Introduction to the HistFitter framework

Jeanette Lorenz (LMU) + many other people

06 May 2019

Overview

- Step-0: define signal/control/validation regions
 - Input TTrees (derived from xAOD), histograms, numbers
- Step-1: Construct PDF and the likelihood function

RooFit or HistFactory + RooFit

- Result from data is a distribution
- Model signal and background by PDF (prob. density func.)
- Construct likelihood(s) by joining data and model(s)
- •
- RooWorkspace
- •
- Step-2: Statistical tests on parameter of interest μ

RooStats

- Construct test statistic q_{μ} from likelihoods
- Obtain expected distributions of q_{μ} for various μ values
- Determine discovery p₀ and signal exclusion limit
- Step-3: Repeat for each model (assumed value m_H)

HistFitter

- adds steps-0 and 3
- allows full analysis chain from simple configuration file

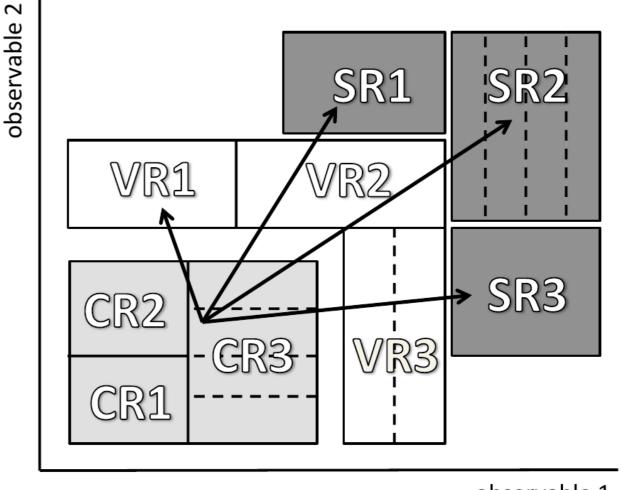
HistFitter introduction

Introduction

- HistFitter is a statistical tool/framework used in (almost) all SUSY WG analyses since 2012 for fitting, interpretation and presentation of fit results
 - Developed in SUSY strong production 1-lepton group, quickly adopted as recommended tool
 - Small core team: Max Baak, Geert-Jan Besjes, David Cote, Alex Koutsman, Jeanette Lorenz and Dan Short
 - Also used (more and more) in Higgs, Exotics and Top WGs
- HistFitter is:
 - built on top of RooFit/HistFactory and RooStats
 - consists of Python part for configuration and C++ part for CPU-intensive calculations
- Why HistFitter?
- HistFitter extends RooFit/HistFactory and RooStats in four key areas:
 - Programmable framework: performing complete analysis (steps 0-4) from a simple configuration file
 - Analysis strategy: common physics analysis strategy concepts, such as control/signal/validation regions, woven into the fabric of HistFitter design
 - Bookkeeping: can keep track of numerous data models, from histogram production until final statistical tests → handy when working with large collections of signal hypotheses (signal grids)
 - <u>Presentation and interpretation:</u> multiple methods are provided to determine statistical significance of signal hypotheses, and produce publication-quality tables and plot summarizing the fit results (step 4)

Data analysis strategy

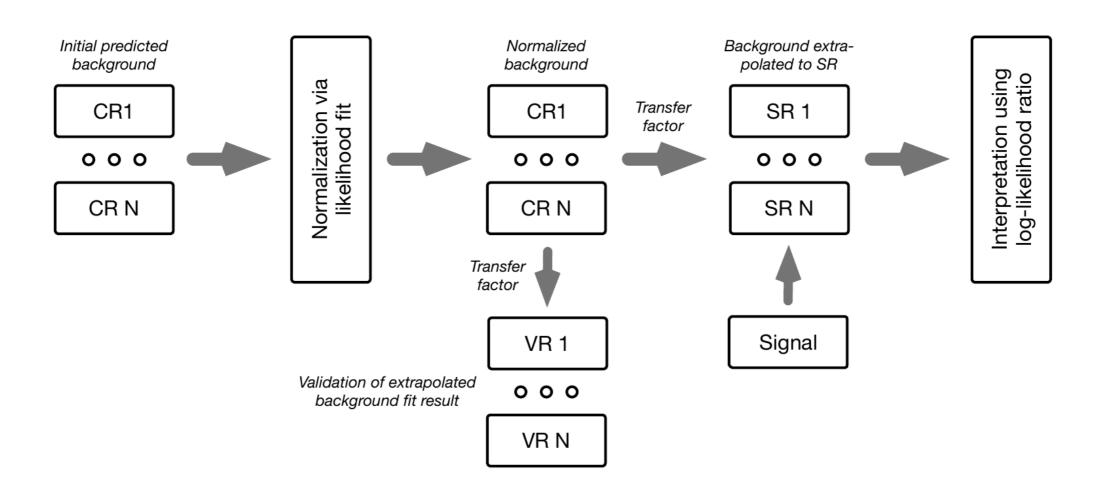
- Particle physics analyze large data samples for measurements of discovery
- Data interpretation relies on using external simulation, Monte Carlo (MC) predictions for backgrounds and signal
- HistFitter configures and builds parametric models from these predictions
- Typically one defines several phase space regions to study a specific phenomenon
- Definition depends on the purpose:
 - Signal region: signal-rich region (SR)
 - Control region: background-rich region (CR), fit simulated backgrounds to data
 - Validation region: validation of extrapolation (VR)
- Concepts of CR/SR/VR woven into the fabric of HistFitter



