Introduction to statistics / statistical tools & the HistFitter framework

Geert-Jan Besjes (Copenhagen), Jeanette Lorenz (LMU), Sophio Pataraia (Mainz)

+ many other people

12 April 2017

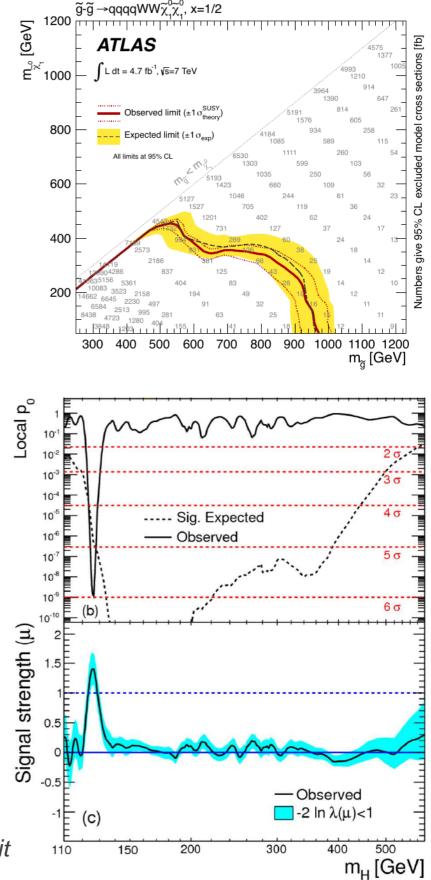
Overview

- Introduction to statistics (short)
- Introduction to statistical analysis (RooFit, RooStats, HistFactory)
- HistFitter overview
 - Introduction & strategy
- HistFitter tutorial
 - Running a fit & visualization
 - Calculating limits

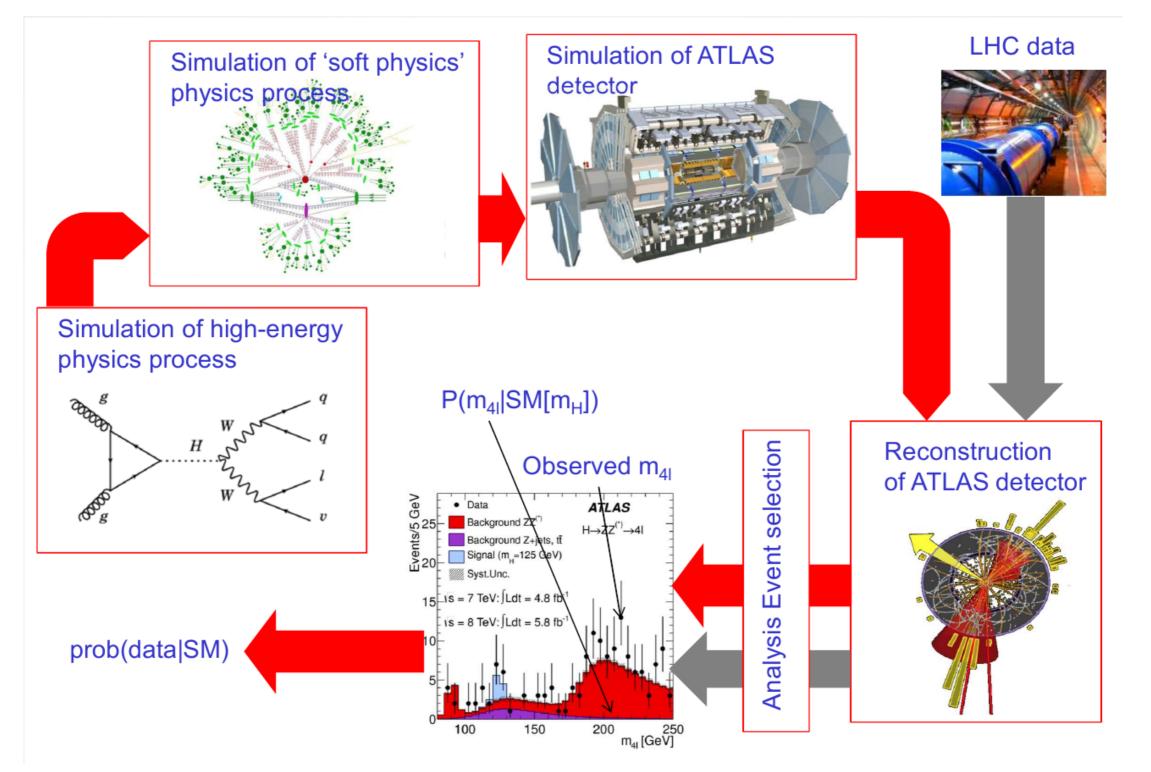
Introduction to HEP statistics

Largely borrowed from lectures/slides by W. Verkerke

...some more advanced examples

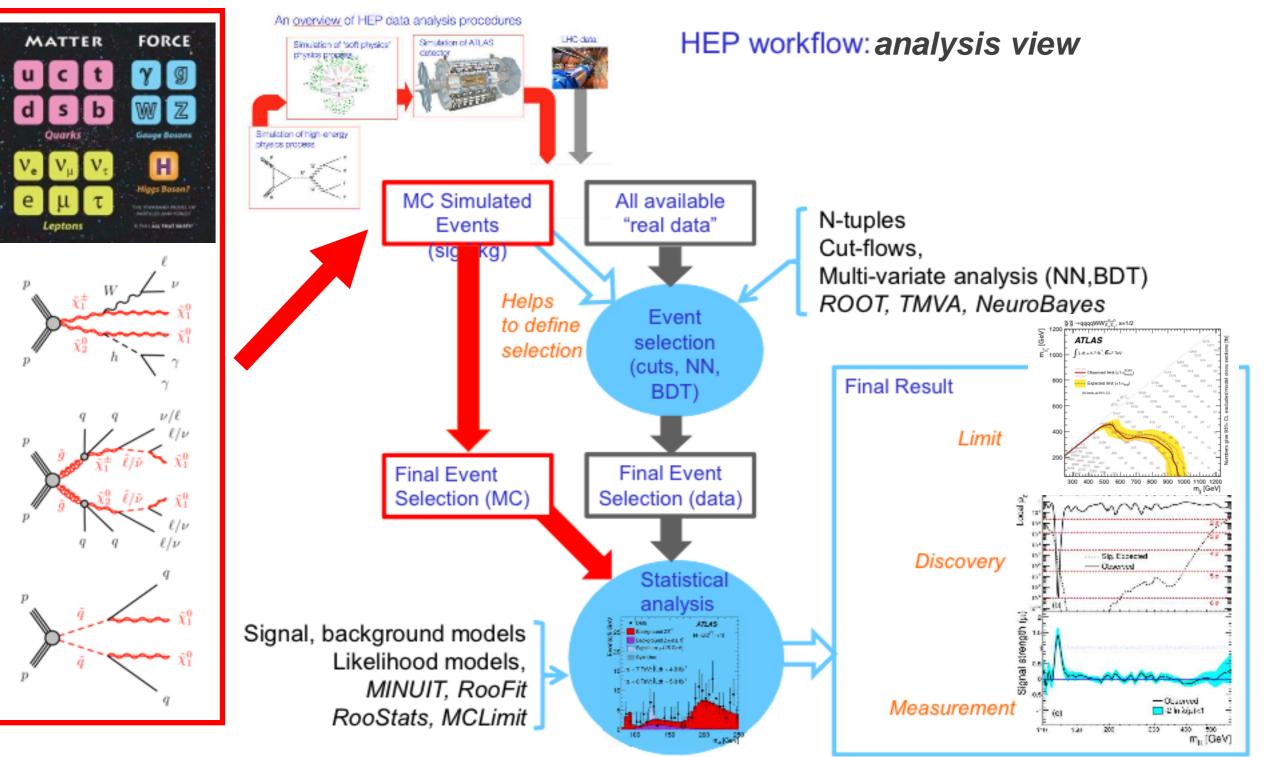

Basic questions

- Physics questions we want to answer...
 - Is the Higgs boson a SM Higgs boson?
 - What is its production cross section and couplings?
 - Is there any SUSY in ATLAS data?
 - If not, what models do not agree with data?
- Enormous efforts in many channels, millions of plots with signal/backgrounds expectations, with systematics and observed data
- How do you conclude on these questions?
- Statistical tests construct probabilistic statements/models on P(theory|data) or P(data|theory)
 - Likelihood fits
 - Systematics/uncertainties
 - Hypothesis testing
 - Setting limits ...
- <u>Result:</u> decisions based on these tests


As a layman I would now say, I think we have it

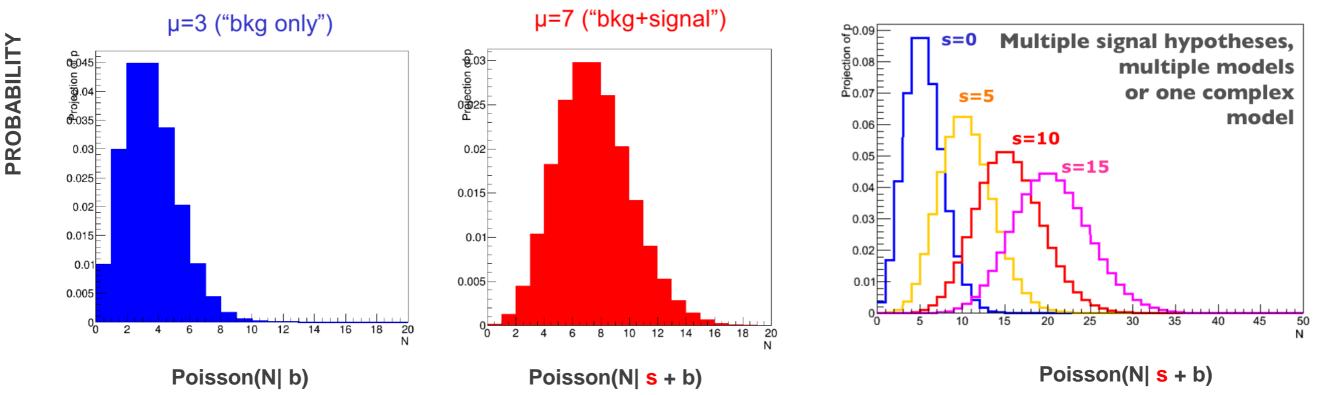
G.J. Besjes,, J. Lorenz, S. Pataraia

HistFitter


HEP workflow

Federica may have introduced some aspects here to you.

