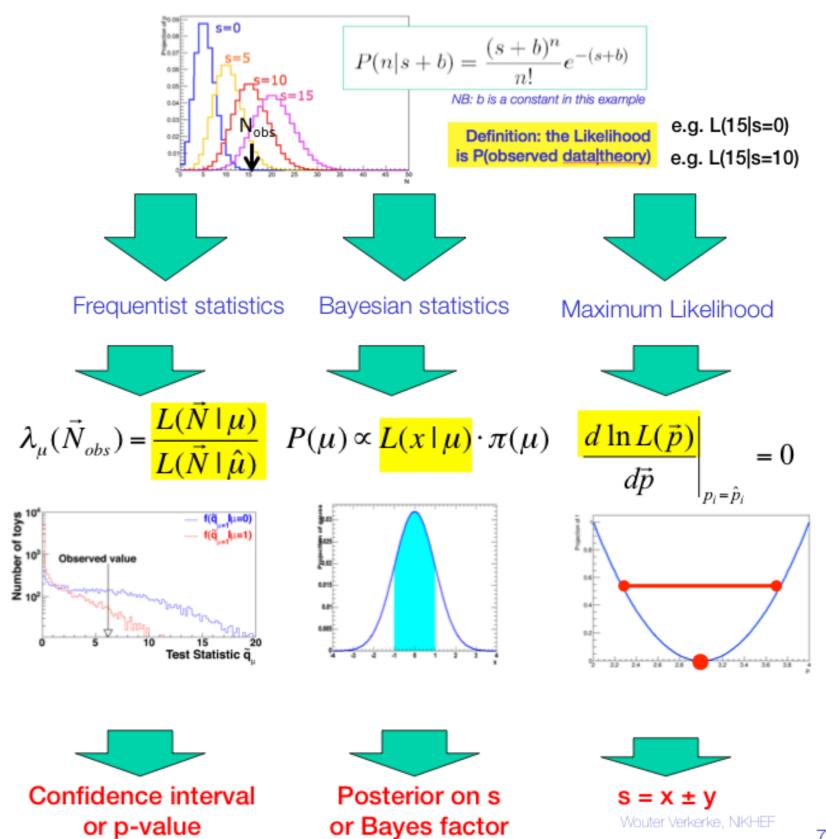
- [28] A. Read, Presentation of search results: the CL s technique, Journal of Physics G: Nuclear and Particle Physics 28 (10) (2002) 2693.
- [29] G. Cowan, K. Cranmer, E. Gross, O. Vitells, Asymptotic formulae for likelihood-based tests of new physics, Eur.Phys.J. C71 (2011) 1554. arXiv:1007.1727, doi:10.1140/epjc/s10052-011-1554-0.
- [30] S. Wilks, The large-sample distribution of the likelihood ratio for testing composite hypotheses, Ann. Math. Statist. 9 (1938) 60–62.

Introduction to statistics tools

Largely borrowed from lectures/slides by W. Verkerke

LIKELIHOOD, LIKELIHOOD, LIKELIHOOD...

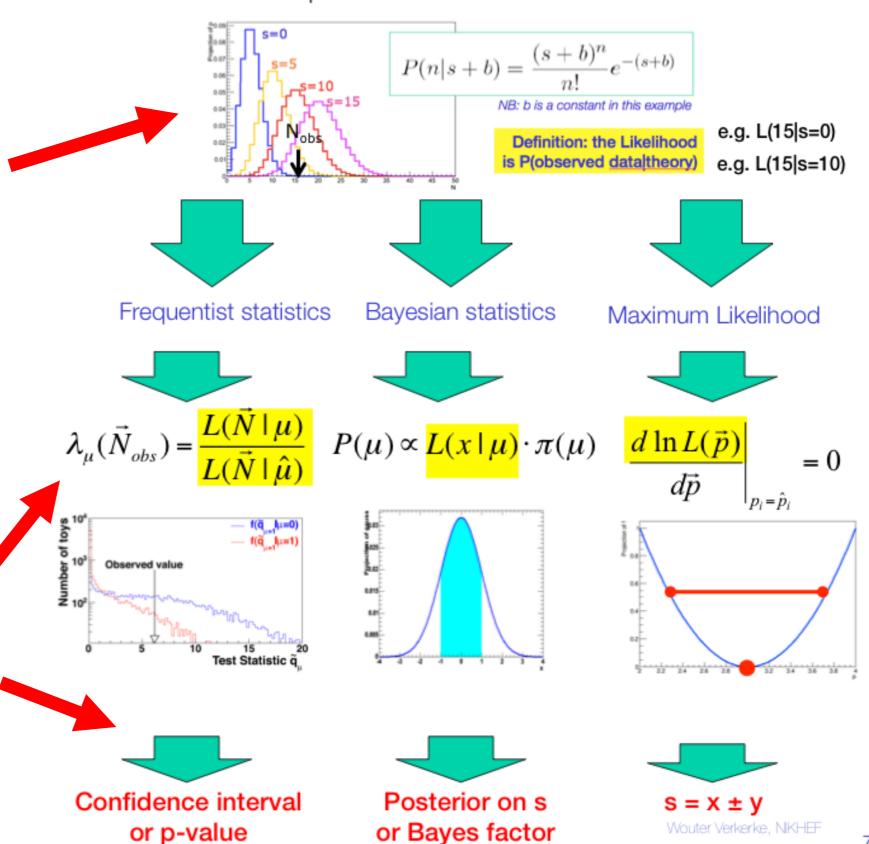
All fundamental statistical procedures are based on the likelihood function as 'description of the measurement'



Modular software design

- RooFit: tool/language for building probability models: datasets, likelihoods, minimization, toy data, visualization
- HistFactory: tool to construct binned template models of arbitrary complexity using classes of physics concepts: channel/region, sample, uncertainties
 Builds a RooFit stat. model from HistFactory physics model
- RooWorkspace: persistent RooFit object to transport a likelihood, containing model/data. Completely factorizes process of building and using likelihood functions.
- RooStats: tool/suite to calculate intervals and perform hypothesis tests using a variety of statistical techniques; easy to use with RooWorkspace

 All fundamental statistical procedures are based on the likelihood function as 'description of the measurement'

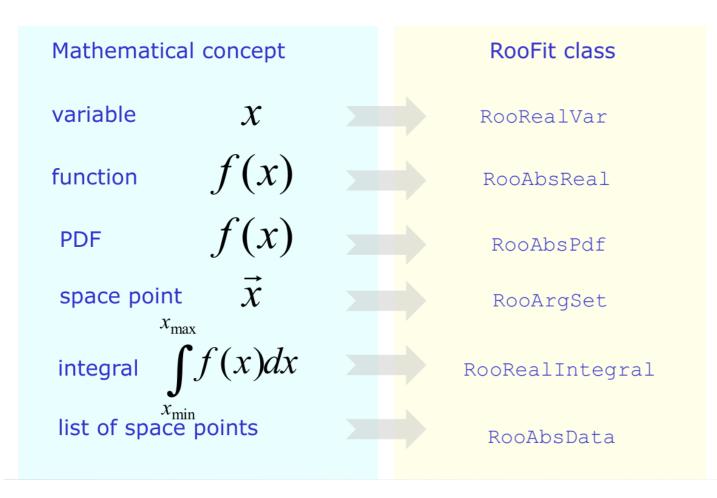


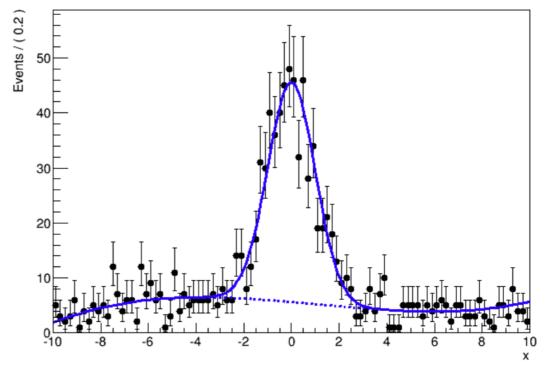
RooFit

Focus: coding a probability density function PDF: how do you formulate a PDF in

ROOT?