observable 1

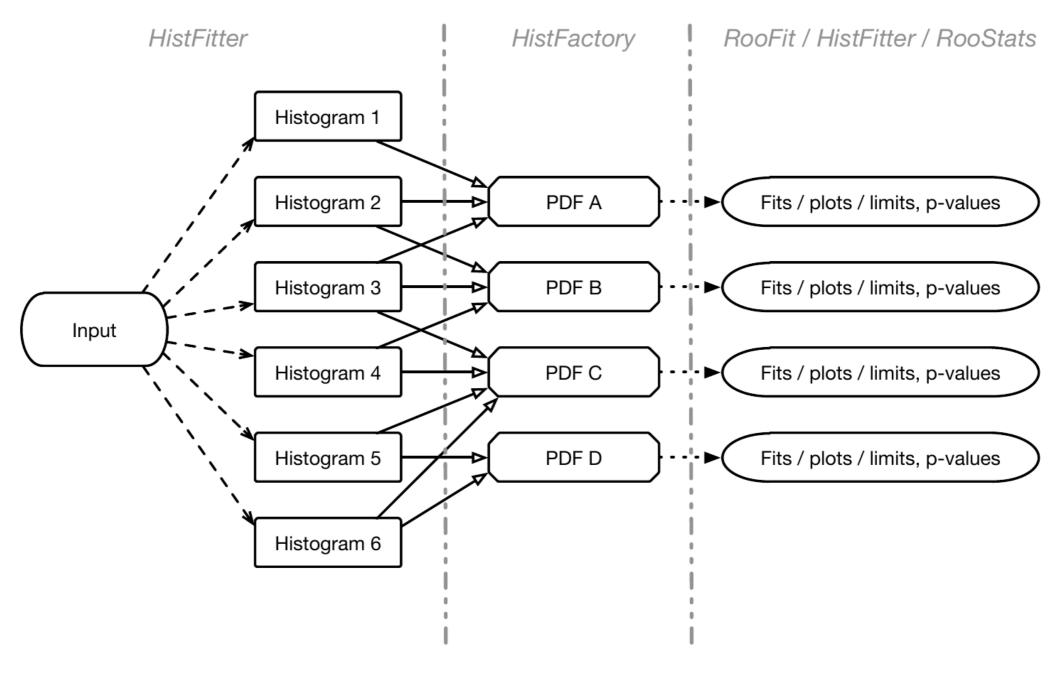
Analysis strategy flow

- Each CR/VR/SR modeled by a separate PDF, combined in a simultaneous fit
- Parameters shared in all regions → consistent background/signal prediction and systematics
 - Sharing user-defined
- Analysis flow:
 - Backgrounds normalized to data in a fit of control regions
 - Extrapolate to validation/signal regions using transfer factors (ratio of events between CR and SR/VR)
 - If good agreement in VR, unblind the SR
 - If no excess, add signal prediction and interpret/set limits



Processing sequence

Based on user-defined configuration file, processing sequence of HistFitter split in three stages