HEP data analysis



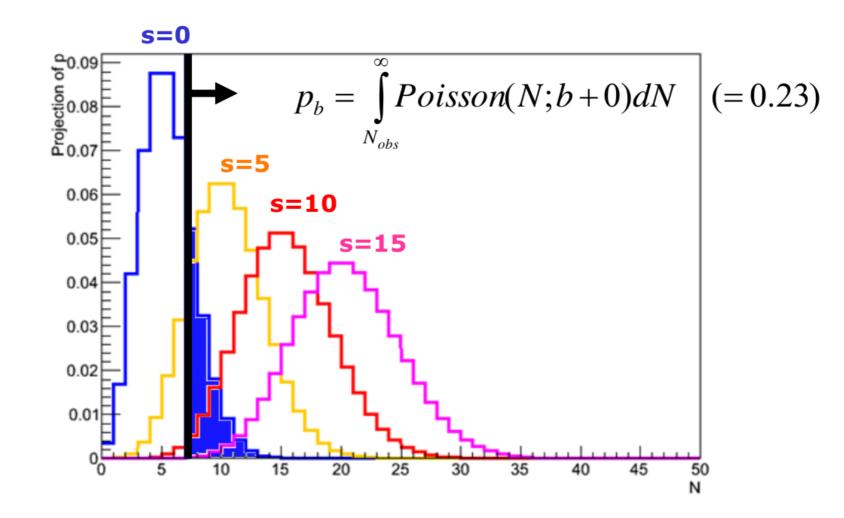
W. Verkerke

- HEP Data Analysis is (should be) for a large part the reduction of a physics theory(s) to a statistical model
- Statistical/probability model: Given a measurement *x* (eg N events), what is the probability to observe each possible *x*, under the hypothesis that the physics theory is true?
 G.J. Besjes,, J. Lorenz, S. Pataraia

Simple statistical example

- · Central concept in statistics is the 'probability model' : assigns a probability to each possible experimental outcome
- Example: a HEP counting experiment
 - Count number of events in your signal region (SR) in your data (specific lumi): Poisson distribution $P(N|\mu) = \frac{\mu^N e^{-\mu}}{N!}$
 - Given the expected(MC) event count, the probability model is fully specified

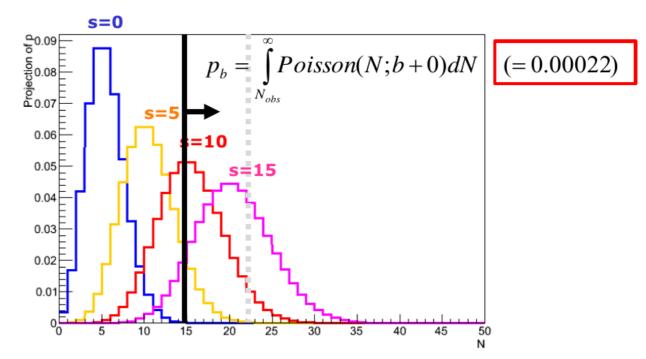
- Suppose we measure N = 7 events (Nobs), then can calculate the probability
- P(Nobs|hypothesis) is called LIKELIHOOD L(Nobs|b), L(Nobs|s+b), L(observed data|theory)


p(Nobs|b) = 2.2%

p(Nobs|s+b) = 14.9%

• Data is more likely under s+b hypothesis than bkg-only

p-value

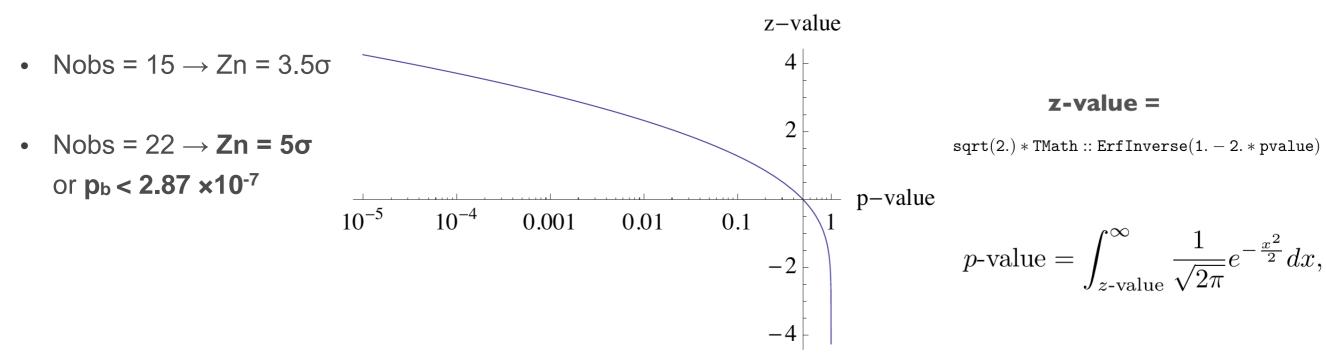

- P-VALUE: probability to obtain observed data, or more extreme, given the hypothesis in future repeated identical experiments
- For our example from previous page:
 - For the bkg-only hypothesis: p_b = Fraction of future measurements with N=Nobs (or larger) if s=0

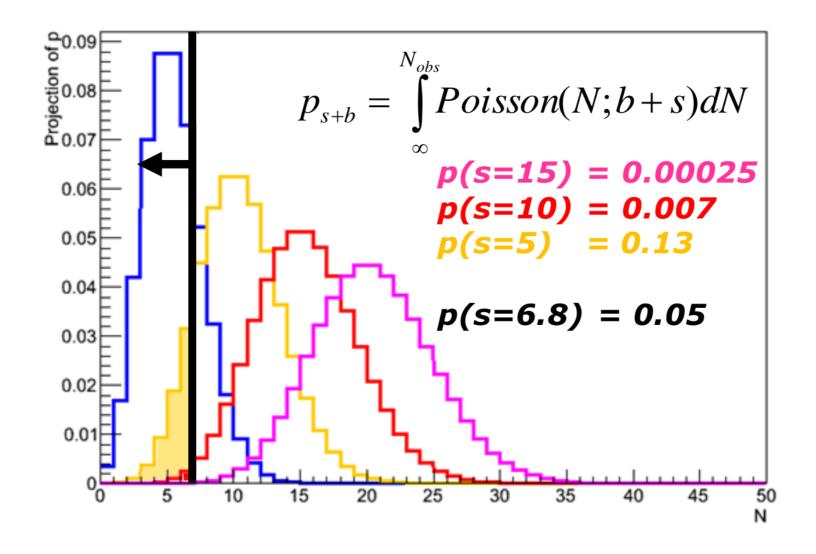
• Frequentist p-values (apologies to Bayesians) -- see links later

Excess over background

- **p**b or p-values of background hypothesis is used to quantify 'discovery'
- 'discovery' = excess of events over background expectation
- One more example:
 - Nobs=15 for same model, what is **p**_b?

• Results customarily expressed as odds of a Gaussian fluctuation with equal p-value: significance, Zn, z-value



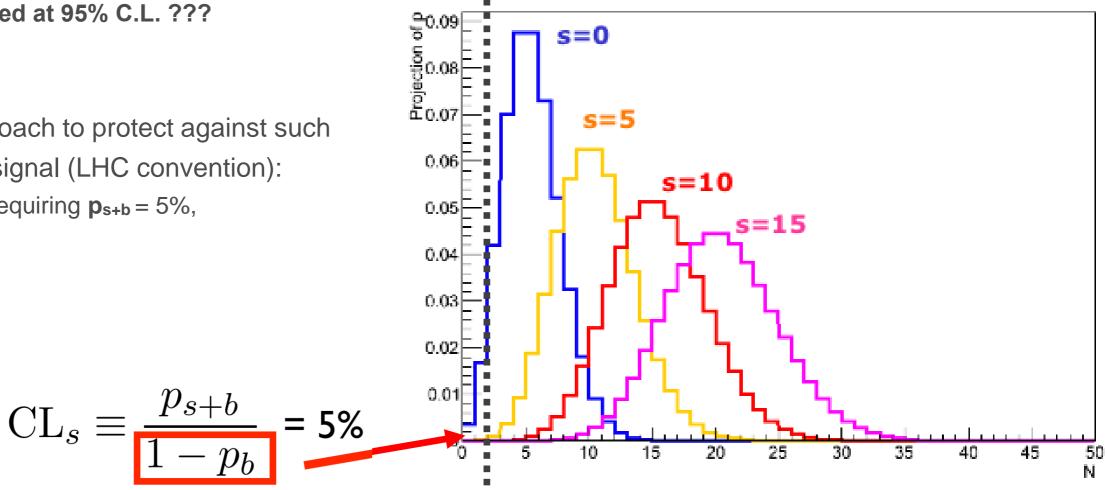

Fig. 1. Relationship between *p*-value and *z*-value.

G.J. Besjes,, J. Lorenz, S. Pataraia

HistFitter

Upper limits

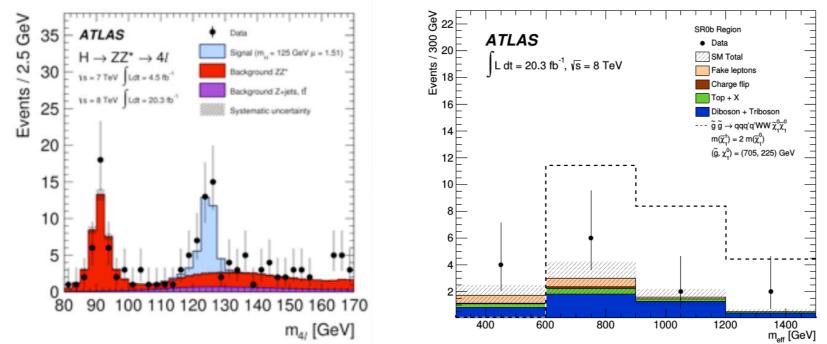
- Can also define p-value for s+b hypothesis p_{s+b}
 - Note convention change: integration range in \mathbf{p}_{s+b} is flipped



- Convention: express result as value (upper limit) of s for which p_{s+b} = 5% or excluded at 95% confidence level (95% C.L.)
- Our example:
 - s>6.8 is excluded at 95% C.L.

G.J. Besjes,, J. Lorenz, S. Pataraia

Modified Upper limits : CLs


- Interpretation of p_{s+b} in terms of inference on signal only is problematic lacksquare
 - Since p_{s+b} quantifies consistency with data of signal + background
 - Problem apparent when observed data has downward fluctuation wrt background expectation
- Example: Nobs = $2 \rightarrow p_{s+b}(s=0) = 0.04$ ullet
 - s≥0 excluded at 95% C.L. ???
- Modified approach to protect against such ulletinference on signal (LHC convention):
 - Instead of requiring $p_{s+b} = 5\%$, require

- Example: Nobs = $2 \rightarrow$ s>3.4 excluded at 95% CLs
- For large Nobs effect on limit is small as $\mathbf{p}_{\mathbf{b}} \rightarrow 0$ lacksquare
- https://twiki.cern.ch/twiki/pub/AtlasProtected/StatisticsTools/CLsInfo.pdf lacksquare

More complex examples

- Typical analysis is not a simple counting experiment
 - Many intrinsic uncertainties on signal and bkg
 - Result is a distribution, not a single number
 - SUSY searches: discovery is cut&count, but many exclusion limits are shape-fits/multi-bin

- Any result can be converted into a single number by constructing a test statistic
 - A test statistic compresses all signal-to-background discrimination power into one number
 - Most powerful discriminators are

Likelihood Ratios

(Neyman-Pearson lemma)

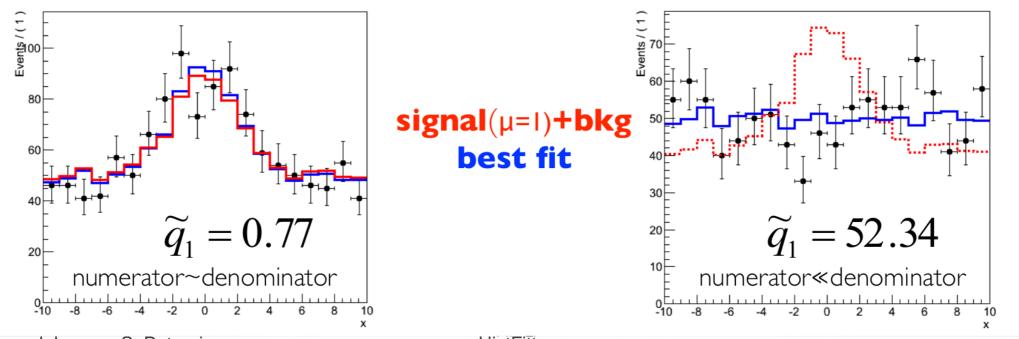
*q*_µ is a common test statistic (LHC convention)

$$q_{\mu} = -2 \ln \frac{L(data \mid \mu)}{L(data \mid \hat{\mu})}$$

Likelihood ratio test statistic

- Signal strength μ = signal rate / nominal signal rate (also know as μ sig)
 - Bkg-only hypothesis: $\mu = 0$
 - Bkg + signal hypo: $\mu = 1$
 - Bkg + 2 X signal hypo: $\mu = 2$
- Likelihood with nominal signal strength (µ = 1)