- Simple example: gauss (signal) + polynomial (bkg)
- Quickly becomes complicated: multidimensional, unbinned fits, non-trivial functions, non-analytic functions
- Core design philosophy:
 mathematical objects represented as C++ objects

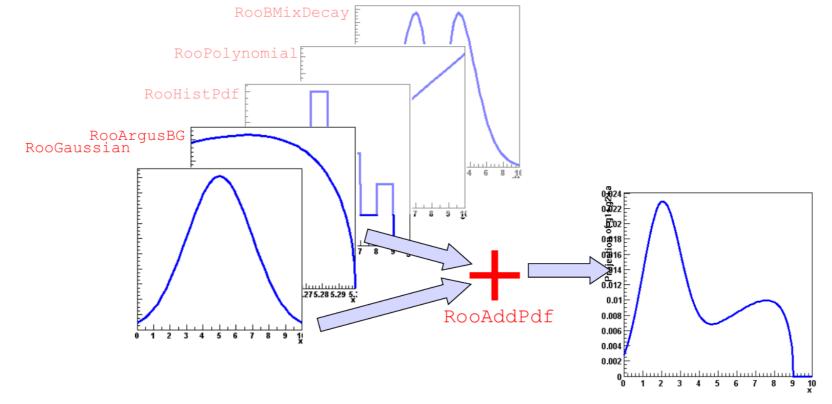




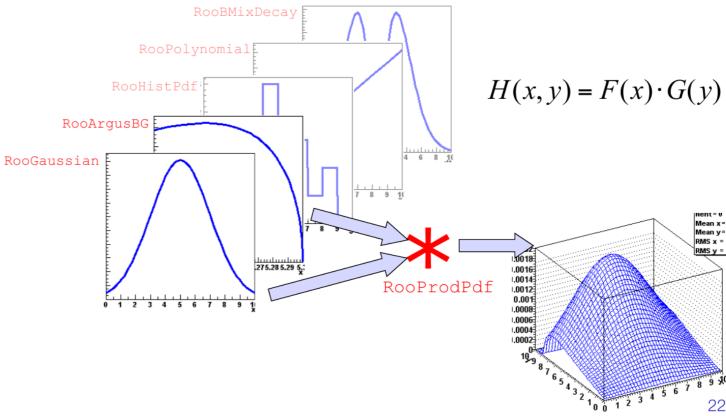
RooFit - model building

Easy to use standard components to build more complex/realistic models

Addition

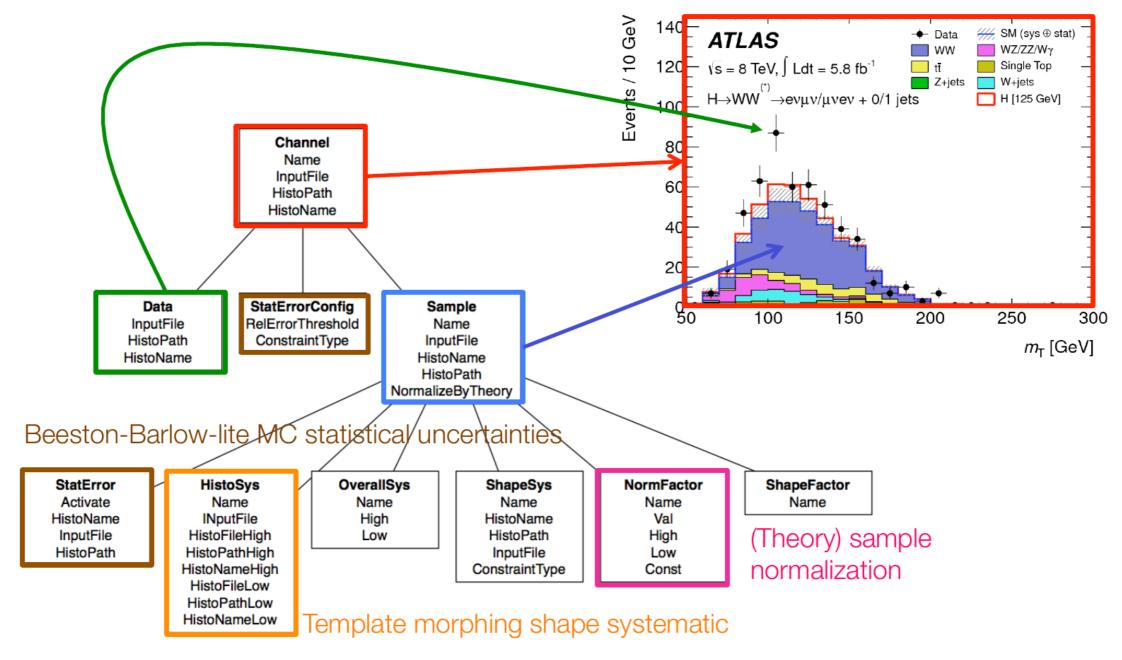


Product (multi-dimensional)



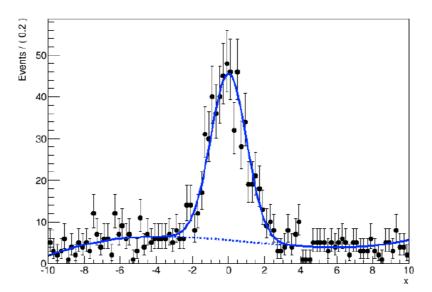
HistFactory

- Structured building of complex models based on binned templates (histograms)
- Classes of physics concepts:
 - Channel = region of phase space
 - One or more channels are combined to form a measurement
 - Sample = physics process: either data-driven or described by Monte Carlo (MC) simulation
 - Systematics = intrinsic uncertainty on your model



Systematics: nuisance parameters

- Empirical modeling of your model is easy to do, but expect some hard questions
 - · Gaussian for signal + polynomial for background

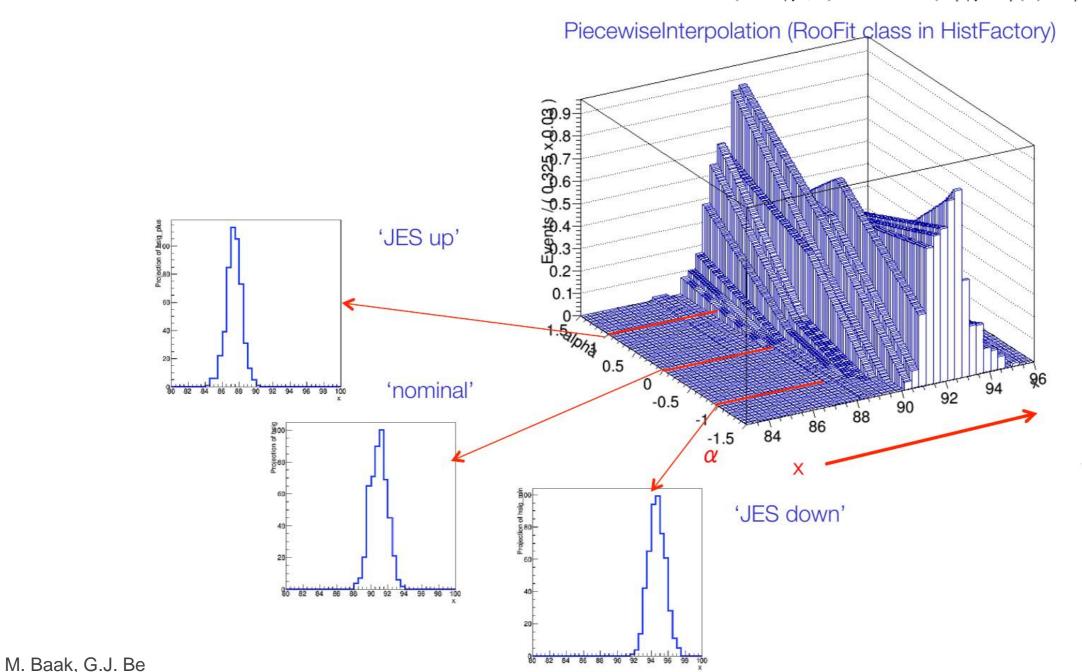


$$L(x \mid f, m, \sigma, a_0, a_1, a_2) = fG(x, m, \sigma) + (1 - f)Poly(x, a_0, a_1, a_2)$$