step-0

Histogram production

step-1

PDF construction
Workspace building

step-2/3

Analysis of models

Model construction

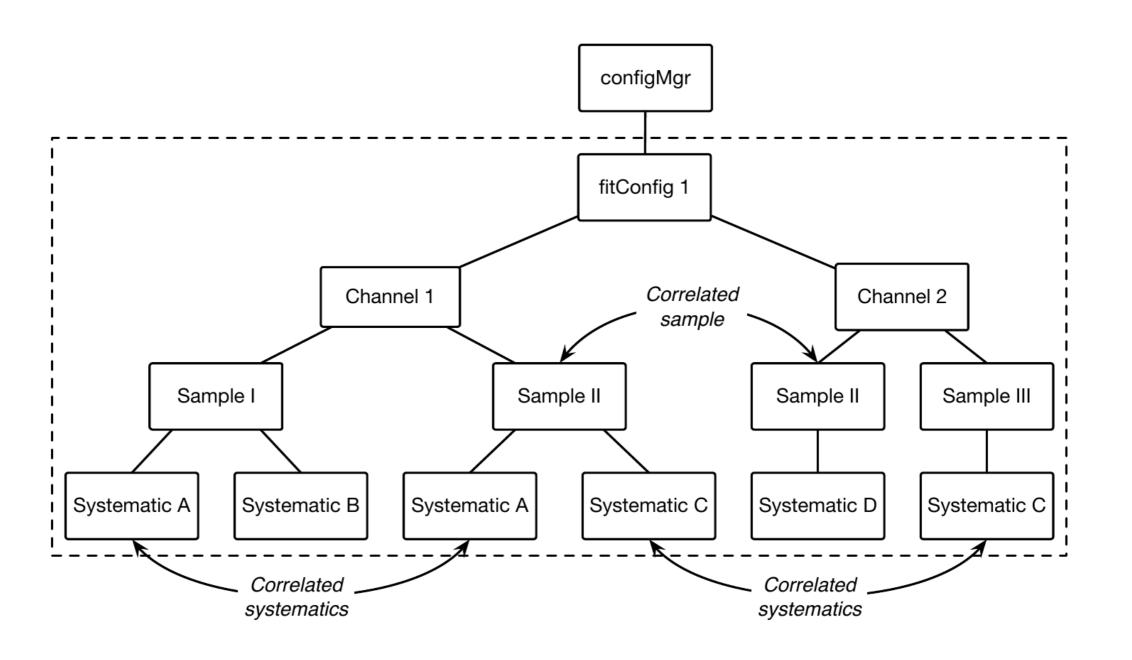
- Models constructed using HistFactory from input histograms
- General form of the constructed likelihood:

$$L(\boldsymbol{n}, \boldsymbol{\theta}^0 | \mu_{\text{sig}}, \boldsymbol{b}, \boldsymbol{\theta}) = P_{\text{SR}} \times P_{\text{CR}} \times C_{\text{syst}}$$

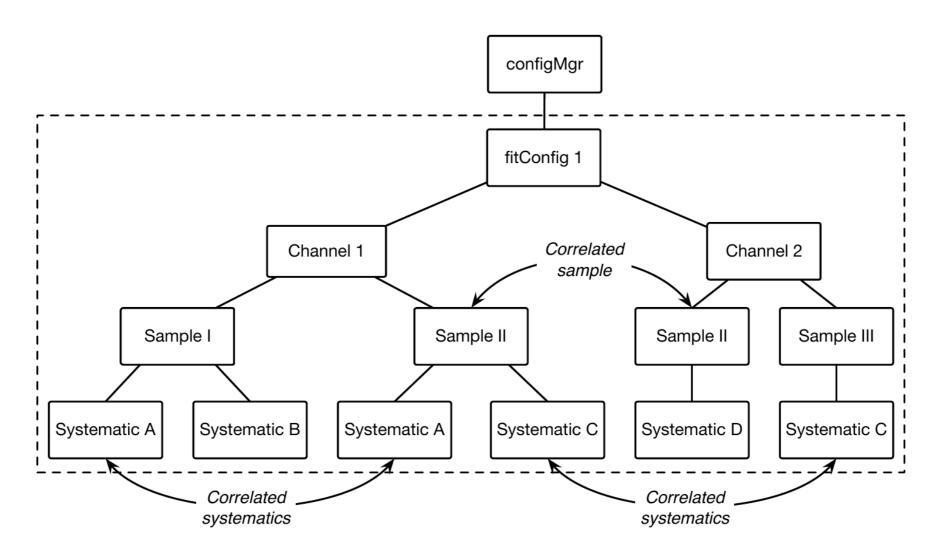
- P = Poisson measurements of number of observed events in CR/SR (VR)
- C = Constraint terms for systematic uncertainties, auxiliary measurements
- Likelihood depends on number of observed events in all regions (n), predictions for various background processes (b), the nuisance parameter (θ) parametrizing the systematic uncertainties with their central value (θ⁰) and signal strength (µ_{SIG})
- Likelihood has multiple building blocks:
 - Control/validation/signal regions: called channel in HistFitter (HistFactory)
 - Signal and background processes: called sample in HistFitter (HistFactory)
 - Uncertainties: called systematic in HistFitter (HistFactory)
 - Including statistical/theory/experimental uncertainties
- HistFitter is designed to build and manipulate PDFs of nearly arbitrary complexity
- · Bookkeeping/configuration machinery realized through a user-defined Python configuration file
- Configuration manager (configManager) highest level (singleton) object in Python and C++
- Manages fitConfig objects that contain PDF and meta-data