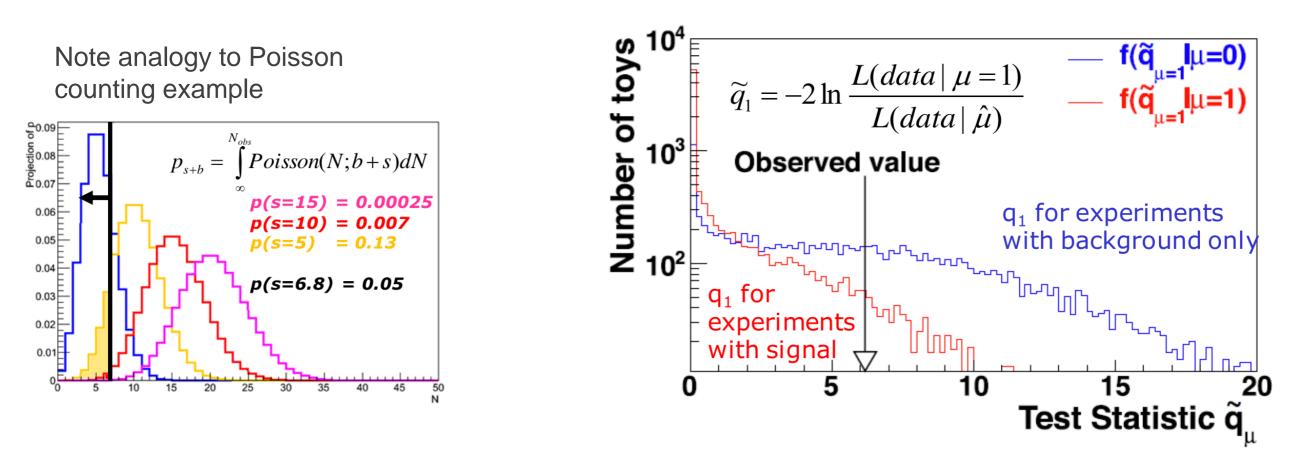
'likelihood assuming nominal signal strength'


$$q_1 = -2 \ln \frac{L(data \mid \mu = 1)}{L(data \mid \hat{\mu})} \quad \hat{\mu} \text{ is best fit value of } \mu$$

'likelihood of best fit'

• **Example:** simple s + b model with no uncertainties

On signal-like data q1 is **small**


On background-like data q1 is large

G.J. Besjes,, J. Lorenz, S. Pataraia

Distribution of test statistic

- Value of **q**₁ on data is now the *measurement*
- Distribution of q_1 is **not** calculable \rightarrow But can be obtained from pseudo-experiments (toys)
 - Generate a large number of pseudo-experiments with a given value of μ , calculate q_1 for each, plot distribution

- From q_{obs} and these test statistic distributions, $f(q_{\mu})$, can then set limits or calculate discovery significance similar to what was shown for Poisson example
- Typically CPU-intensive to run many toy-experiments → approximate with asymptotic formulae, aka asimov data (only works in cases when Nobs≳10, see links for details)

Systematic uncertainties

- Typically HEP models will have uncertainties: experimental (JES,trigger eff.) or theoretical (Q, σ) $L(data \mid \mu) \rightarrow L(data \mid \mu, \vec{\theta})$ $L(data \mid \mu, \theta) = Poisson(N_i \mid \mu \cdot s_i(\theta) + b_i(\theta)) \cdot p(\vec{\theta}, \theta)$
- Models w/ uncertainties, described by additional parameters θ that describe effect of uncert.
- Likelihood includes auxiliary measurement terms that constrain the nuisance parameters θ
 - Auxiliary measurement given by performance group (jet perf.) or theory variations (renorm. scale up/down)

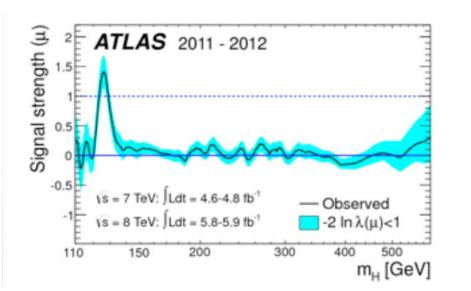
 Likewise uncertainties quantified by nuisance parameters are incorporated into test statistic using Profile Likelihood Ratio

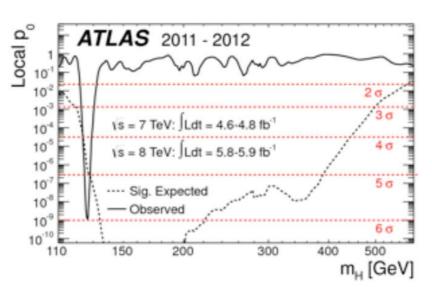
$$q_{\mu} = -2 \ln \frac{L(data \mid \mu)}{L(data \mid \hat{\mu})}$$

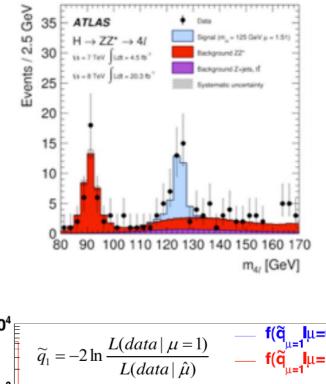
$$\widetilde{q}_{\mu} = -2 \ln \frac{L(data \mid \mu, \hat{\hat{\theta}}_{\mu})}{L(data \mid \hat{\mu}, \hat{\theta})}$$

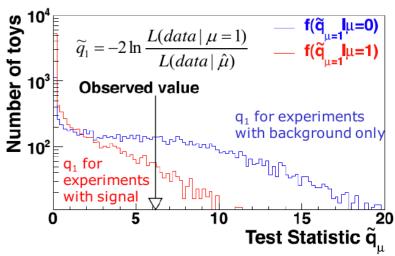
'likelihood of best fit for a given fixed value of μ'

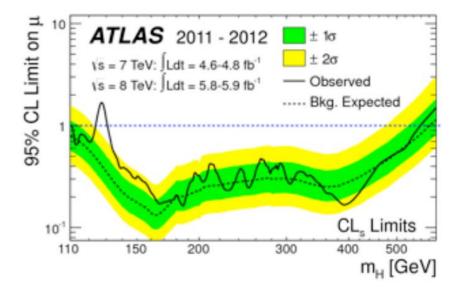
'likelihood of best fit'


(with a constraint $0 \leq \hat{\mu} \leq \mu$)


Overview for a search


- Take Higgs search as example, and put it all together
- Result from data is a distribution (eg m(4l))
- Model signal and background by PDF (probability density function) for a given Higgs mass hypothesis
- Construct likelihood(s) by joining data and model(s)
- Construct test statistic *q*_μ from
 likelihoods
 α (*m*)

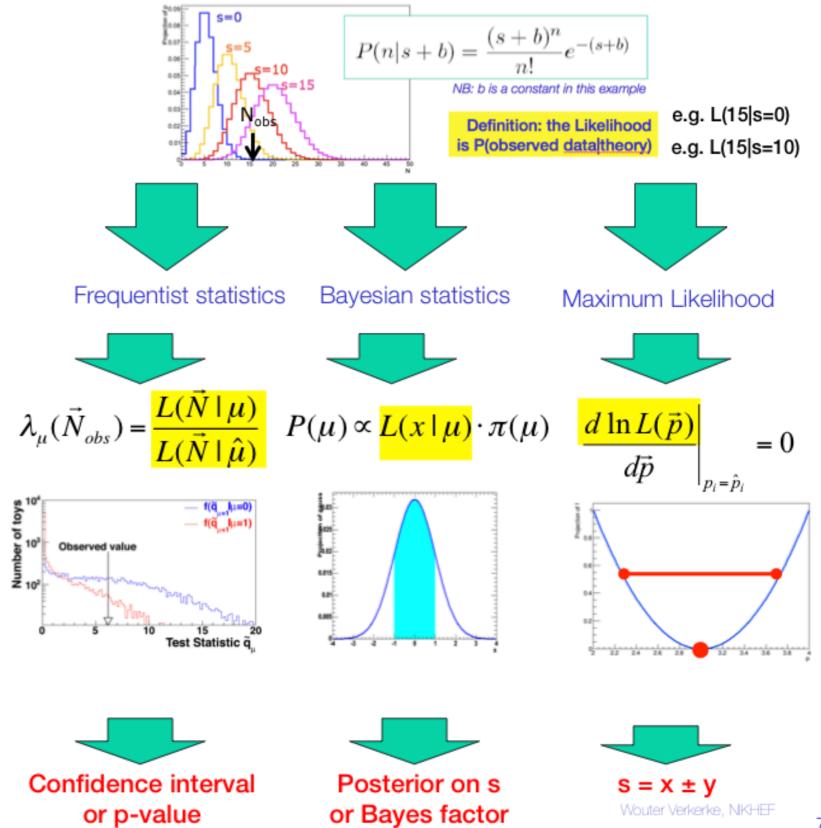

$$\widetilde{q}_{\mu}(m_{H}) = -2\ln\frac{L(data \mid \mu, m_{H}\hat{\theta}_{\mu})}{L(data \mid \hat{\mu}, m_{H}\hat{\theta})}$$


- Obtain expected distributions of q_{μ}
- Determine discovery po and signal exclusion limit
- Repeat for each assumed mн

G.J. Besjes,, J. Lorenz, S. Pataraia

Links

- Statistics lectures (CERN school, 2014, W. Verkerke):
 - Part-1: https://indico.cern.ch/event/287744/contribution/7/material/slides/0.pdf
 - Part-2: https://indico.cern.ch/event/287744/contribution/11/material/slides/1.pdf
 - Part-3: <u>https://indico.cern.ch/event/287744/contribution/14/material/slides/0.pdf</u>
- Plotting the Differences Between Data and Expectation, G. Choudalakis, D. Casadei http://arxiv.org/abs/1111.2062
- CLs: https://twiki.cern.ch/twiki/pub/AtlasProtected/StatisticsTools/CLsInfo.pdf


- [28] A. Read, Presentation of search results: the CL s technique, Journal of Physics G: Nuclear and Particle Physics 28 (10) (2002) 2693.
- [29] G. Cowan, K. Cranmer, E. Gross, O. Vitells, Asymptotic formulae for likelihood-based tests of new physics, Eur.Phys.J. C71 (2011) 1554. arXiv:1007.1727, doi:10.1140/epjc/ s10052-011-1554-0.
- [30] S. Wilks, The large-sample distribution of the likelihood ratio for testing composite hypotheses, Ann. Math. Statist. 9 (1938) 60–62.