- Is your model correct?
 - Is the true signal distribution captured by a Gaussian?
- Is your model flexible enough?
 - Why use 4th order polynomial and not 6th order?
- How do your model parameters connect to known detector/theory uncertainties for your distribution?
 - · What conceptual uncertainty does what parameter represent? And are all conceptual uncertainties represented?

Systematics modeling - interpolation

- A common solution is to introduce degrees of freedom in model that describe specific systematic/uncertainty!
- The $\pm 1/-1~\sigma$ variations sampled from MC simulation are compared to nominal MC response
 - · (corrected/checked/double-checked to data by Perf. Groups)
- Interpolation, performed between $+1\sigma \leftrightarrow nominal \leftrightarrow -1\sigma$ taken into the model as nuisance parameter $L(data \mid \mu, \theta) = Poisson(N_i \mid \mu \cdot s_i(\theta) + b_i(\theta)) \cdot p(\widetilde{\theta}, \theta)$



25

RooWorkspace

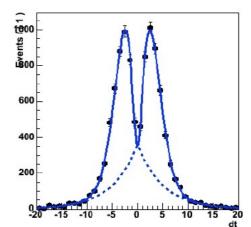
- Complete description of likelihood persistable in a ROOT file
- Factorizes building and using likelihood functions
 - In setup, team member, place and time
- Construct RooFit model sum and persist to ROOT file

```
RooWorkspace w("w") ;
w.import(sum) ;
w.writeToFile("model.root") ;
```

Pass file to your colleague

model.root

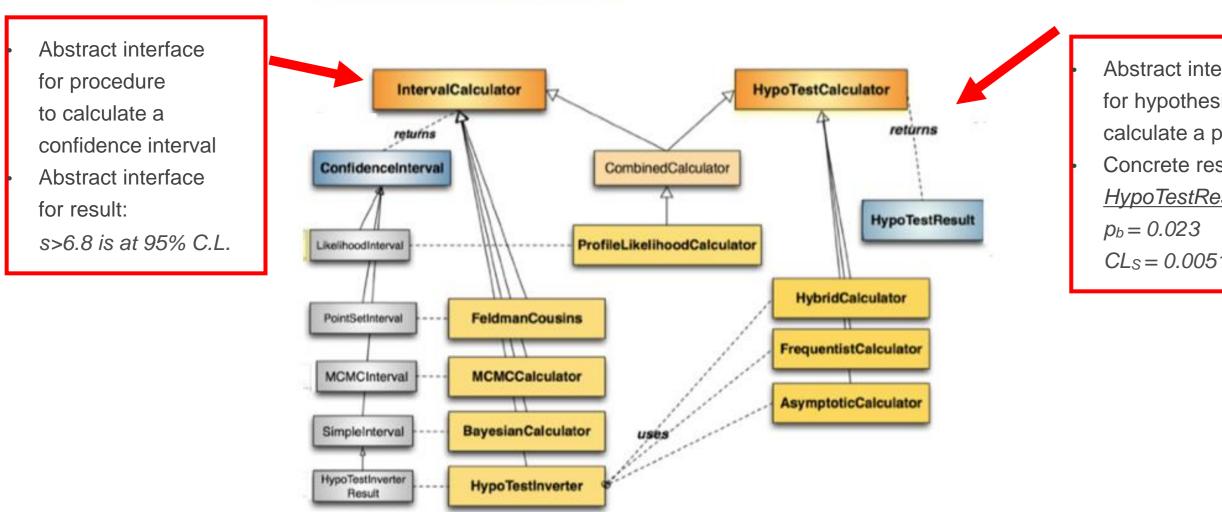
 Colleague resurrects likelihood, runs fit and produces plots



RooStats

- RooFit/HistFactory give tools to construct (complex) probability density functions
- RooWorkspace makes it possible to decouple statistical test tools from model contruction
- RooStats project/tools suite delivers a series of tools that can calculate intervals and perform Confidence intervals: $[\theta_{\perp}, \theta_{\perp}]$, or $\theta < X$ at 95% C.L. hypothesis tests using a variety of statistical techniques Hypothesis testing: \rightarrow p(data| θ =0) = 1.10⁻⁷
 - Frequentist/Bayesian/Likelihood-based methods (confidence/credible interval, hypothesis tests)

RooStats class structure



Abstract interface for hypothesis tester to calculate a p-value Concrete result class: *HypoTestResult* $CL_S = 0.00513$

Overview

- Step-0: define signal/control/validation regions
 - Input TTrees (derived from xAOD), histograms, numbers
- Step-1: Construct PDF and the likelihood function

RooFit or HistFactory + RooFit

- Result from data is a distribution
- Model signal and background by PDF (prob. density func.)
- Construct likelihood(s) by joining data and model(s)
- •
- RooWorkspace
- •
- Step-2: Statistical tests on parameter of interest μ

RooStats

- Construct test statistic q_{μ} from likelihoods
- Obtain expected distributions of q_{μ} for various μ values
- Determine discovery p₀ and signal exclusion limit
- Step-3: Repeat for each model (assumed value m_H)

HistFitter

- adds steps-0 and 3
- allows full analysis chain from simple configuration file

Links

- RooFit overview (2004): http://www.nikhef.nl/~verkerke/talks/chep03/chep2003_v4.pdf
- ATLAS Statistics Forum page on Stat. Tools: https://twiki.cern.ch/twiki/bin/viewauth/AtlasProtected/StatisticsTools
- RooFit/RooStats at ACAT 2014: https://indico.cern.ch/event/258092/session/0/contribution/140/material/slides/1.pdf
- Higgs Combination procedure/explanation of CLs observed/expected and error bands: http://cds.cern.ch/record/1375842
- HistFactory documentation:

https://cdsweb.cern.ch/record/1456844/

https://twiki.cern.ch/twiki/bin/view/RooStats/HistFactory

- [23] K. Cranmer, G. Lewis, L. Moneta, A. Shibata, W. Verkerke, HistFactory: A tool for creating statistical models for use with RooFit and RooStats, CERN-OPEN-2012-016.
- [24] L. Moneta, K. Belasco, K. S. Cranmer, S. Kreiss, A. Lazzaro, et al., The RooStats Project, PoS ACAT2010 (2010) 057. arXiv:1009.1003.
- [25] W. Verkerke, D. P. Kirkby, The RooFit toolkit for data modeling, eConf C0303241 (2003) MOLT007. arXiv:physics/0306116.
- [26] R. Brun, F. Rademakers, ROOT: An object oriented data analysis framework, Nucl.Instrum.Meth. A389 (1997) 81–86. doi:10.1016/S0168-9002(97)00048-X.
- [27] I. Antcheva, M. Ballintijn, B. Bellenot, M. Biskup, R. Brun, et al., ROOT: A C++ framework for petabyte data storage, statistical analysis and visualization, Comput.Phys.Commun. 182 (2011) 1384–1385. doi:10.1016/j.cpc.2011.02.008.