Fit configuration

 fitConfig objects summarize channels, samples and systematics together with corresponding input histograms



Fit configuration properties



- fitConfig: can be cloned/extended (see next slide)
- channels: either single-bin or multi-bin (shape), property as CR/VR/SR
- samples: input from TTree, TH1 or raw (hard-coded) floats, correlated between channels
- systematics: provided as ±1σ variation of nominal histogram; input from TTree, TH1 or raw floats; can be correlated between samples and/or channels; many types available extended from HistFactory base types (see later); trickle-down mechanism (see backup)

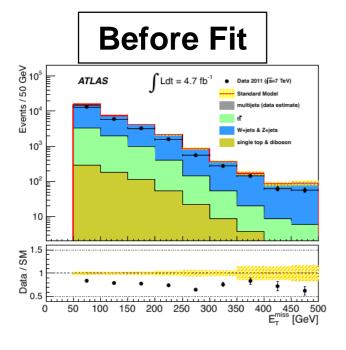
Common fit strategies

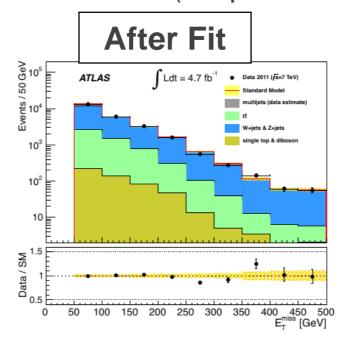
- Background-only fit: estimate background yields in validation/signal regions; including <u>only</u>
 CRs in the fit to data; no signal component included in fit configuration
- Model-dependent signal fit: set exclusion limit on a specific signal model; possible use of multi-binned (or multi-SR) shape fit for a robust signal estimation - aka exclusion fit
- Model-independent signal fit: to obtain model-independent upper limits on number of BSM events beyond background prediction; only usable with one single-bin SR (otherwise not model-independent) aka discovery fit

Fit setup	Background-only fit	$Model ext{-}dependent$	$Model ext{-}independent$
		$signal\ fit$	signal fit
Samples used	backgrounds	backgrounds + signal	backgrounds +
			dummy signal
Fit regions	CR(s)	CR(s) + SR(s)	CR(s) + SR

Presentation of results

HistFitter includes a collection of tools (scripts/functions) to present/understand fit results







Yields Table

		_
Signal Region	SR1	SR2
Observed events	16	19
Fitted bkg events	$\textbf{19.54} \pm \textbf{3.93}$	20.47 ± 5.14
Fitted Top events	$\textbf{4.02} \pm \textbf{0.96}$	$\textbf{4.32} \pm \textbf{1.04}$
Fitted V+jets events	$\boldsymbol{9.89 \pm 1.86}$	10.47 ± 1.91
Fitted other background events	$\textbf{1.14} \pm \textbf{0.15}$	$\boldsymbol{1.19 \pm 0.16}$
Fitted QCD events	$\textbf{4.49} \pm \textbf{2.72}$	$\textbf{4.49} \pm \textbf{4.24}$
MC exp. SM events	24.85	26.32
MC exp. Top events	8.42	9.11
MC exp. V+jets events	10.82	11.55
MC exp. other background events	1.13	1.17
Data-driven exp. QCD events	4.49	4.49

Systematics Table

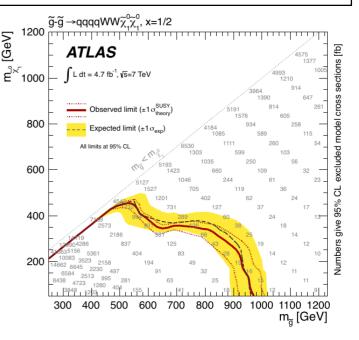
Uncertainty of channel	SR1	SR2
Total background expectation	19.54	20.47
Total statistical ($\sqrt{N_{\rm exp}}$) Total background systematic	±4.42 ±3.93 [20.14%]	±4.52 ±5.14 [25.09%]
QCD background	±2.66	±4.20
Statistical uncertainties	± 2.54	± 1.86
Jet Energy Scale	±1.15	±1.17
Top yield	± 0.82	± 0.88
Renormalization scale (Top)	± 0.34	± 0.39
V+jets yields	± 0.28	± 0.29
Renormalization scale (V+jets)	± 0.14	± 0.03