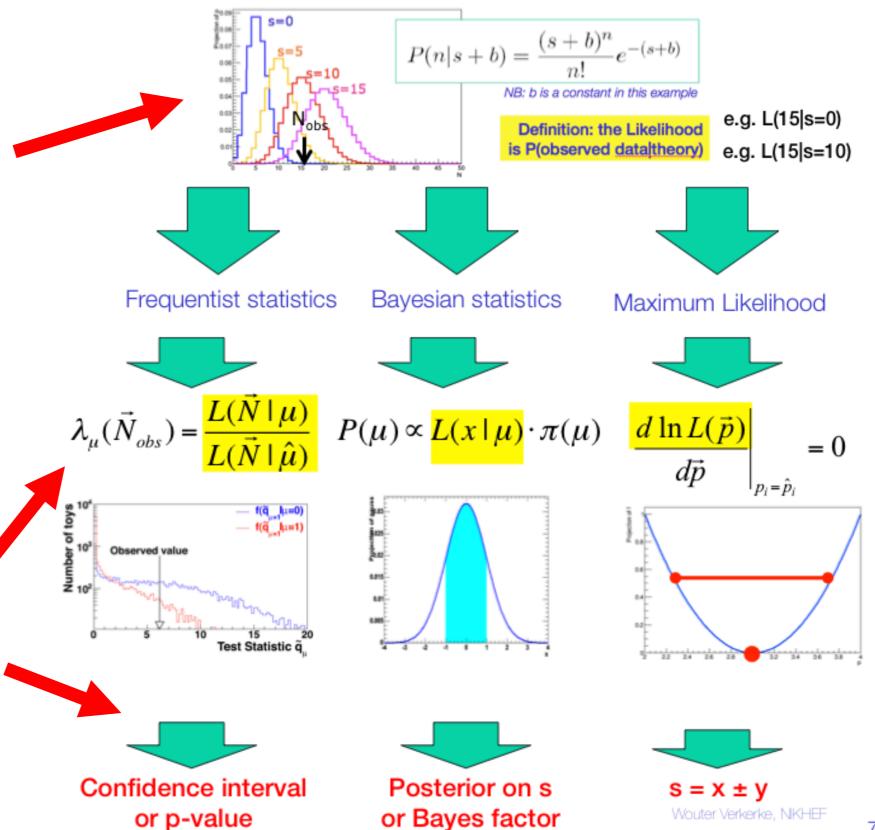
Introduction to statistics tools

Largely borrowed from lectures/slides by W. Verkerke

LIKELIHOOD, LIKELIHOOD, LIKELIHOOD...

 All fundamental statistical procedures are based on the likelihood function as 'description of the measurement'

G.J. Besjes,, J. Lorenz, S. Pataraia

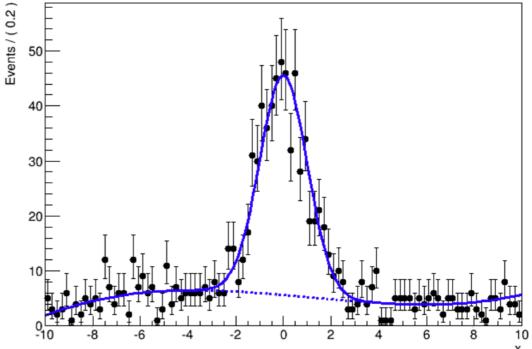

Modular software design

- <u>RooFit:</u> tool/language for building probability models: datasets, likelihoods, minimization, toy data, visualization
- HistFactory: tool to construct binned template models of arbitrary complexity using classes of physics concepts: channel/region, sample, uncertainties

Builds a RooFit stat. model from HistFactory physics model

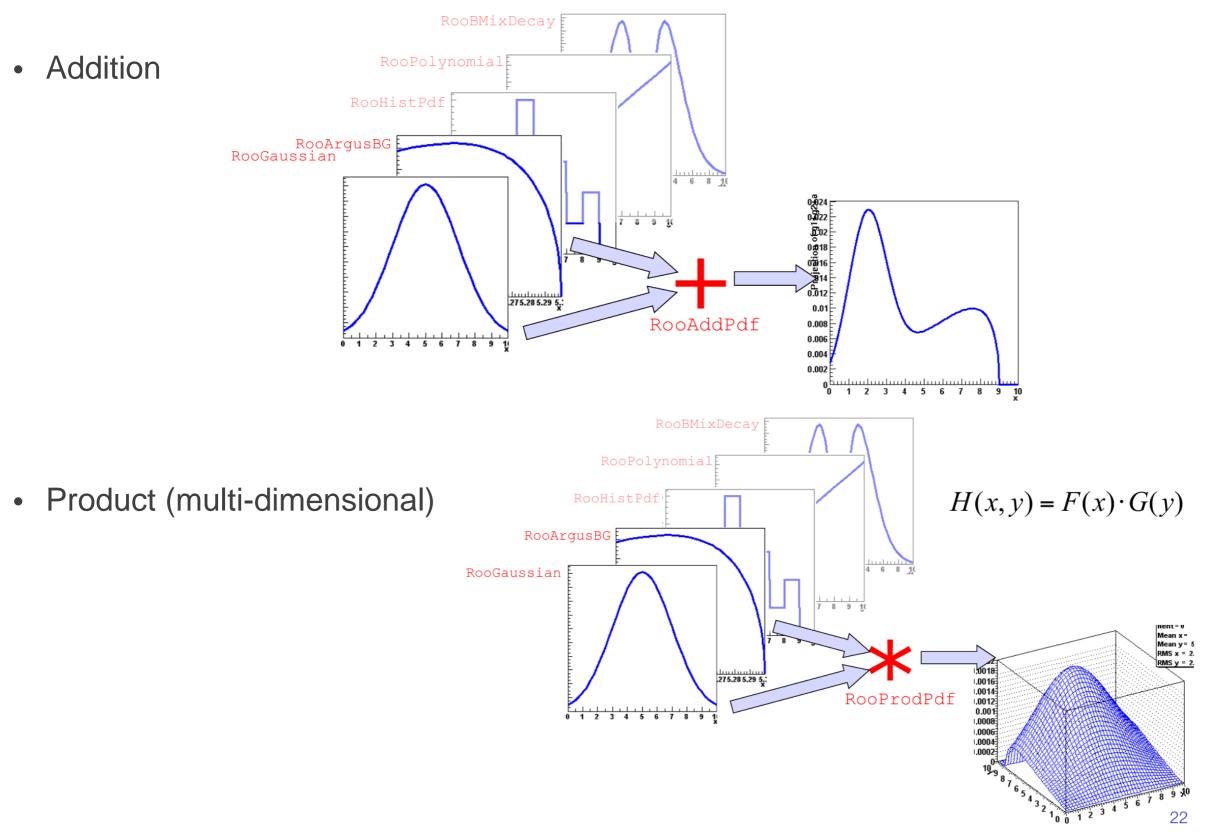
- RooWorkspace: persistent RooFit object to transport a likelihood, containing model/data. Completely factorizes process of building and using likelihood functions.
- RooStats: tool/suite to calculate intervals and perform hypothesis tests using a variety of statistical techniques; easy to use with RooWorkspace

 All fundamental statistical procedures are based on the likelihood function as 'description of the measurement'

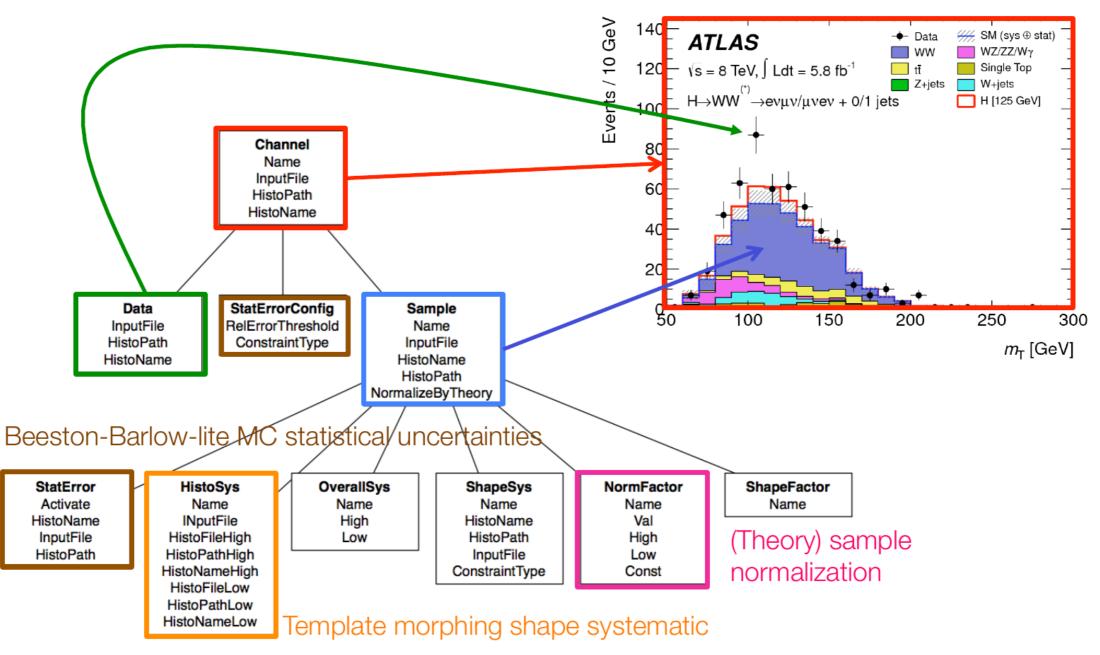


G.J. Besjes,, J. Lorenz, S. Pataraia

RooFit

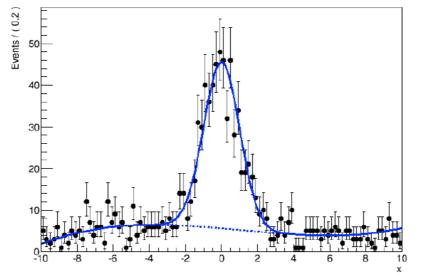

- Focus: coding a probability density function PDF : how do you formulate a PDF in ROOT?
 B
- Simple example: gauss (signal) + polynomial (bkg)
- Quickly becomes complicated: multidimensional, unbinned fits, non-trivial functions, non-analytic functions
- <u>Core design philosophy:</u> mathematical objects represented as C++ objects

Mathematical concept			RooFit class
variable	X		RooRealVar
function	f(x)		RooAbsReal
PDF	f(x)		RooAbsPdf
space point x_{m}			RooArgSet
	f(x)dx		RooRealIntegral
list of space	ⁱⁿ points		RooAbsData
list of space points			RooAbsData


RooFit - model building

• Easy to use standard components to build more complex/realistic models

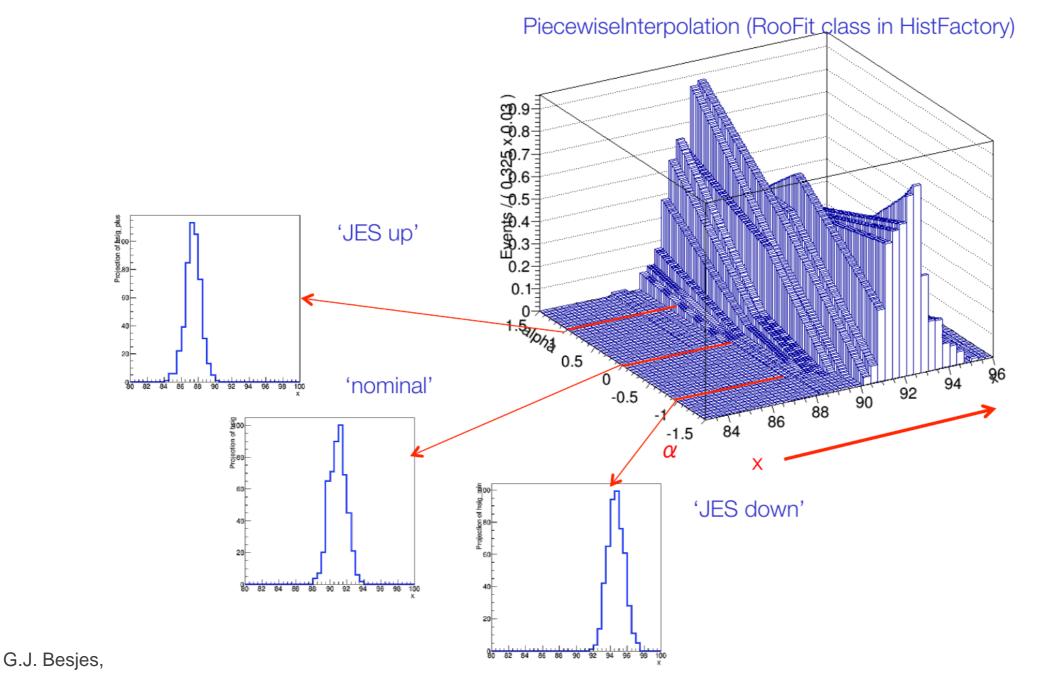
HistFactory


- Structured building of complex models based on binned templates (histograms)
- Classes of physics concepts:
 - Channel = region of phase space
 - One or more channels are combined to form a measurement
 - Sample = physics process: either data-driven or described by Monte Carlo (MC) simulation
 - Systematics = intrinsic uncertainty on your model

G.J. Besjes,, J. Lorenz, S. Pataraia

Systematics : nuisance parameters

- Empirical modeling of your model is easy to do, but expect some hard questions
 - Gaussian for signal + polynomial for background


 $L(x \mid f, m, \sigma, a_0, a_1, a_2) = fG(x, m, \sigma) + (1 - f)Poly(x, a_0, a_1, a_2)$

- Is your model correct?
 - Is the true signal distribution captured by a Gaussian?
- Is your model flexible enough?
 - Why use 4th order polynomial and not 6th order?
- How do your model parameters connect to known detector/theory uncertainties for your distribution?
 - What conceptual uncertainty does what parameter represent? And are all conceptual uncertainties represented?