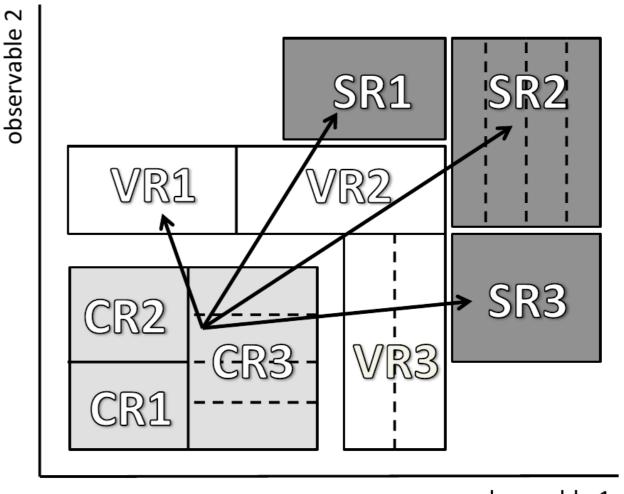
HistFitter introduction

Introduction

- HistFitter is a statistical tool/framework used in (almost) all SUSY WG analyses since 2012 for fitting, interpretation and presentation of fit results
 - Developed in SUSY strong production 1-lepton group, quickly adopted as recommended tool
 - Small core team: Max Baak, Geert-Jan Besjes, David Cote, Alex Koutsman, Jeanette Lorenz and Dan Short
 - Also used (more and more) in Higgs, Exotics and Top WGs
- HistFitter is:
 - built on top of RooFit/HistFactory and RooStats
 - consists of Python part for configuration and C++ part for CPU-intensive calculations
- Why HistFitter?
- HistFitter extends RooFit/HistFactory and RooStats in four key areas:
 - Programmable framework: performing complete analysis (steps 0-4) from a simple configuration file
 - Analysis strategy: common physics analysis strategy concepts, such as control/signal/validation regions, woven into the fabric of HistFitter design
 - Bookkeeping: can keep track of numerous data models, from histogram production until final statistical tests → handy when working with large collections of signal hypotheses (signal grids)
 - <u>Presentation and interpretation:</u> multiple methods are provided to determine statistical significance of signal hypotheses, and produce publication-quality tables and plot summarizing the fit results (step 4)

Data analysis strategy

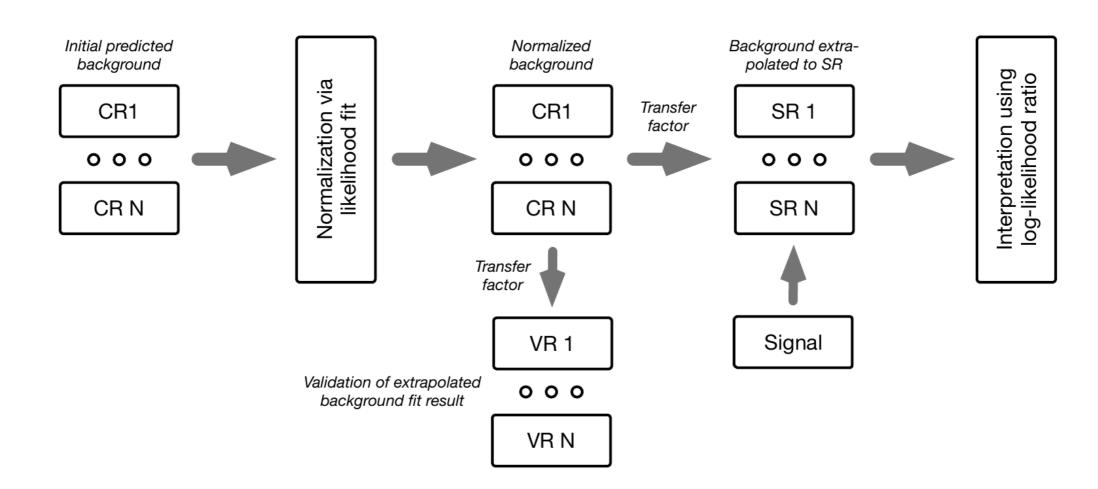
- Particle physics analyze large data samples for measurements of discovery
- Data interpretation relies on using external simulation, Monte Carlo (MC) predictions for backgrounds and signal
- HistFitter configures and builds parametric models from these predictions
- Typically one defines several phase space regions to study a specific phenomenon
- Definition depends on the purpose:
 - Signal region: signal-rich region (SR)
 - Control region: background-rich region (CR), fit simulated backgrounds to data
 - Validation region: validation of extrapolation (VR)
- Concepts of CR/SR/VR woven into the fabric of HistFitter



observable 1

Analysis strategy flow

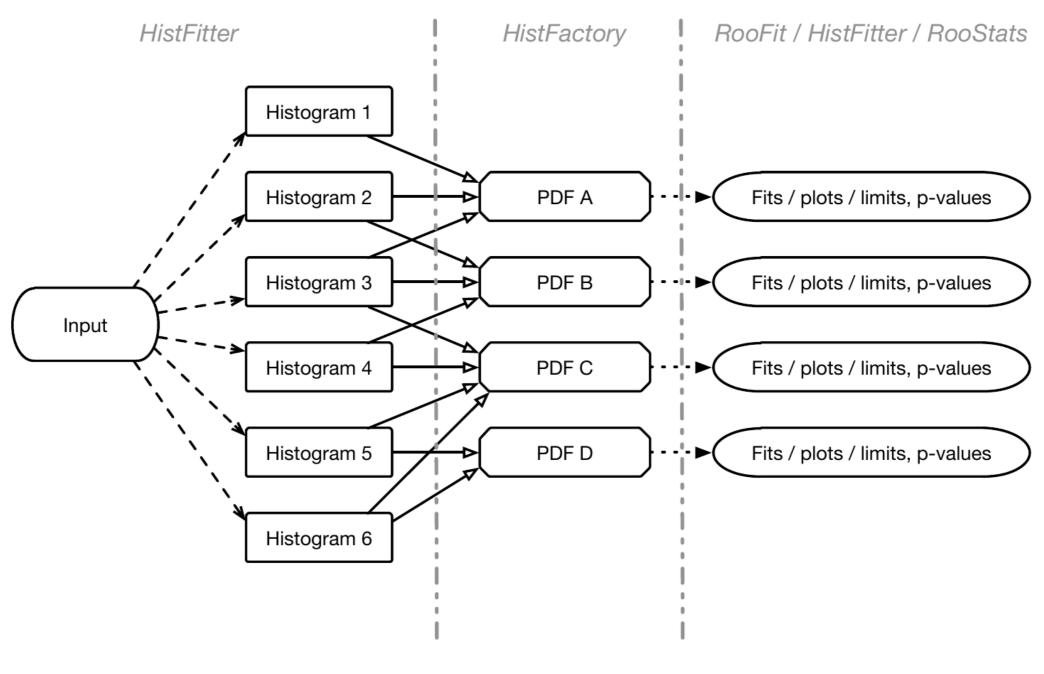
- Each CR/VR/SR modeled by a separate PDF, combined in a simultaneous fit
- Parameters shared in all regions → consistent background/signal prediction and systematics
 - Sharing user-defined
- Analysis flow:
 - Backgrounds normalized to data in a fit of control regions
 - Extrapolate to validation/signal regions using transfer factors (ratio of events between CR and SR/VR)
 - If good agreement in VR, unblind the SR
 - If no excess, add signal prediction and interpret/set limits