Model-independent upper limits

Signal channel	$\langle \sigma_{\rm vis} \rangle_{\rm obs}^{95} [{\rm fb}]$	$S_{ m obs}^{95}$	$S_{ m exp}^{95}$	p(s=0)
SR3b	0.19	3.9	$4.4^{+1.7}_{-0.6}$	0.50
SR0b	0.80	16.3	$8.9^{+3.6}_{-2.0}$	0.03

J. Lorenz HistFitter

Exclusion contour with upper limits



HistFitter & documentation

- HistFitter paper on arXiv: http://arxiv.org/abs/1410.1280
- HistFitter webpage with doxgen documentation: http://cern.ch/histfitter
- Tutorial (to be discussed next): https://twiki.cern.ch/twiki/bin/view/Main/HistFitterTutorialOutsideAtlas
- ACAT 2014 talk on HistFitter: https://indico.cern.ch/event/258092/session/8/contribution/39

HistFitter tutorial

Running HistFitter

- HistFitter.py <options> <configuration_file>
- -t: Create histograms in all regions used for all backgrounds, signal, data from TTrees
- -w: Build workspaces from histograms
- **-f**: Fit
- -D: various drawing options, to be discussed later
- -L: log level {VERBOSE,DEBUG,INFO,WARNING,ERROR,FATAL,ALWAYS}
- -m PARAM: run Minos for asymmetric error calculation
 - · optionally give parameter names comma separated; for all parameters use 'ALL' or 'all'
- -I: Calculate upper limit
- -p: Calculate the CLs value for a specific signal model (for exclusion)
- -i: interactive mode, keeps you in python command line, but shows plots on your screen

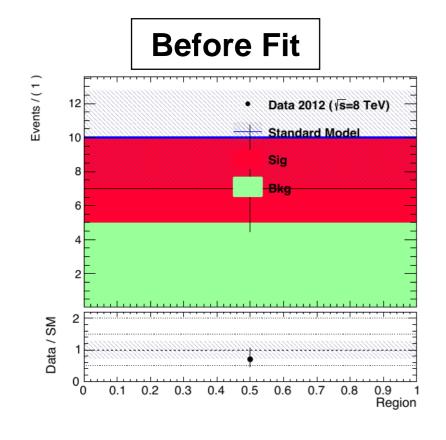
To see all options run: HistFitter.py --help

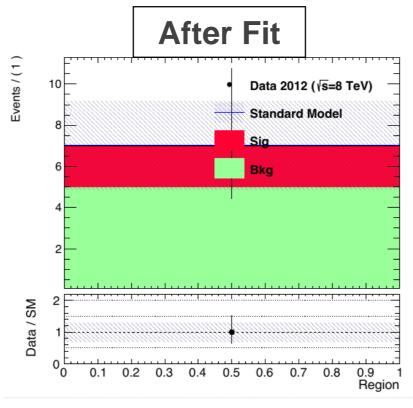
Simple example

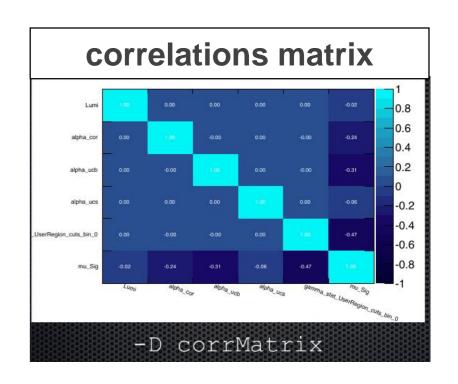
Simple example with one region with one bin:

```
HistFitter.py -w -f -D "before, after, corrMatrix" -i
analysis/tutorial/MyUserAnalysis.py
```

- Creates the workspace
- Runs the fit
- Plots before/after fit regions and correlation matrix
- Keeps you in interactive mode







Config file explained - I

- Define a configManager and setup a fitConfig and named SPlusB
- from configManager import configMgr
 ana = configMgr.addFitConfig("SPlusB")
- Add one channel/region to the fitConfig
- chan = ana.addChannel("cuts",["UserRegion"],1,0.5,1.5)
- One defines the region/channel in cutsDict (as one would in ROOT for TTree call)
- Here include all:
- configMgr.cutsDict["UserRegion"] = "1."
- Channels can also be binned (shape-fit)
- chan = ana.addChannel("myObs", ["mySelection"], nBins, varLow, varHigh)