Systematics modeling - interpolation

- A common solution is to introduce degrees of freedom in model that describe specific systematic/uncertainty!
- The +1/-1 σ variations sampled from MC simulation are compared to nominal MC response
 - (corrected/checked/double-checked to data by Perf. Groups)
- Interpolation, performed between $+1\sigma \leftrightarrow nominal \leftrightarrow -1\sigma$ taken into the model as nuisance parameter

 $L(data \mid \mu, \theta) = Poisson(N_i \mid \mu \cdot s_i(\theta) + b_i(\theta)) \cdot p(\tilde{\theta}, \theta)$

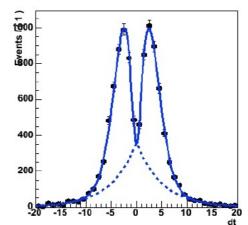
RooWorkspace

- Complete description of likelihood persistable in a ROOT file
- Factorizes building and using likelihood functions
 - In setup, team member, place and time
- Construct RooFit model sum and persist to ROOT file

```
RooWorkspace w(``w") ;
w.import(sum) ;
w.writeToFile(``model.root") ;
```

• Pass file to your colleague

model.root

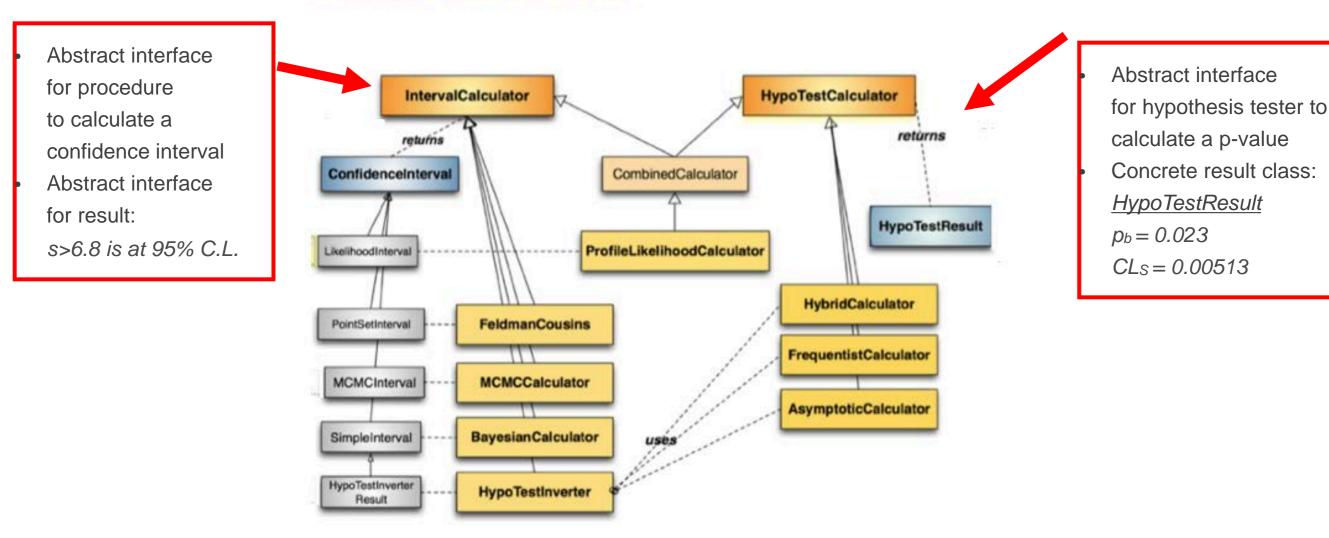


• Colleague resurrects likelihood, runs fit and produces plots

```
// Resurrect model and data
TFile f("model.root") ;
RooWorkspace* w = f.Get("w") ;
RooAbsPdf* model = w->pdf("sum") ;
RooAbsData* data = w->data("xxx") ;
```

```
// Use model and data
model->fitTo(*data) ;
```

```
RooPlot* frame =
    w->var("dt")->frame() ;
data->plotOn(frame) ;
model->plotOn(frame) ;
```



G.J. Besjes,, J. Lorenz, S. Pataraia

HistFitter

RooStats

- RooFit/HistFactory give tools to construct (complex) probability density functions
- RooWorkspace makes it possible to decouple statistical test tools from model contruction
- **RooStats** project/tools suite delivers a series of tools that can calculate intervals and perform hypothesis tests using a variety of statistical techniques $\begin{array}{l} \text{Confidence intervals: } \left[\theta_{-}, \theta_{+}\right], \text{ or } \theta < X \text{ at } 95\% \text{ C.L.} \\ \text{Hypothesis testing: } \rightarrow p(\text{data} | \theta = 0) = 1.10^{-7} \end{array}$
 - Frequentist/Bayesian/Likelihood-based methods (confidence/credible interval, hypothesis tests)

RooStats class structure

G.J. Besjes,, J. Lorenz, S. Pataraia

Overview

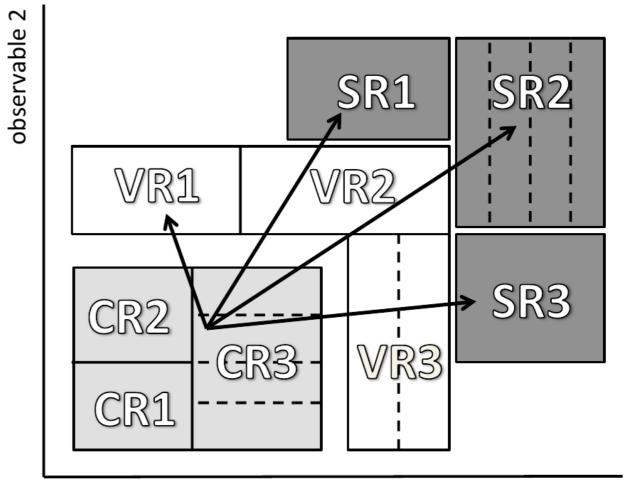
- **<u>Step-0</u>**: define signal/control/validation regions
 - Input TTrees (derived from xAOD), histograms, numbers
- <u>Step-1</u>: Construct PDF and the likelihood function
 RooFit or HistFactory + RooFit
 - Result from data is a distribution
 - Model signal and background by PDF (prob. density func.)
 - Construct likelihood(s) by joining data and model(s)
- •
- RooWorkspace
- •
- <u>Step-2</u>: Statistical tests on parameter of interest µ RooStats
 - Construct test statistic q_{μ} from likelihoods
 - Obtain expected distributions of q_{μ} for various μ values
 - Determine discovery p_{0} and signal exclusion limit
- <u>Step-3:</u> Repeat for each model (assumed value m_H)

HistFitter

adds steps-0 and 3
allows full analysis chain from simple configuration file

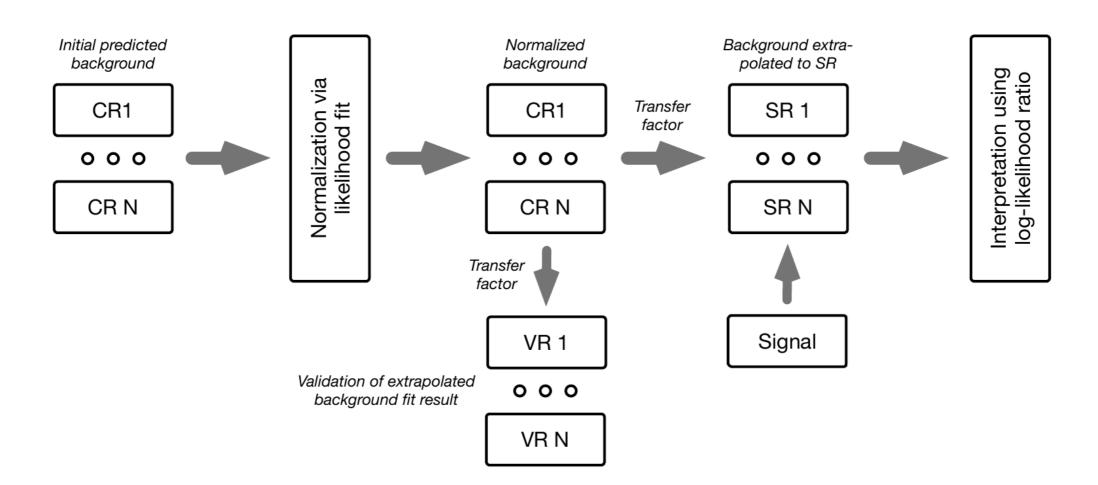
Links

- RooFit overview (2004): <u>http://www.nikhef.nl/~verkerke/talks/chep03/chep2003_v4.pdf</u>
- ATLAS Statistics Forum page on Stat. Tools: <u>https://twiki.cern.ch/twiki/bin/viewauth/AtlasProtected/StatisticsTools</u>
- RooFit/RooStats at ACAT 2014: <u>https://indico.cern.ch/event/258092/session/0/contribution/140/material/slides/1.pdf</u>
- Higgs Combination procedure/explanation of CLs observed/expected and error bands: http://cds.cern.ch/record/1375842
- HistFactory documentation: <u>https://cdsweb.cern.ch/record/1456844/</u> <u>https://twiki.cern.ch/twiki/bin/view/RooStats/HistFactory</u>
 - [23] K. Cranmer, G. Lewis, L. Moneta, A. Shibata, W. Verkerke, HistFactory: A tool for creating statistical models for use with RooFit and RooStats, CERN-OPEN-2012-016.
 - [24] L. Moneta, K. Belasco, K. S. Cranmer, S. Kreiss, A. Lazzaro, et al., The RooStats Project, PoS ACAT2010 (2010) 057. arXiv:1009.1003.
 - [25] W. Verkerke, D. P. Kirkby, The RooFit toolkit for data modeling, eConf C0303241 (2003) MOLT007. arXiv:physics/0306116.
 - [26] R. Brun, F. Rademakers, ROOT: An object oriented data analysis framework, Nucl.Instrum.Meth. A389 (1997) 81-86. doi:10.1016/S0168-9002(97)00048-X.
 - [27] I. Antcheva, M. Ballintijn, B. Bellenot, M. Biskup, R. Brun, et al., ROOT: A C++ framework for petabyte data storage, statistical analysis and visualization, Comput.Phys.Commun. 182 (2011) 1384–1385. doi:10.1016/j.cpc.2011.02.008.