M. Baak

Processing sequence

Based on user-defined configuration file, processing sequence of HistFitter split in three stages



step-0

Histogram production

step-1

PDF construction
Workspace building

step-2/3

Analysis of models

Model construction

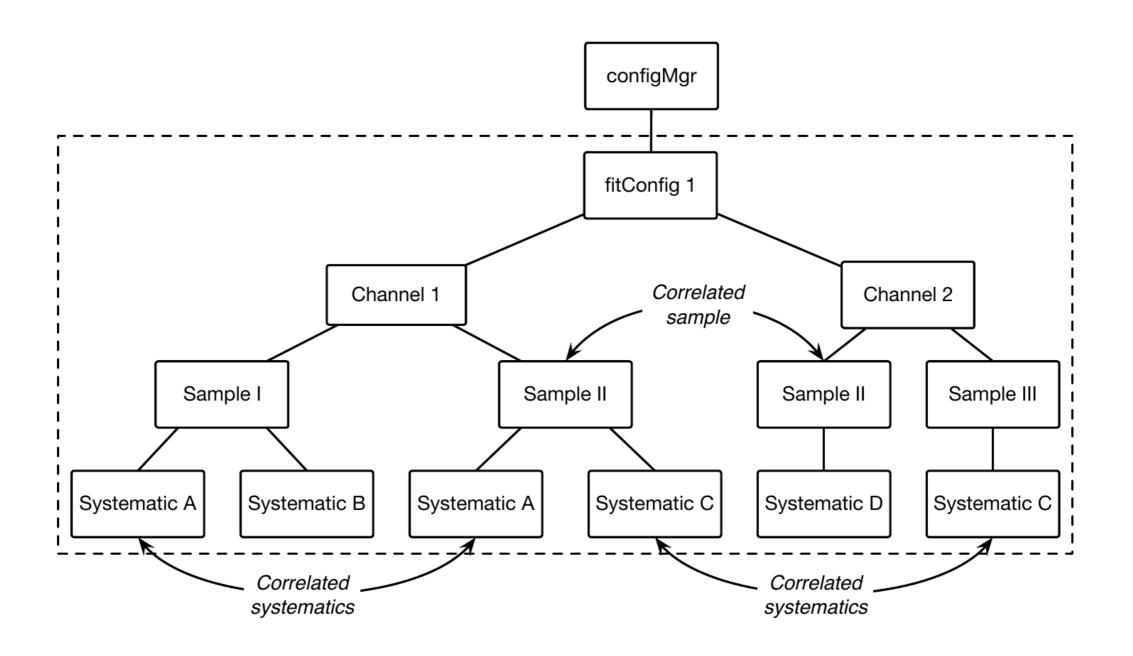
- Models constructed using HistFactory from input histograms
- General form of the constructed likelihood:

$$L(\boldsymbol{n}, \boldsymbol{\theta}^0 | \mu_{\text{sig}}, \boldsymbol{b}, \boldsymbol{\theta}) = P_{\text{SR}} \times P_{\text{CR}} \times C_{\text{syst}}$$

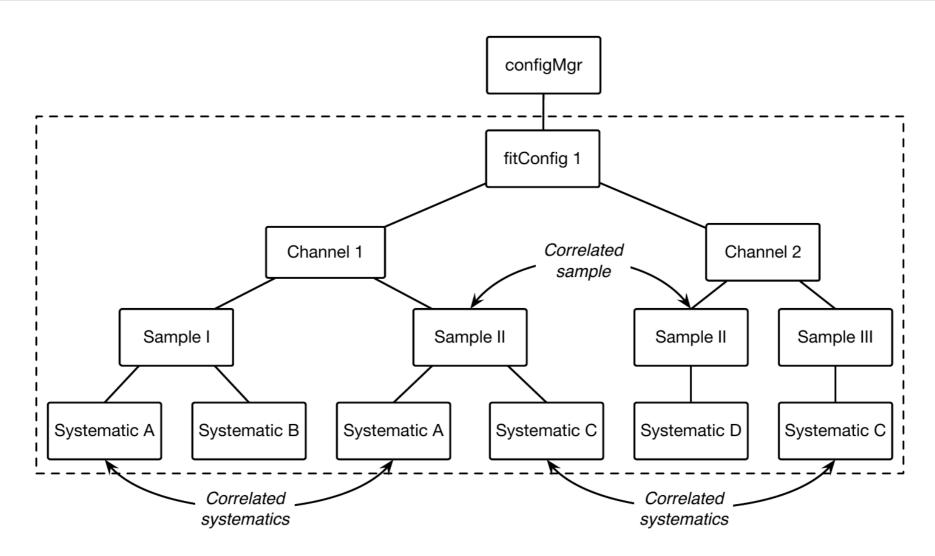
- P = Poisson measurements of number of observed events in CR/SR (VR)
- C = Constraint terms for systematic uncertainties, auxiliary measurements
- Likelihood depends on number of observed events in all regions (n), predictions for various background processes (b), the nuisance parameter (θ) parametrizing the systematic uncertainties with their central value (θ⁰) and signal strength (μ_{SIG})
- Likelihood has multiple building blocks:
 - Control/validation/signal regions: called channel in HistFitter (HistFactory)
 - Signal and background processes: called sample in HistFitter (HistFactory)
 - Uncertainties: called systematic in HistFitter (HistFactory)
 - Including statistical/theory/experimental uncertainties
- HistFitter is designed to build and manipulate PDFs of nearly arbitrary complexity
- · Bookkeeping/configuration machinery realized through a user-defined Python configuration file
- Configuration manager (configManager) highest level (singleton) object in Python and C++
- Manages fitConfig objects that contain PDF and meta-data

Fit configuration

 fitConfig objects summarize channels, samples and systematics together with corresponding input histograms



Fit configuration properties



- fitConfig: can be cloned/extended (see next slide)
- channels: either single-bin or multi-bin (shape), property as CR/VR/SR
- samples: input from TTree, TH1 or raw (hard-coded) floats, correlated between channels
- systematics: provided as ±1σ variation of nominal histogram; input from TTree, TH1 or raw floats; can be correlated between samples and/or channels; many types available extended from HistFactory base types (see later); trickle-down mechanism (see backup)

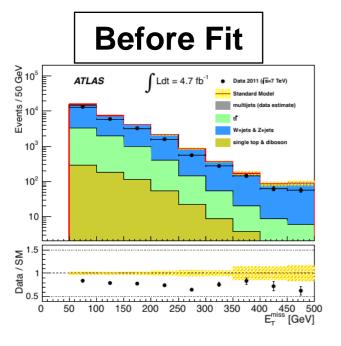
Common fit strategies

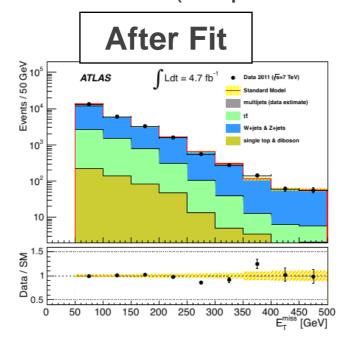
- Background-only fit: estimate background yields in validation/signal regions; including <u>only</u>
 CRs in the fit to data; no signal component included in fit configuration
- Model-dependent signal fit: set exclusion limit on a specific signal model; possible use of multi-binned (or multi-SR) shape fit for a robust signal estimation - aka exclusion fit
- Model-independent signal fit: to obtain model-independent upper limits on number of BSM events beyond background prediction; only usable with one single-bin SR (otherwise not model-independent) aka discovery fit