Config file explained - II

Define samples: bkgSample, sigSample and dataSample

```
# Define samples
bkgSample = Sample("Bkg", kGreen-9) # define a background sample with color KGreen-9 if plotting
bkgSample.setStatConfig(True) #This sample gets statistical uncertainties
bkgSample.buildHisto([nbkg], "UserRegion", "cuts") #Build histograms from numbers defined by
the user
bkgSample.buildStatErrors([nbkgErr], "UserRegion", "cuts")
sigSample = Sample("Sig", kPink) #A signal sample with color kPink
sigSample.setNormFactor("mu Sig", 1., 0., 100.) # This samples receives a normalization
parameter
sigSample.setStatConfig(True) #This sample gets statistical uncertainties
sigSample.setNormByTheory() # and uncertainties due to the luminosity are added
sigSample.buildHisto([nsig], "UserRegion", "cuts")
sigSample.buildStatErrors([nsigErr], "UserRegion", "cuts")
dataSample = Sample("Data", kBlack) #Data sample
dataSample.setData()
dataSample.buildHisto([ndata], "UserRegion", "cuts")
```

add all samples to the fitconfig object and thus to all channels

```
ana.addSamples([bkgSample, sigSample, dataSample])
J. Lorenz
HistFitter
```

Config file explained - III

- Add systematics to signal/background samples
- Correlating systematics happens by giving them the same name
- # Set uncorrelated systematics for bkg and signal (1 +- relative uncertainties)

```
ucb = Systematic("ucb", configMgr.weights, 1.2,0.8, "user", "userOverallSys")
ucs = Systematic("ucs", configMgr.weights, 1.1,0.9, "user", "userOverallSys")
# correlated systematic between background and signal (1 +- relative uncertainties)
corb = Systematic("cor", configMgr.weights, [1.1], [0.9], "user", "userHistoSys")
cors = Systematic("cor", configMgr.weights, [1.15], [0.85],
"user", "userHistoSys")

bkgSample.addSystematic(corb)
bkgSample.addSystematic(ucb)
sigSample.addSystematic(cors)
sigSample.addSystematic(ucs)
```

Table production

- YieldsTable.py produces customizable tables of yields before/after fit
- Example: YieldsTable.py -s Top,WZ,BG,QCD -c SLWR_nJet,SLTR_nJet -w results/MyConfigExample/BkgOnly_combined_NormalMeasurement_model_afterFit.root -o MyYieldsTable.tex

table.results.yields channel	SLWR_nJet	SLTR_nJet	SR1sl2j	SS_metmeff2Jet
Observed events	1794	269	25	26
Fitted bkg events	1800.73 ± 39.91	262.45 ± 11.47	28.53 ± 5.26	31.74 ± 8.50
Fitted Top events	117.20 ± 11.42	113.20 ± 12.53	6.17 ± 1.12	6.65 ± 1.26
Fitted WZ events	1629.37 ± 42.19	69.75 ± 6.63	13.95 ± 2.03	14.57 ± 1.98
Fitted BG events	43.49 ± 1.90	23.19 ± 1.94	0.96 ± 0.32	1.00 ± 0.32
Fitted QCD events	10.64 ± 0.51	56.30 ± 13.65	7.44 ± 3.75	$\textbf{9.52} \pm \textbf{7.54}$
MC exp. SM events	1921.26	261.96	32.04	35.35
MC exp. Top events	165.16	153.98	8.75	9.38
MC exp. WZ events	1647.04	66.30	15.26	15.82
MC exp. BG events	40.96	25.03	0.59	0.63
data-driven exp. QCD events	68.06	16.64	7.44	9.52

- SysTable.py produces customizable tables of systematic breakdown per region (or sample)
- Example: SysTable.py -w results/MyConfigExample/BkgOnly_combined_NormalMeasurement _model_afterFit.root -c SR1s12j -o systable_SR1s12j.tex

Uncertainty of channel	SR1sl2j
Total background expectation	28.53
Total statistical $(\sqrt{N_{\rm exp}})$ Total background systematic	±5.34 ±5.26 [18.43%]
gamma_stat_SR1sl2j_cuts_bin_0	± 3.63
alpha_QCDNorm_SR1sl2j	± 3.63
alpha_JES	± 0.93
mu_Top	± 0.65
alpha_KtScaleTop	± 0.52
alpha_KtScaleWZ	± 0.37
mu_WZ	± 0.36

Signal model hypothesis test

- Once you have unblinded your SR, one can calculate the CLs/p-value on specific signal models using the
 exclusion fit (aka model-dependent fit setup)
- As simple in HistFitter as calling:

```
HistFitter.py -p analysis/tutorial/MyUserAnalysis.py
```