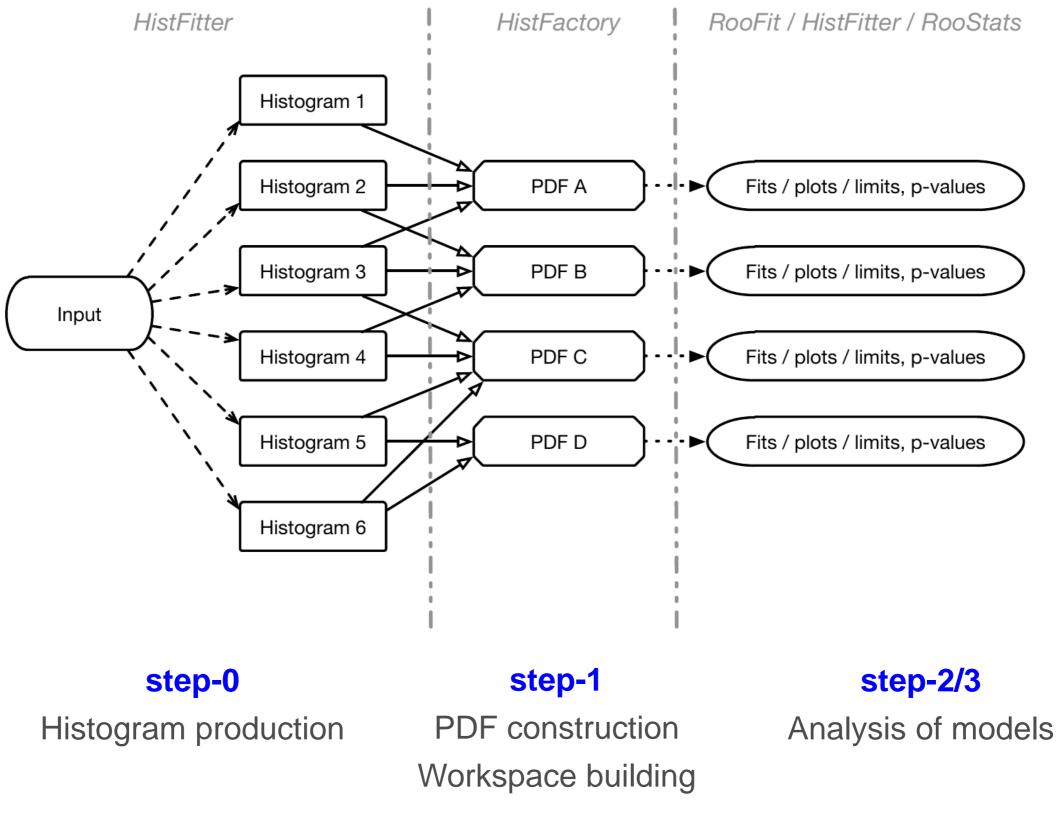

HistFitter introduction

Introduction

- HistFitter is a statistical tool/framework used in (almost) all SUSY WG analyses since
 - 2012 for fitting, interpretation and presentation of fit results
 - Developed in SUSY strong production 1-lepton group, quickly adopted as recommended tool
 - Small core team: Max Baak, Geert-Jan Besjes, David Cote, Alex Koutsman, Jeanette Lorenz and Dan Short
 - Also used (more and more) in Higgs, Exotics and Top WGs
- **HistFitter** is:
 - built on top of RooFit/HistFactory and RooStats
 - consists of Python part for configuration and C++ part for CPU-intensive calculations
- Why HistFitter?
- **HistFitter** extends RooFit/HistFactory and RooStats in four key areas:
 - Programmable framework: performing complete analysis (steps 0-4) from a simple configuration file
 - <u>Analysis strategy:</u> common physics analysis strategy concepts, such as control/signal/validation regions, woven into the fabric of HistFitter design
 - <u>Bookkeeping</u>: can keep track of numerous data models, from histogram production until final statistical tests → handy when working with large collections of signal hypotheses (*signal grids*)
 - <u>Presentation and interpretation</u>: multiple methods are provided to determine statistical significance of signal hypotheses, and produce publication-quality tables and plot summarizing the fit results (*step 4*)


Data analysis strategy

- Particle physics analyze large data samples for measurements of discovery
- Data interpretation relies on using external simulation, Monte Carlo (MC) predictions for backgrounds and signal
- HistFitter configures and builds parametric models from these predictions
- Typically one defines several phase space regions to study a specific phenomenon
- Definition depends on the purpose:
 - Signal region: signal-rich region (SR)
 - Control region: background-rich region (CR), fit simulated backgrounds to data
 - Validation region: validation of extrapolation (VR)
- Concepts of CR/SR/VR woven into the fabric of HistFitter

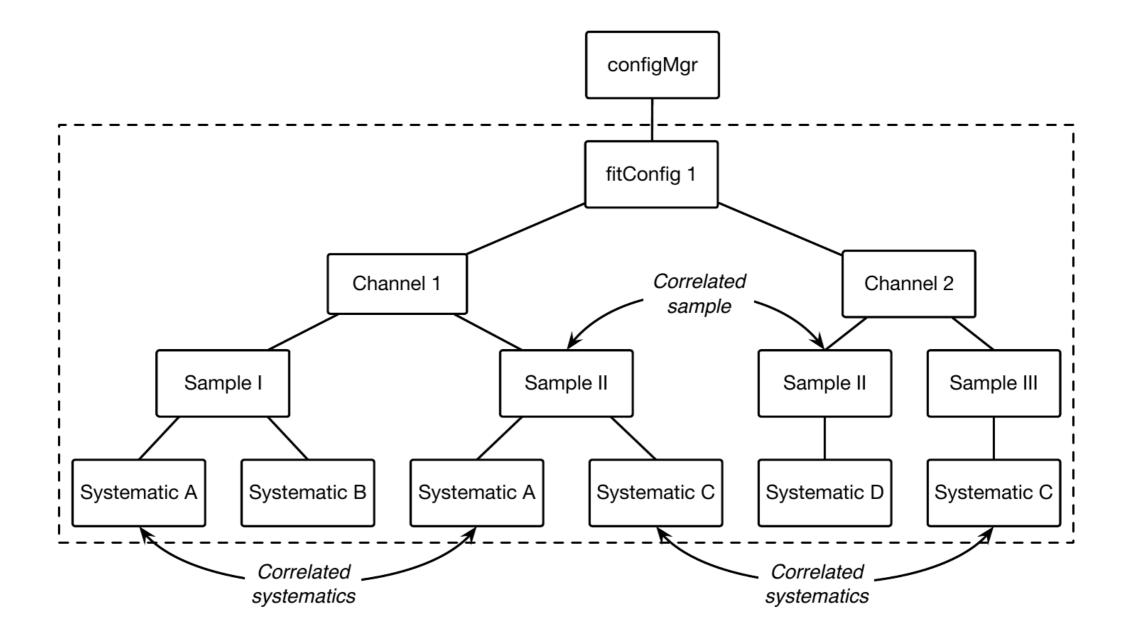

Analysis strategy flow

- Each CR/VR/SR modeled by a separate PDF, combined in a simultaneous fit
- Parameters shared in all regions → consistent background/signal prediction and systematics
 - Sharing user-defined
- Analysis flow:
 - Backgrounds normalized to data in a fit of control regions
 - Extrapolate to validation/signal regions using transfer factors (ratio of events between CR and SR/VR)
 - If good agreement in VR, unblind the SR
 - If no excess, add signal prediction and interpret/set limits

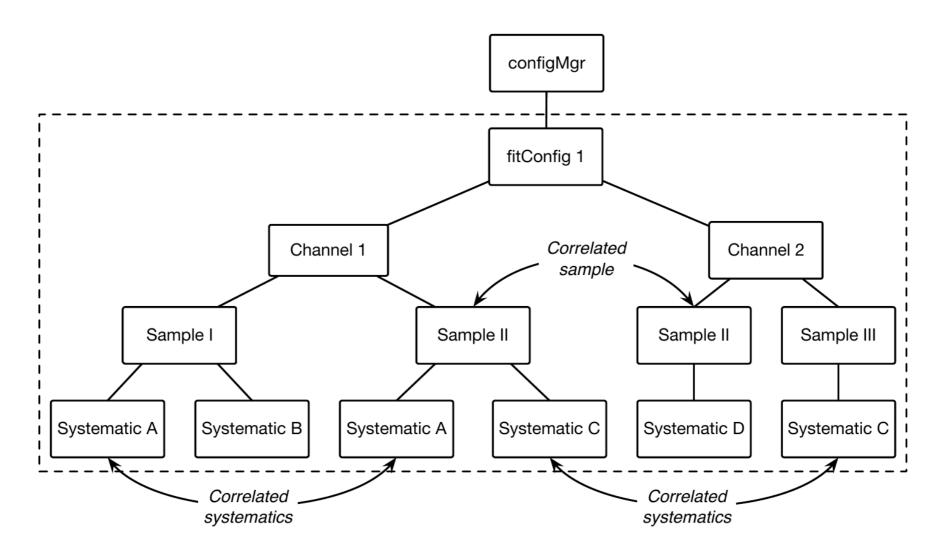
Processing sequence

• Based on user-defined configuration file, processing sequence of HistFitter split in three stages

Model construction


- Models constructed using HistFactory from input histograms
- General form of the constructed likelihood:

 $L(\boldsymbol{n}, \boldsymbol{\theta}^0 | \mu_{\mathrm{sig}}, \boldsymbol{b}, \boldsymbol{\theta}) = P_{\mathrm{SR}} \times P_{\mathrm{CR}} \times C_{\mathrm{syst}}$

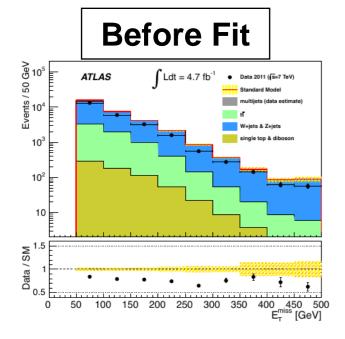

- P = Poisson measurements of number of observed events in CR/SR (VR)
- C = Constraint terms for systematic uncertainties, auxiliary measurements
- Likelihood depends on number of observed events in all regions (n), predictions for various background processes (b), the nuisance parameter (θ) parametrizing the systematic uncertainties with their central value (θ⁰) and signal strength (µ_{SIG})
- Likelihood has multiple building blocks:
 - Control/validation/signal regions: called channel in HistFitter (HistFactory)
 - Signal and background processes: called sample in HistFitter (HistFactory)
 - Uncertainties: called systematic in HistFitter (HistFactory)
 - Including statistical/theory/experimental uncertainties
- HistFitter is designed to build and manipulate PDFs of nearly arbitrary complexity
- Bookkeeping/configuration machinery realized through a user-defined Python configuration file
- Configuration manager (configManager) highest level (singleton) object in Python and C++
- Manages fitConfig objects that contain PDF and meta-data

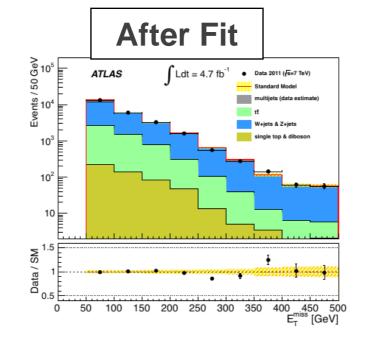
Fit configuration

 fitConfig objects summarize channels, samples and systematics together with corresponding input histograms

Fit configuration properties

- fitConfig: can be cloned/extended (see next slide)
- channels: either single-bin or multi-bin (shape), property as CR/VR/SR
- samples: input from TTree, TH1 or raw (hard-coded) floats, correlated between channels
- systematics: provided as ±1σ variation of nominal histogram; input from TTree, TH1 or raw floats; can be correlated between samples and/or channels; many types available extended from HistFactory base types (see later); trickle-down mechanism (see backup)