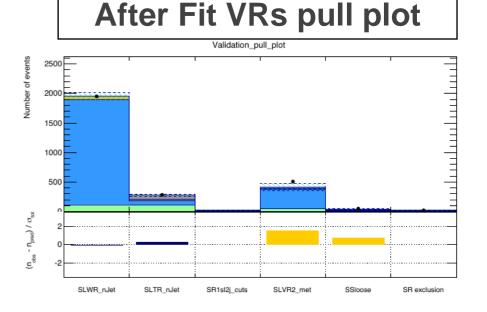
Fit setup	Background-only fit	$Model ext{-}dependent$	$Model ext{-}independent$	
		$signal\ fit$	signal fit	
Samples used	backgrounds	backgrounds + signal	backgrounds +	
			dummy signal	
Fit regions	CR(s)	CR(s) + SR(s)	CR(s) + SR	

Presentation of results

HistFitter includes a collection of tools (scripts/functions) to present/understand fit results







Yields Table

Signal Region	SR1	SR2
Observed events	16	19
Fitted bkg events	$\textbf{19.54} \pm \textbf{3.93}$	20.47 ± 5.14
Fitted Top events	$\textbf{4.02} \pm \textbf{0.96}$	$\textbf{4.32} \pm \textbf{1.04}$
Fitted V+jets events	$\textbf{9.89} \pm \textbf{1.86}$	10.47 ± 1.91
Fitted other background events	$\textbf{1.14} \pm \textbf{0.15}$	$\boldsymbol{1.19 \pm 0.16}$
Fitted QCD events	4.49 ± 2.72	$\textbf{4.49} \pm \textbf{4.24}$
MC exp. SM events	24.85	26.32
MC exp. Top events	8.42	9.11
MC exp. V+jets events	10.82	11.55
MC exp. other background events	1.13	1.17
Data-driven exp. QCD events	4.49	4.49

Systematics Table

Uncertainty of channel	SR1	SR2
Total background expectation	19.54	20.47
Total statistical ($\sqrt{N_{\rm exp}}$) Total background systematic	±4.42 ±3.93 [20.14%]	±4.52 ±5.14 [25.09%]
QCD background	±2.66	±4.20
Statistical uncertainties	± 2.54	± 1.86
Jet Energy Scale	±1.15	±1.17
Top yield	± 0.82	± 0.88
Renormalization scale (Top)	± 0.34	± 0.39
V+jets yields	± 0.28	± 0.29
Renormalization scale (V+jets)	± 0.14	± 0.03

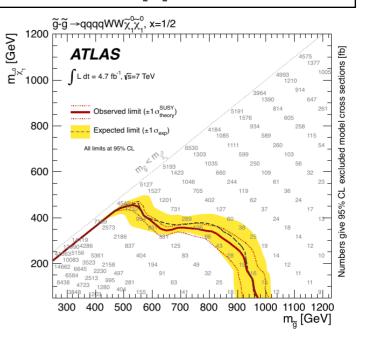
Model-independent upper limits

Signal channel	$\langle \sigma_{\rm vis} \rangle_{\rm obs}^{95} [{\rm fb}]$	$S_{ m obs}^{95}$	$S_{ m exp}^{95}$	p(s=0)
SR3b	0.19	3.9	$4.4^{+1.7}_{-0.6}$	0.50
SR0b	0.80	16.3	$8.9^{+3.6}_{-2.0}$	0.03

M. Baak, G.J. Besjes,, J. Lorenz, S. Pataraia

HistFitter

Exclusion contour with upper limits



HistFitter & documentation

- HistFitter paper on arXiv: http://arxiv.org/abs/1410.1280
- HistFitter webpage with doxgen documentation: http://cern.ch/histfitter
- Tutorial (to be discussed next): https://twiki.cern.ch/twiki/bin/view/Main/HistFitterTutorialOutsideAtlas
- ACAT 2014 talk on HistFitter: https://indico.cern.ch/event/258092/session/8/contribution/39

HistFitter tutorial

Running HistFitter

- HistFitter.py <options> <configuration file>
- -t: Create histograms in all regions used for all backgrounds, signal, data from TTrees
- -w: Build workspaces from histograms
- **-f**: Fit
- -D: various drawing options, to be discussed later
- -L: log level {VERBOSE,DEBUG,INFO,WARNING,ERROR,FATAL,ALWAYS}
- -m PARAM: run Minos for asymmetric error calculation
 - · optionally give parameter names comma separated; for all parameters use 'ALL' or 'all'
- -I: Calculate upper limit
- -p: Calculate the CLs value for a specific signal model (for exclusion)
- -i: interactive mode, keeps you in python command line, but shows plots on your screen

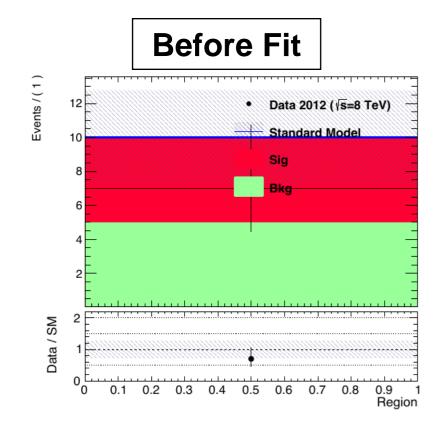
To see all options run: HistFitter.py --help

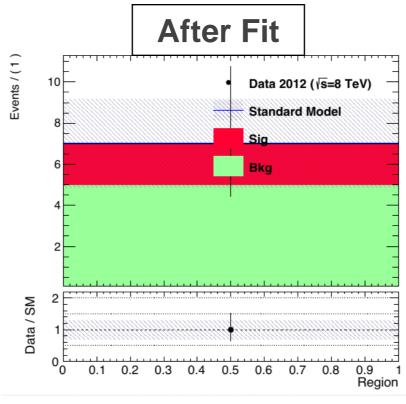
Simple example

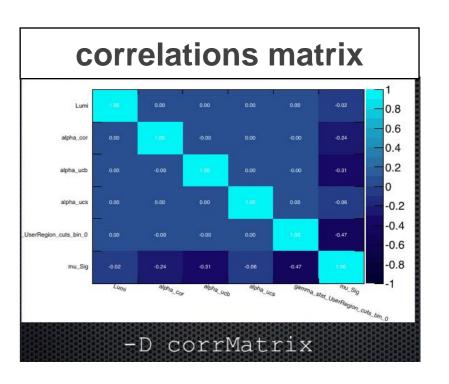
Simple example with one region with one bin:

HistFitter.py -w -f -D "before, after, corrMatrix" -i
analysis/tutorial/MyUserAnalysis.py

- Creates the workspace
- Runs the fit
- Plots before/after fit regions and correlation matrix
- Keeps you in interactive mode







Config file explained - I

- Define a configManager and setup a fitConfig and named SPlusB
- from configManager import configMgr
 ana = configMgr.addFitConfig("SPlusB")
- Add one channel/region to the fitConfig
- chan = ana.addChannel("cuts",["UserRegion"],1,0.5,1.5)
- One defines the region/channel in cutsDict (as one would in ROOT for TTree call)
- Here include all:
- configMgr.cutsDict["UserRegion"] = "1."
- Channels can also be binned (shape-fit)
- chan = ana.addChannel("myObs", ["mySelection"], nBins, varLow, varHigh)

Config file explained - II

Define samples: bkgSample, sigSample and dataSample

```
# Define samples
bkgSample = Sample("Bkg", kGreen-9) # define a background sample with color KGreen-9 if plotting
bkgSample.setStatConfig(True) #This sample gets statistical uncertainties
bkgSample.buildHisto([nbkg], "UserRegion", "cuts") #Build histograms from numbers defined by
the user
bkgSample.buildStatErrors([nbkgErr], "UserRegion", "cuts")
sigSample = Sample("Sig", kPink) #A signal sample with color kPink
sigSample.setNormFactor("mu Sig", 1., 0., 100.) # This samples receives a normalization
parameter
sigSample.setStatConfig(True) #This sample gets statistical uncertainties
sigSample.setNormByTheory() # and uncertainties due to the luminosity are added
sigSample.buildHisto([nsig], "UserRegion", "cuts")
sigSample.buildStatErrors([nsigErr], "UserRegion", "cuts")
dataSample = Sample("Data", kBlack) #Data sample
dataSample.setData()
dataSample.buildHisto([ndata], "UserRegion", "cuts")
```

add all samples to the fitconfig object and thus to all channels

```
ana.addSamples([bkgSample, sigSample, dataSample])
```