- Will calculate:
 - CLs observed = taking N observed events as data in all regions
 - CLs expected = taking N expected events as data in all regions
 - CLs_expected ±1sigma experimental uncertainty = N expected as data, ±1sigma fit results
 - · yellow band next slide
 - CLs_observed ±1sigma signal theory uncertainty = N observed as data, ±1sigma signal theory
 - need to set the name of the signal theory uncertainty systematic as Systematic ("SigXSec", ...)
 - · red-dotted lines next slide
- Setting calculator and test statistic type can be set in configManager (see backup):

```
## setting the parameters of the hypothesis test
#configMgr.nTOYs=5000
configMgr.calculatorType=2 # 2=asymptotic calculator, 0=frequentist calculator
configMgr.testStatType=3 # 3=one-sided profile likelihood test statistic (LHC default)
configMgr.nPoints=20 # number of values scanned of signal-strength for upper-limit
determination of signal strength.
```

• Result of '-p' stored in a ROOT file with 'hypotest' in the name:

```
results/MySimpleChannelAnalysis\_fixSigXSecNominal\_hypotest.root
```

Contour plot explained

https://twiki.cern.ch/twiki/bin/view/AtlasProtected/SUSYLimitPlotting

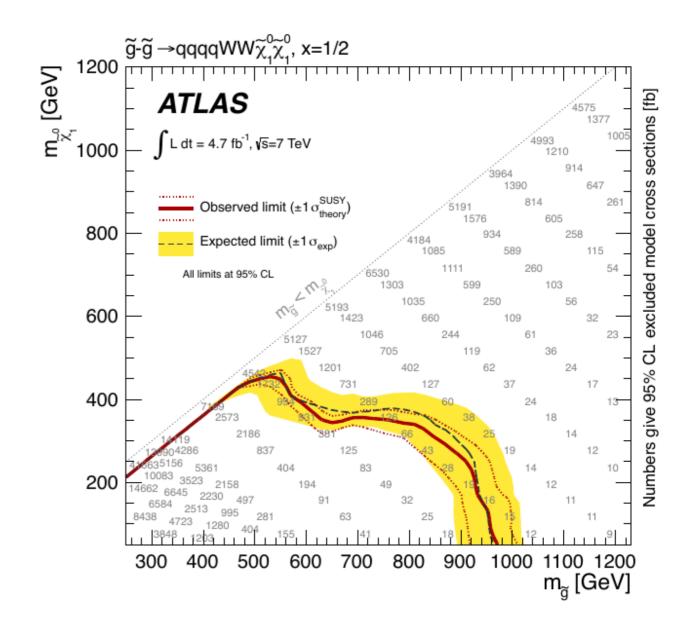
Description of limit lines

The model limits should be computed using the HistFitter package. We present the following limits:

- Observed limit (thick solid dark-red line): all uncertainties are included in the fit as nuisance parameters, with the exception of the theoretical signal uncertainties (PDF, scales).
- Expected limit (less thick long-dashed dark-blue line): all uncertainties are included in the fit as nuisance parameters, with the exception of the theoretical signal uncertainties (PDF, scales).

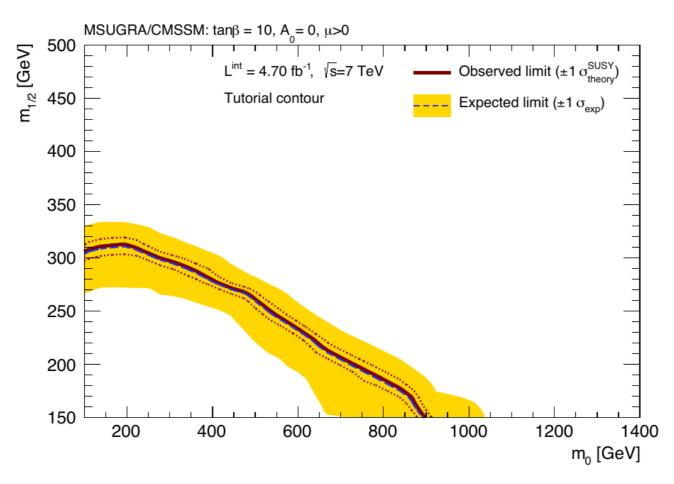
We present the following uncertainty bands:

- ±1σ lines around observed limit (1) with style
 "thin dark-red dotted": re-run limit calculation (1)
 while increasing or decreasing the signal cross
 section by the theoretical signal uncertainties
 (PDF, scales).
- ±1σ band around expected limit (2) with style "yellow band": the band contours are the ±1σ results of the fit (2).