Common fit strategies


- Background-only fit: estimate background yields in validation/signal regions; including <u>only</u>
 CRs in the fit to data; no signal component included in fit configuration
- Model-dependent signal fit: set exclusion limit on a specific signal model; possible use of multi-binned (or multi-SR) shape fit for a robust signal estimation - aka exclusion fit
- Model-independent signal fit: to obtain model-independent upper limits on number of BSM events beyond background prediction; only usable with one single-bin SR (otherwise not model-independent) - aka discovery fit

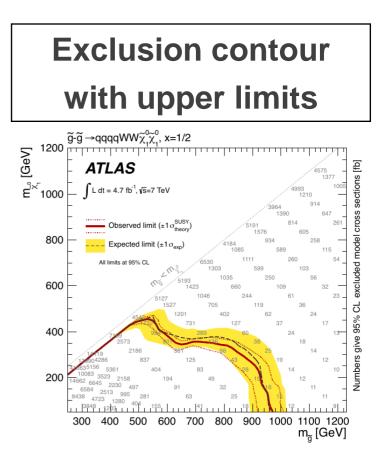
Fit setup	Background-only fit	t Model-dependent Model-indepen	
		signal fit	signal fit
Samples used	backgrounds	backgrounds + signal	backgrounds +
			dummy signal
Fit regions	CR(s)	CR(s) + SR(s)	CR(s) + SR

Presentation of results

• HistFitter includes a collection of tools (scripts/functions) to present/understand fit results

<figure>

Yields Table


Signal Region	SR1	SR2
Observed events	16	19
Fitted bkg events	19.54 ± 3.93	20.47 ± 5.14
Fitted Top events Fitted V+jets events Fitted other background events Fitted QCD events	$\begin{array}{c} 4.02\pm 0.96\\ 9.89\pm 1.86\\ 1.14\pm 0.15\\ 4.49\pm 2.72\end{array}$	$\begin{array}{c} 4.32\pm1.04\\ 10.47\pm1.91\\ 1.19\pm0.16\\ 4.49\pm4.24 \end{array}$
MC exp. SM events	24.85	26.32
MC exp. Top events MC exp. V+jets events MC exp. other background events Data-driven exp. QCD events	8.42 10.82 1.13 4.49	9.11 11.55 1.17 4.49

System	atics Ta	able	
Uncertainty of channel	SR1	SR2	
Total background expectation	19.54	20.47	
Total statistical $(\sqrt{N_{exp}})$ Total background systematic	±4.42 ±3.93 [20.14%]	±4.52 ±5.14 [25.09%]	
QCD background Statistical uncertainties Jet Energy Scale Top yield Renormalization scale (Top) V+jets yields Renormalization scale (V+jets)	± 2.66 ± 2.54 ± 1.15 ± 0.82 ± 0.34 ± 0.28 ± 0.14	± 4.20 ± 1.86 ± 1.17 ± 0.88 ± 0.39 ± 0.29 ± 0.03	

Model-independent upper limits				
Signal channel	$\langle \sigma_{\rm vis} \rangle_{\rm obs}^{95} [{\rm fb}]$	$S_{ m obs}^{95}$	$S_{ m exp}^{95}$	p(s=0)
SR3b	0.19	3.9	$4.4_{-0.6}^{+1.7}$	0.50
SR0b	0.80	16.3	$8.9^{+3.6}_{-2.0}$	0.03

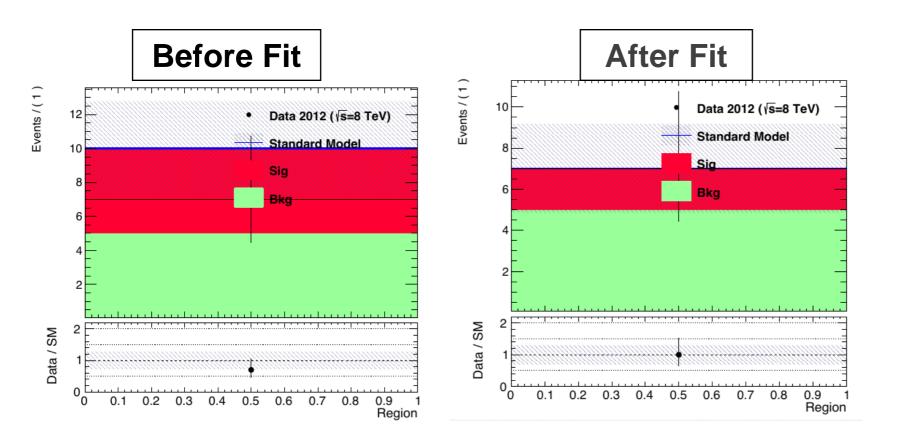
G.J. Besjes,, J. Lorenz, S. Pataraia

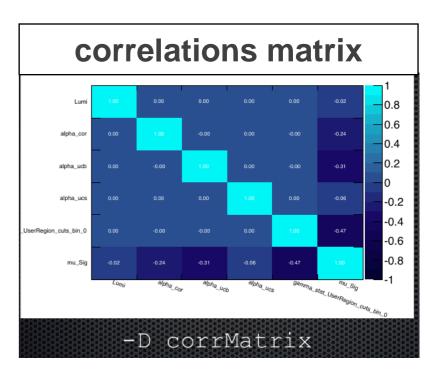
HistFitter

HistFitter & documentation

- HistFitter paper on arXiv: <u>http://arxiv.org/abs/1410.1280</u>
- HistFitter webpage with doxgen documentation: http://cern.ch/histfitter
- Tutorial (to be discussed next): https://twiki.cern.ch/twiki/bin/view/Main/HistFitterTutorialOutsideAtlas
- ACAT 2014 talk on HistFitter: https://indico.cern.ch/event/258092/session/8/contribution/39

HistFitter tutorial


Running HistFitter


- HistFitter.py <options> <configuration_file>
- -t: Create histograms in all regions used for all backgrounds, signal, data from TTrees
- -w: Build workspaces from histograms
- -f: Fit
- -D: various drawing options, to be discussed later
- -L: log level {VERBOSE,DEBUG,INFO,WARNING,ERROR,FATAL,ALWAYS}
- -m PARAM: run Minos for asymmetric error calculation
 - optionally give parameter names comma separated; for all parameters use 'ALL' or 'all'
- -I: Calculate upper limit
- -p: Calculate the CLs value for a specific signal model (for exclusion)
- -i: interactive mode, keeps you in python command line, but shows plots on your screen

• To see all options run: HistFitter.py --help

Simple example

- Simple example with one region with one bin: HistFitter.py -w -f -D "before,after,corrMatrix" -i analysis/tutorial/MyUserAnalysis.py
- Creates the workspace
- Runs the fit
- Plots before/after fit regions and correlation matrix
- Keeps you in interactive mode

Config file explained - I

- Define a configManager and setup a fitConfig ana named SPlusB
- from configManager import configMgr ana = configMgr.addFitConfig("SPlusB")
- Add one channel/region to the fitConfig
- chan = ana.addChannel("cuts",["UserRegion"],1,0.5,1.5)
- One defines the region/channel in cutsDict (as one would in ROOT for TTree call)
- Here include all:
- configMgr.cutsDict["UserRegion"] = "1."
- Channels can also be binned (shape-fit)
- chan = ana.addChannel("myObs", ["mySelection"], nBins, varLow, varHigh)

Config file explained - II

- Define samples: bkgSample, sigSample and dataSample
- # Define samples

```
bkgSample = Sample("Bkg",kGreen-9) # define a background sample with color KGreen-9 if plotting
bkgSample.setStatConfig(True) #This sample gets statistical uncertainties
bkgSample.buildHisto([nbkg],"UserRegion","cuts") #Build histograms from numbers defined by
the user
```

```
bkgSample.buildStatErrors([nbkgErr],"UserRegion","cuts")
```

```
sigSample = Sample("Sig",kPink) #A signal sample with color kPink
sigSample.setNormFactor("mu_Sig",1.,0.,100.) # This samples receives a normalization
parameter
```

```
sigSample.setStatConfig(True) #This sample gets statistical uncertainties
sigSample.setNormByTheory() # and uncertainties due to the luminosity are added
sigSample.buildHisto([nsig], "UserRegion", "cuts")
sigSample.buildStatErrors([nsigErr], "UserRegion", "cuts")
```

```
dataSample = Sample("Data",kBlack) #Data sample
dataSample.setData()
dataSample.buildHisto([ndata],"UserRegion","cuts")
```

add all samples to the fitconfig object and thus to all channels
ana.addSamples([bkgSample,sigSample,dataSample])
G.J. Besjes,, J. Lorenz, S. Pataraia

Config file explained - III

- Add systematics to signal/background samples
- Correlating systematics happens by giving them the same name
- # Set uncorrelated systematics for bkg and signal (1 +- relative uncertainties)

```
ucb = Systematic("ucb", configMgr.weights, 1.2,0.8, "user","userOverallSys")
ucs = Systematic("ucs", configMgr.weights, 1.1,0.9, "user","userOverallSys")
# correlated systematic between background and signal (1 +- relative uncertainties)
corb = Systematic("cor", configMgr.weights, [1.1],[0.9], "user","userHistoSys")
cors = Systematic("cor", configMgr.weights, [1.15],[0.85],
"user","userHistoSys")
```

```
bkgSample.addSystematic(corb)
bkgSample.addSystematic(ucb)
sigSample.addSystematic(cors)
sigSample.addSystematic(ucs)
```

Table production

- YieldsTable.py produces customizable tables of yields before/after fit
- Example: YieldsTable.py -s Top,WZ,BG,QCD -c SLWR_nJet,SLTR_nJet -w results/MyConfigExample/BkgOnly_combined_NormalMeasurement_model_afterFit.root -o MyYieldsTable.tex

table.results.yields channel	SLWR_nJet	SLTR_nJet	SR1sl2j	SS_metmeff2Jet
Observed events	1794	269	25	26
Fitted bkg events	1800.73 ± 39.91	$\textbf{262.45} \pm \textbf{11.47}$	28.53 ± 5.26	31.74 ± 8.50
Fitted Top events Fitted WZ events Fitted BG events Fitted QCD events	$\begin{array}{c} 117.20 \pm 11.42 \\ 1629.37 \pm 42.19 \\ 43.49 \pm 1.90 \\ 10.64 \pm 0.51 \end{array}$	$\begin{array}{c} 113.20 \pm 12.53 \\ 69.75 \pm 6.63 \\ 23.19 \pm 1.94 \\ 56.30 \pm 13.65 \end{array}$	$\begin{array}{c} 6.17 \pm 1.12 \\ 13.95 \pm 2.03 \\ 0.96 \pm 0.32 \\ 7.44 \pm 3.75 \end{array}$	$\begin{array}{c} 6.65 \pm 1.26 \\ 14.57 \pm 1.98 \\ 1.00 \pm 0.32 \\ 9.52 \pm 7.54 \end{array}$
MC exp. SM events	1921.26	261.96	32.04	35.35
MC exp. Top events MC exp. WZ events MC exp. BG events data-driven exp. QCD events	165.16 1647.04 40.96 68.06	153.98 66.30 25.03 16.64	8.75 15.26 0.59 7.44	9.38 15.82 0.63 9.52

- **SysTable.py** produces customizable tables of systematic breakdown per region (or sample)
- Example: SysTable.py -w results/MyConfigExample/BkgOnly_combined_NormalMeasurement _model_afterFit.root -c SR1s12j -o systable_SR1s12j.tex