Config file explained - III

- Add systematics to signal/background samples
- Correlating systematics happens by giving them the same name
- # Set uncorrelated systematics for bkg and signal (1 +- relative uncertainties)

```
ucb = Systematic("ucb", configMgr.weights, 1.2,0.8, "user", "userOverallSys")
ucs = Systematic("ucs", configMgr.weights, 1.1,0.9, "user", "userOverallSys")
# correlated systematic between background and signal (1 +- relative uncertainties)
corb = Systematic("cor", configMgr.weights, [1.1], [0.9], "user", "userHistoSys")
cors = Systematic("cor", configMgr.weights, [1.15], [0.85],
"user", "userHistoSys")

bkgSample.addSystematic(corb)
bkgSample.addSystematic(ucb)
sigSample.addSystematic(cors)
sigSample.addSystematic(ucs)
```

Table production

- YieldsTable.py produces customizable tables of yields before/after fit
- Example: YieldsTable.py -s Top,WZ,BG,QCD -c SLWR_nJet,SLTR_nJet -w results/MyConfigExample/BkgOnly_combined_NormalMeasurement_model_afterFit.root -o MyYieldsTable.tex

table.results.yields channel	SLWR_nJet	SLTR_nJet	SR1sl2j	SS_metmeff2Jet
Observed events	1794	269	25	26
Fitted bkg events	1800.73 ± 39.91	262.45 ± 11.47	28.53 ± 5.26	31.74 ± 8.50
Fitted Top events	117.20 ± 11.42	113.20 ± 12.53	6.17 ± 1.12	6.65 ± 1.26
Fitted WZ events	1629.37 ± 42.19	69.75 ± 6.63	13.95 ± 2.03	14.57 ± 1.98
Fitted BG events	43.49 ± 1.90	23.19 ± 1.94	0.96 ± 0.32	1.00 ± 0.32
Fitted QCD events	10.64 ± 0.51	56.30 ± 13.65	$\textbf{7.44} \pm \textbf{3.75}$	$\textbf{9.52} \pm \textbf{7.54}$
MC exp. SM events	1921.26	261.96	32.04	35.35
MC exp. Top events	165.16	153.98	8.75	9.38
MC exp. WZ events	1647.04	66.30	15.26	15.82
MC exp. BG events	40.96	25.03	0.59	0.63
data-driven exp. QCD events	68.06	16.64	7.44	9.52

- SysTable.py produces customizable tables of systematic breakdown per region (or sample)
- Example: SysTable.py -w results/MyConfigExample/BkgOnly_combined_NormalMeasurement _model_afterFit.root -c SR1s12j -o systable_SR1s12j.tex

	Uncertainty of channel	SR1sl2j
	Total background expectation	28.53
	Total statistical ($\sqrt{N_{\rm exp}}$) Total background systematic	±5.34 ±5.26 [18.43%]
	gamma_stat_SR1sl2j_cuts_bin_0 alpha QCDNorm SR1sl2j	±3.63 ±3.63
	alpha_JES mu_Top	±0.93 ±0.65
M. Baak, G.J.	alpha_KtScaleTop alpha_KtScaleWZ	±0.52 ±0.37 ±0.36

Signal model hypothesis test

- Once you have unblinded your SR, one can calculate the CLs/p-value on specific signal models using the
 exclusion fit (aka model-dependent fit setup)
- As simple in HistFitter as calling:

```
HistFitter.py -p analysis/tutorial/MyUserAnalysis.py
```

- Will calculate:
 - CLs observed = taking N observed events as data in all regions
 - CLs expected = taking N expected events as data in all regions
 - CLs_expected ±1sigma experimental uncertainty = N expected as data, ±1sigma fit results
 - · yellow band next slide
 - CLs observed ±1sigma signal theory uncertainty = N observed as data, ±1sigma signal theory
 - need to set the name of the signal theory uncertainty systematic as Systematic ("SigXSec", ...)
 - · red-dotted lines next slide
- Setting calculator and test statistic type can be set in configManager (see backup):

```
## setting the parameters of the hypothesis test
#configMgr.nTOYs=5000
configMgr.calculatorType=2 # 2=asymptotic calculator, 0=frequentist calculator
configMgr.testStatType=3 # 3=one-sided profile likelihood test statistic (LHC default)
configMgr.nPoints=20 # number of values scanned of signal-strength for upper-limit
determination of signal strength.
```

Result of '-p' stored in a ROOT file with 'hypotest' in the name:

```
results/MySimpleChannelAnalysis fixSigXSecNominal hypotest.root
```

Contour plot explained

https://twiki.cern.ch/twiki/bin/view/AtlasProtected/SUSYLimitPlotting

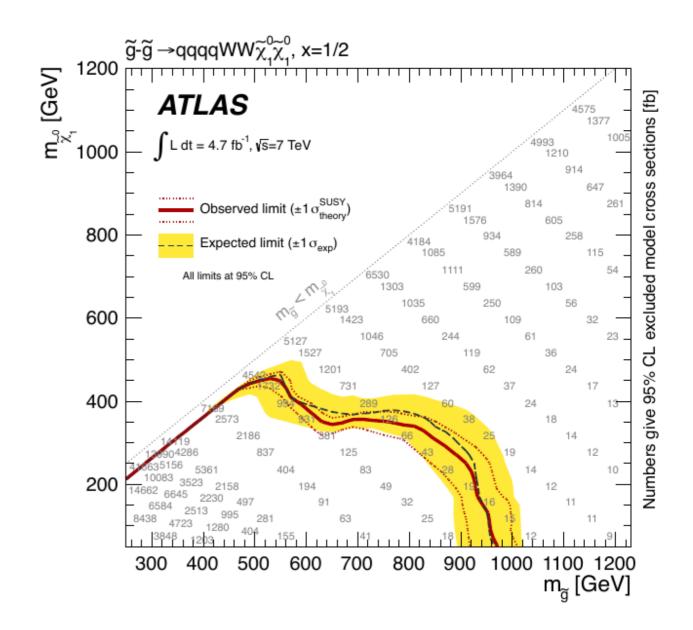
Description of limit lines

The model limits should be computed using the HistFitter package. We present the following limits:

- Observed limit (thick solid dark-red line): all uncertainties are included in the fit as nuisance parameters, with the exception of the theoretical signal uncertainties (PDF, scales).
- Expected limit (less thick long-dashed dark-blue line): all uncertainties are included in the fit as nuisance parameters, with the exception of the theoretical signal uncertainties (PDF, scales).

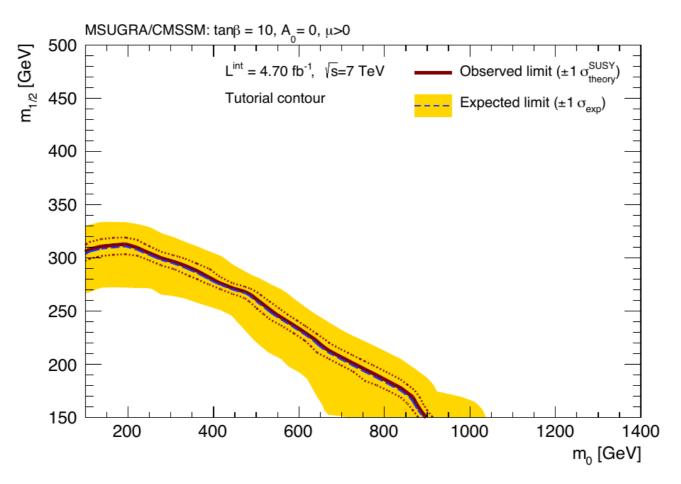
We present the following uncertainty bands:

- ±1σ lines around observed limit (1) with style
 "thin dark-red dotted": re-run limit calculation (1)
 while increasing or decreasing the signal cross
 section by the theoretical signal uncertainties
 (PDF, scales).
- ±1σ band around expected limit (2) with style "yellow band": the band contours are the ±1σ results of the fit (2).