Contour plot production

- Typically a grid of signal model points with varying signal parameters (m_H or m_{gluino}) get processed to produce an exclusion contour
- Five steps to produce (Part 5 of tutorial):
- 1. run hypothesis tests over all grid points (results saved in multiple *hypotest* files)
- 2. merge all the output root files into one using hadd (if stored in a separate files)
- 3. transform this set of hypothesis tests into a plain-text file: makelistfiles.C
- 4. create TH2D(s) from the ascii data in this list file: makecontourhists.C
- 5. plot TH2D(s) to draw contour lines and cosmetics: makecontourplots.C
- at the requested CLs level, typically 95% CL, CLs<0.05



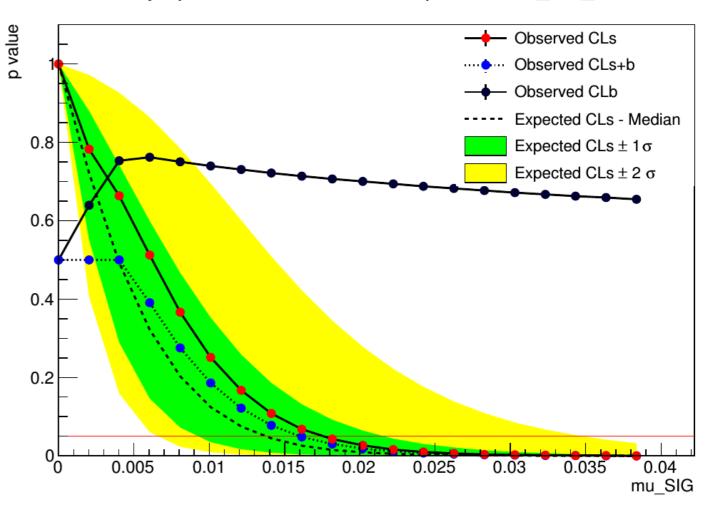
Signal strength upper limit

- Once you have unblinded your SR, one can set upper limits on specific signal models
 using the exclusion fit (aka model-dependent fit setup)
- As simple in HistFitter as calling:

HistFitter.py -l analysis/tutorial/MyUserAnalysis.py

- Technicalities similar to '-p'
- Hypothesis test *inversion*:
 - find the value of mu_SIG for which
 CLs below 0.05 (or other required value)
 - instead of calculating the p-value for the specific signal
 - run the hypothesis test for increasing values of signal strength mu_SIG
 - scan range determined automatically
 - upper limit on cross section =
 nominal cross section × upper limit on
 signal strength (grey numbers in contour
 plots, run for each signal grid point)

Asymptotic CL Scan for workspace result_mu_SIG



Model-independent upper limit

- Calculate the upper limit on the number of BSM physics events that we exclude in our SR
 - Typically used by theorists to check their favorite BSM model, that we have not looked at
- Requires the model-independent fit setup aka discovery fit
 - 'dummy signal' = exactly one event in signal region (none in CRs)
 - upper limit on this 'dummy signal' = upper limit on BSM number of events
- Use the UpperLimitTable.py script:

```
UpperLimitTable.py -c SS -w
results/MyUpperLimitAnalysis_SS/SPlusB_combined_NormalMeasurement_model.root -
1 4.713 -n 1000
```

Results in LaTeX table:

Signal channel	$\langle \epsilon \sigma angle_{ m obs}^{ m 95} [{ m fb}]$	$S_{ m obs}^{95}$	$S_{ m exp}^{95}$	CL_B	p(s=0)
SS	1.73	8.2	$6.1^{+2.3}_{-1.3}$	0.80	0.21

- ⟨σvis⟩95_obs: 95% CL upper limits on the visible cross section obs
- S95_obs :95% CL upper limits on the number of signal events obs
- S95_exp: 95% CL upper limit on the number of signal events, given the expected number (and ±1σ excursions on the expectation) of background events
- CLB: the confidence level observed for the background-only hypothesis
- p(s = 0): discovery p-value the probability, capped at 0.5, that a background-only experiment is more signal-like than the observed number of events in a signal region

HistFitter - tutorial

HistFitter Tutorial - Parts 1 & 2 & 3 **Parts 4 & 5** Normalized Initial predicted Background extrabackground background polated to SR Interpretation using log-likelihood ratio Normalization via Transfer likelihood fit CR1 CR1 SR₁ factor 000 000 000 CR N CR N SR N Transfer factor Signal VR 1 Validation of extrapolated 000 background fit result VR N

HistFitter tutorial start up

 A public version is available on the HistFitter webpage: http://histfitter.web.cern.ch/histfitter/Software/Install/index.html

We use HistFitter-2.0.tar.gz for this tutorial.

Installation instructions:

- Untar the HistFitter package
- Setup ROOT (if not already done) use Root 5!
- Go the HistFitter directory cd HistFitter-2.0
- Run the HistFitter setup script source setup.sh
- Go to the src/ directory and compile the C++ side of HistFitter cd src && make
- Go back to the main HistFitter directory

Input data here:

- Link the input data to your HistFitter directory as follows:
- In –s /project/etp3/jlorenz/shape_fit/samples/ samples