Uncertainty of channel	SR1sl2j
Total background expectation	28.53
Total statistical ($\sqrt{N_{exp}}$) Total background systematic	±5.34 ±5.26 [18.43%]
gamma_stat_SR1sl2j_cuts_bin_0 alpha_QCDNorm_SR1sl2j	$\pm 3.63 \\ \pm 3.63$
alpha_JES mu_Top	$\pm 0.93 \\ \pm 0.65$
alpha_KtScaleTop alpha_KtScaleWZ	$\pm 0.52 \\ \pm 0.37$
esjes, mu_WZ	± 0.36

Signal model hypothesis test

- Once you have unblinded your SR, one can calculate the CLs/p-value on specific signal models using the exclusion fit (aka model-dependent fit setup)
- As simple in HistFitter as calling:

HistFitter.py -p analysis/tutorial/MyUserAnalysis.py

- Will calculate:
 - <u>CLs_observed</u> = taking N observed events as data in all regions
 - <u>CLs_expected</u> = taking N expected events as data in all regions
 - <u>CLs_expected ±1sigma experimental uncertainty</u> = N expected as data, ±1sigma fit results
 - yellow band next slide
 - <u>CLs_observed ±1sigma signal theory uncertainty</u> = N observed as data, ±1sigma signal theory
 - need to set the name of the signal theory uncertainty systematic as <code>Systematic("SigXSec", ...)</code>
 - red-dotted lines next slide
- Setting calculator and test statistic type can be set in configManager (see backup):

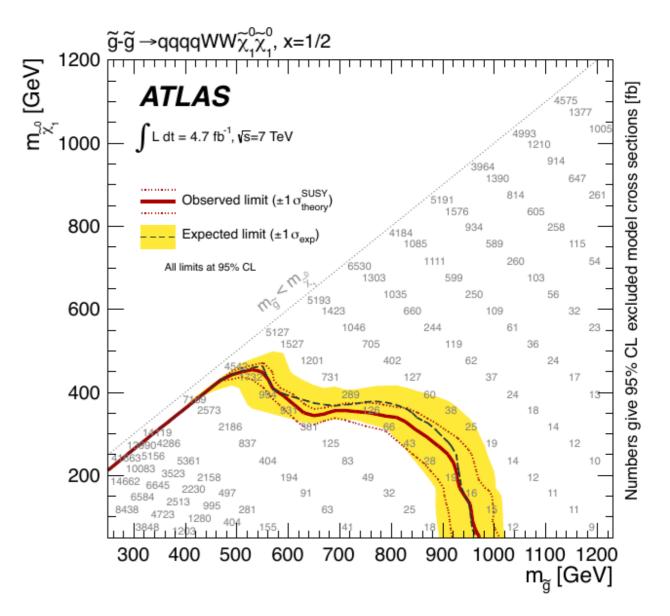
```
## setting the parameters of the hypothesis test
#configMgr.nTOYs=5000
configMgr.calculatorType=2 # 2=asymptotic calculator, 0=frequentist calculator
configMgr.testStatType=3 # 3=one-sided profile likelihood test statistic (LHC default)
configMgr.nPoints=20 # number of values scanned of signal-strength for upper-limit
determination of signal strength.
```

• Result of '-p' stored in a ROOT file with 'hypotest' in the name: results/MySimpleChannelAnalysis_fixSigXSecNominal_hypotest.root

G.J. Besjes,, J. Lorenz, S. Pataraia

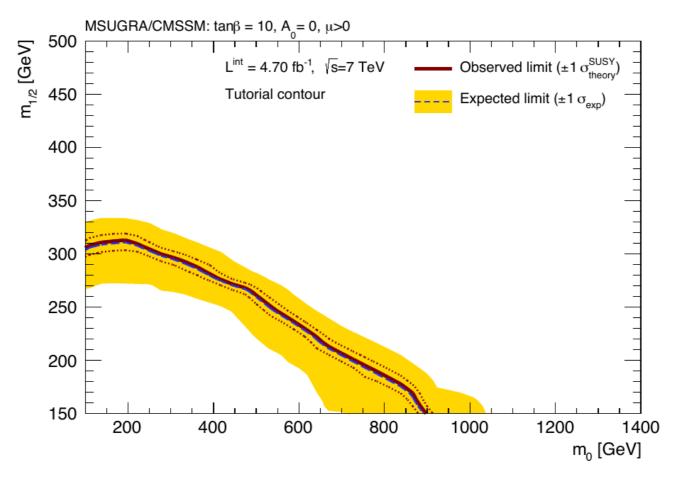
Contour plot explained

<u>https://twiki.cern.ch/twiki/bin/view/AtlasProtected/SUSYLimitPlotting</u>


Description of limit lines

The model limits should be computed using the HistFitter package. We present the following limits:

- Observed limit (thick solid dark-red line): all uncertainties are included in the fit as nuisance parameters, with the exception of the theoretical signal uncertainties (PDF, scales).
- Expected limit (less thick long-dashed dark-blue line): all uncertainties are included in the fit as nuisance parameters, with the exception of the theoretical signal uncertainties (PDF, scales).

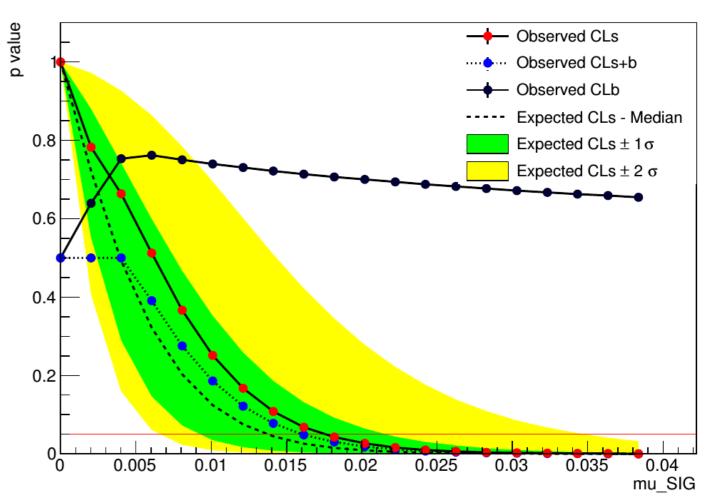

We present the following uncertainty bands:

- ±1σ lines around observed limit (1) with style "thin dark-red dotted": re-run limit calculation (1) while increasing or decreasing the signal cross section by the theoretical signal uncertainties (PDF, scales).
- ±1σ band around expected limit (2) with style "yellow band": the band contours are the ±1σ results of the fit (2).

Contour plot production

- Typically a grid of signal model points with varying signal parameters (m_H or m_{gluino}) get processed to produce an exclusion contour
- Five steps to produce (Part 5 of tutorial):
- 1. run hypothesis tests over all grid points (results saved in multiple hypotest files)
- 2. merge all the output root files into one using hadd (if stored in a separate files)
- 3. transform this set of hypothesis tests into a plain-text file: makelistfiles.C
- 4. create TH2D(s) from the ascii data in this list file: makecontourhists.C
- 5. plot TH2D(s) to draw contour lines and cosmetics: makecontourplots.C
- at the requested CLs level, typically 95% CL, CLs<0.05

HistFitter


Signal strength upper limit

- Once you have unblinded your SR, one can set upper limits on specific signal models using the exclusion fit (aka model-dependent fit setup)
- As simple in HistFitter as calling:

HistFitter.py -l analysis/tutorial/MyUserAnalysis.py

- Technicalities similar to '-p'
- Hypothesis test *inversion*:
 - find the value of mu_SIG for which CLs below 0.05 (or other required value)
 - instead of calculating the p-value for the specific signal
 - run the hypothesis test for increasing values of signal strength mu_SIG
 - scan range determined automatically
 - upper limit on cross section = nominal cross section × upper limit on signal strength (grey numbers in contour plots, run for each signal grid point)

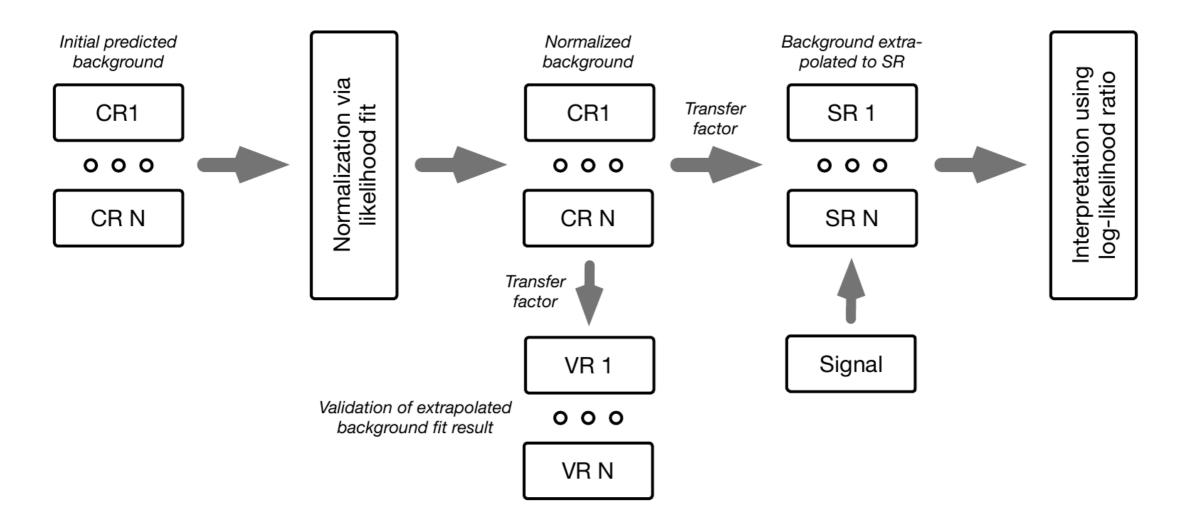
Asymptotic CL Scan for workspace result_mu_SIG

Model-independent upper limit

- Calculate the upper limit on the number of BSM physics events that we exclude in our SR
 - Typically used by theorists to check their favorite BSM model, that we have not looked at
- Requires the model-independent fit setup aka discovery fit
 - 'dummy signal' = exactly one event in signal region (none in CRs)
 - upper limit on this 'dummy signal' = upper limit on BSM number of events
- Use the UpperLimitTable.py script:

```
UpperLimitTable.py -c SS -w
results/MyUpperLimitAnalysis_SS/SPlusB_combined_NormalMeasurement_model.root -
l 4.713 -n 1000
```

• Results in LaTeX table:


Signal channel	$\langle\epsilon\sigma angle_{ m obs}^{ m 95}$ [fb]	S ⁹⁵ _{obs}	S_{exp}^{95}	CLB	p(s=0)
SS	1.73	8.2	$6.1^{+2.3}_{-1.3}$	0.80	0.21

- (σvis) 95_obs : 95% CL upper limits on the visible cross section obs
- S95_obs :95% CL upper limits on the number of signal events obs
- S95_exp : 95% CL upper limit on the number of signal events, given the expected number (and ±1σ excursions on the expectation) of background events
- CLB: the confidence level observed for the background-only hypothesis
- p(s = 0): discovery p-value the probability, capped at 0.5, that a background-only experiment is more signal-like than the observed number of events in a signal region

HistFitter - tutorial

HistFitter tutorial start up

 A public version is available on the HistFitter webpage: <u>http://histfitter.web.cern.ch/histfitter/Software/Install/index.html</u>

We use HistFitter-2.0.tar.gz for this tutorial.

Installation instructions:

- Untar the HistFitter package
- Setup ROOT (if not already done) use Root 5!
- Go the HistFitter directory cd HistFitter-2.0
- Run the HistFitter setup script source setup.sh
- Go to the src/ directory and compile the C++ side of HistFitter cd src && make
- Go back to the main HistFitter directory

Input data here:

- Link the input data to your HistFitter directory as follows:
- In -s /project/etp3/jlorenz/shape_fit/samples/ samples