Contour plot production

- Typically a grid of signal model points with varying signal parameters (m_H or m_{gluino}) get processed to produce an exclusion contour
- Five steps to produce (Part 5 of tutorial):
- 1. run hypothesis tests over all grid points (results saved in multiple *hypotest* files)
- 2. merge all the output root files into one using hadd (if stored in a separate files)
- 3. transform this set of hypothesis tests into a plain-text file: makelistfiles.C
- 4. create TH2D(s) from the ascii data in this list file: makecontourhists.C
- 5. plot TH2D(s) to draw contour lines and cosmetics: makecontourplots.C
- at the requested CLs level, typically 95% CL, CLs<0.05



Signal strength upper limit

- Once you have unblinded your SR, one can set upper limits on specific signal models
 using the exclusion fit (aka model-dependent fit setup)
- As simple in HistFitter as calling:

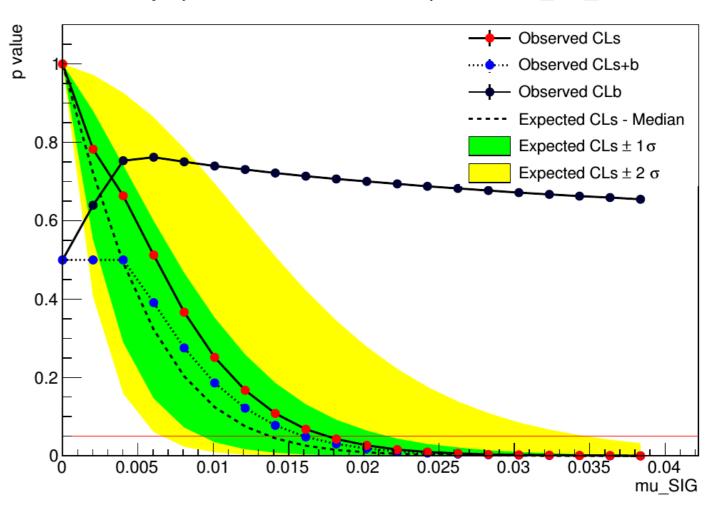
HistFitter.py -l analysis/tutorial/MyUserAnalysis.py

Technicalities similar to '-p'

Hypothesis test inversion:

- find the value of mu_SIG for which
 CLs below 0.05 (or other required value)
 - instead of calculating the p-value for the specific signal
- run the hypothesis test for increasing values of signal strength mu_SIG
 - scan range determined automatically
 - upper limit on cross section =
 nominal cross section × upper limit on
 signal strength (grey numbers in contour
 plots, run for each signal grid point)

Asymptotic CL Scan for workspace result_mu_SIG



Model-independent upper limit

- Calculate the upper limit on the number of BSM physics events that we exclude in our SR
 - Typically used by theorists to check their favorite BSM model, that we have not looked at
- Requires the model-independent fit setup aka discovery fit
 - 'dummy signal' = exactly one event in signal region (none in CRs)
 - upper limit on this 'dummy signal' = upper limit on BSM number of events
- Use the UpperLimitTable.py script:

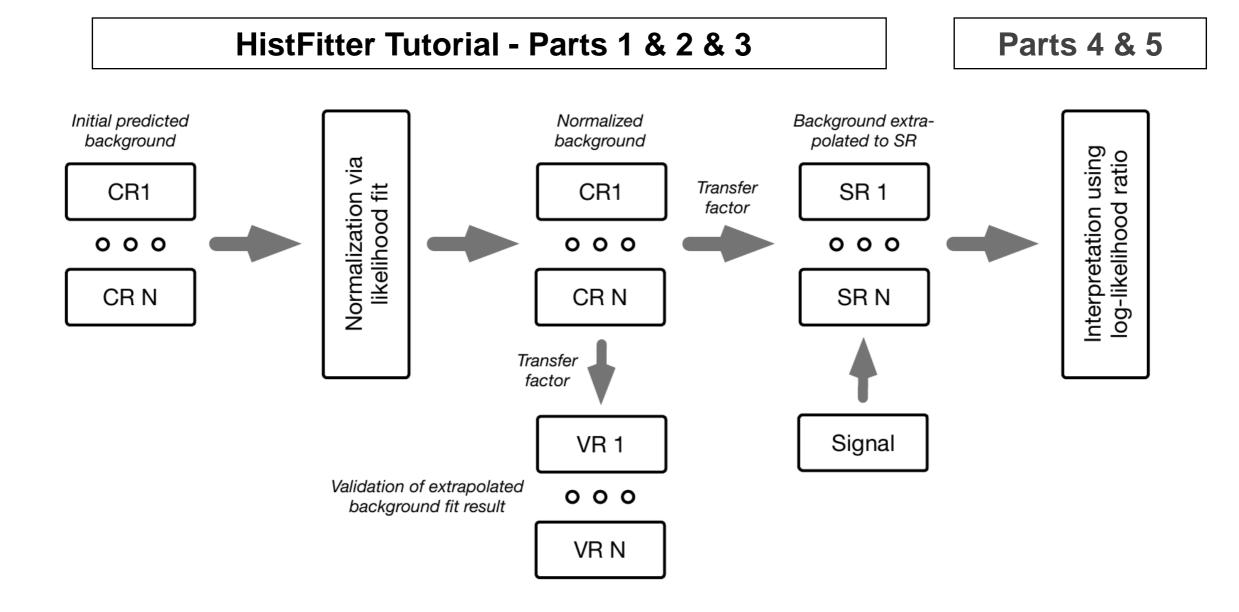
```
UpperLimitTable.py -c SS -w
results/MyUpperLimitAnalysis_SS/SPlusB_combined_NormalMeasurement_model.root -
1 4.713 -n 1000
```

Results in LaTeX table:

Signal channel	$\langle \epsilon \sigma angle_{ m obs}^{ m 95} [{ m fb}]$	$S_{ m obs}^{95}$	$S_{ m exp}^{95}$	CL_B	p(s=0)
SS	1.73	8.2	$6.1^{+2.3}_{-1.3}$	0.80	0.21

- ⟨σvis⟩95_obs: 95% CL upper limits on the visible cross section obs
- S95_obs :95% CL upper limits on the number of signal events obs
- S95_exp: 95% CL upper limit on the number of signal events, given the expected number (and ±1σ excursions on the expectation) of background events
- CLB: the confidence level observed for the background-only hypothesis
- p(s = 0): discovery p-value the probability, capped at 0.5, that a background-only experiment is more signal-like than the observed number of events in a signal region

HistFitter - tutorial



HistFitter tutorial start up

 A public version is available on the HistFitter webpage: http://histfitter.web.cern.ch/histfitter/Software/Install/index.html

We use HistFitter-2.0.tar.gz for this tutorial.

Installation instructions:

- Untar the HistFitter package
- Setup ROOT (if not already done)
- Go the HistFitter directory cd HistFitter-2.0
- Run the HistFitter setup script source setup.sh
- Go to the src/ directory and compile the C++ side of HistFitter cd src && make
- Go back to the main HistFitter directory

Input data here:

- Link the input data to your HistFitter directory as follows:
- In –s /project/etp3/jlorenz/shape_fit/samples/ samples