Everything You Always Wanted To Know About Particle Detectors The ATLAS Detector

Jona Bortfeldt

Medical Physics Ludwig-Maximilians-Universität Munich, Germany

Outline

1 Introduction

- 2 Particle & Photon Interaction Processes
- 3 ATLAS Inner Detector
- **4** ATLAS Calorimeter
- 5 ATLAS Muon System

6 Summary

What Can Particle Detectors Measure?

hit

presence

position

tracking

timing

- trigger
- direction
- time-of-flight \rightarrow velocity $\beta = \frac{\Delta z}{c\Delta t}$

- particle identification
- particle energy $\beta\gamma$

Underlying Mechanisms of Particle Detection?

some kind of interaction of particle in detector!

gravitation

- dark matter detection @ galactic dimension
- \rightarrow irrelevant in HEP

weak force

 ν: charged & neutral current interactions
 ν

 \rightarrow irrelevant in accelerator HEP

strong force

- hadrons & mesons
- dominant for neutrals
- calorimeters

electromagnetic force

- dominant for charged
- tracking, triggering, timing, calorimeters

Particle & Photon Interaction Processes

Electromagnetic Interaction of Particles With Matter

- excitation \rightarrow light
- $\bullet \ \ \text{ionization} \rightarrow \text{charge}$
- polarization (Cherenkov radiation) \rightarrow light
- transition radiation \rightarrow X-rays (\rightarrow charge)
- bremsstrahlung ightarrow gammas (ightarrow charge)

charge detectors

- gaseous, liquid, solid
- often finely segmented
- tracking, triggering
- integrated particle counting (calorimeters)

light detectors

- transparent medium
- scintillation detectors: detect light from deexcitation & recombination
- Cherenkov detectors
- triggering
- integrated particle counting (calorimeters)

note: photons produce charged particles via photo effect, Compton effect and pair production

Photon Interaction With Matter

photo effect

- $E_{\gamma} < 100 \, {\rm keV}$
- $E_{e^-} = E_{\gamma} E_b$ \rightarrow sharp energy deposit \rightarrow detector calibration
- $\sigma_{
 m photo} \propto Z^5$

Compton effect

• 100 keV $< E_{\gamma} < 5$ MeV

•
$$E_{\gamma}' = \frac{E_{\gamma}}{1+(1-\cos\vartheta)E_{\gamma}/m_ec^2}$$

pair production

• $E_{\gamma} > 5 \,\mathrm{MeV}$

•
$$\sigma \propto \frac{\mu}{\rho} = \frac{7}{9} \frac{1}{X_0} \approx const(E_{\gamma})$$

 $X_0: radiation length$
 $\rightarrow P_{pair} = 1 - exp(-7/9) \sim 54\%$
for $x = X_0$

$$I(x) = I_0 \exp(-\mu d) = I_0 \exp(-\frac{\mu}{\rho}x)$$

I

Bethe-Bloch-Formula

$$\left\langle \frac{\mathrm{d}E}{\mathrm{d}x} \right\rangle = -4\pi r_e^2 m_e c^2 \rho N_A \frac{Zz^2}{A\beta^2} \left(\frac{1}{2} \ln \frac{2m_e c^2 \beta^2 \gamma^2 T_{\max}}{I^2} - \beta^2 - \frac{\delta}{2} - \frac{C}{Z} \right)$$

- includes ionization, excitation & polarization
- *mean* energy loss per unit length
- Photo Absorption Ionization model: Allison & Cobb, Ann. Rev. Nucl. Sci. 30 (1980) 253

characteristics

- universal function of $\beta \gamma$ \rightarrow particle ID: $p = \beta \gamma mc$
- $\left< \frac{\mathrm{d}E}{\mathrm{d}x} \right> \propto \frac{1}{\beta^2}$ for $\beta\gamma < 1$
- $\left< \frac{\mathrm{d}E}{\mathrm{d}x} \right>$ minimal for $\beta \gamma \sim 4$
- $\left< rac{\mathrm{d} E}{\mathrm{d} x} \right> \propto \ln \beta^2 \gamma^2$ for $10 < \beta \gamma < 500$
- $\left< \frac{\mathrm{d}E}{\mathrm{d}x} \right> \sim \mathrm{const.}$ for $\beta \gamma > 500$
- universal: $\frac{1}{\rho} \left\langle \frac{dE}{dx} \right\rangle = 2 \,\mathrm{MeV}\,\mathrm{cm}^2/\mathrm{g}$

Cherenkov Radiation

- charged particle in material \rightarrow polarization
- $\beta > \frac{1}{n} =$ velocity of light in material
 - \rightarrow E-fields cannot follow
 - \rightarrow in-phase superposition of fields
 - \rightarrow emission of blueish light
 - \rightarrow optic analogon to sonic boom
- $\cos \vartheta_C = \frac{1}{\beta n}$

•
$$\frac{\mathrm{d}N}{\mathrm{d}x} = 490 \sin^2 \vartheta_C \,\mathrm{cm}^{-1}$$

Jona Bortfeldt (LMU München)

- charged particle at vacuum (gas)/solid boundary forms variable dipole with its mirror charge
 - \rightarrow emission of radiation (X-rays)
- radiated energy per boundary: $S = \frac{1}{3} \alpha z^2 \hbar \omega \gamma \propto \gamma$
- increase photon number
 - \rightarrow many layers
 - ightarrow detect photons in high-Z gas detector together with Bethe-Bloch ΔE
- interference effects lead to saturation for $\gamma \sim 1000$

Bremsstrahlung

$$\frac{\mathrm{d}E}{\mathrm{d}x} = -4\alpha N_A \frac{Z^2}{A} z^2 \left(\frac{1}{4\pi\varepsilon_0} \frac{e^2}{mc^2}\right)^2 \ln \frac{183}{Z^{1/3}} E$$

deceleration in coulomb field (nucleus, weaker also shell electron) \rightarrow emission of gammas

characteristics

- $\frac{\mathrm{d}E}{\mathrm{d}x} \propto \frac{1}{m^2}$ \rightarrow mostly relevant for electrons
- $\frac{\mathrm{d}E}{\mathrm{d}x} \propto E$
- $E^e(x) = E_0 \exp\left(-\frac{x}{X_0}\right)$, $X_0 = 4\alpha N_A \frac{Z^2}{A} z^2 r_e^2 \ln \frac{183}{Z^{1/3}}$: radiation length
- $\frac{dE}{dx}|_{\text{bethe-bloch}} = \frac{dE}{dx}|_{\text{brems}}$ at critical energy E_c
- $E^e_{c,{
 m Fe}}\sim 21\,{
 m MeV}$ & $E^\mu_{c,{
 m Fe}}\sim 890\,{
 m GeV}$

How To Measure Energy Loss?

ionization yield in charge detectors

- $n_e = \frac{\Delta E}{W_l}$ W_l : mean energy per creation of one electron-ion pair (> $E_{\text{ionization}}$!)
- $W_{I,\mathrm{Ar}} = 26 \,\mathrm{eV}$
- $W_{I,{
 m Si}} \sim 4 \,{
 m eV}$

light yield in scintillation detectors

- $n_{\gamma} = \frac{\Delta E}{W_{\gamma}}$ W_{γ} : mean energy per creation of one photon
- $W_{\gamma} \sim 100 \,\mathrm{eV}$
- \rightarrow detect few to several ten thousand photons (possible)

- ightarrow gas detectors: $m \sim 100~e^{-}/cm$
- ightarrow amplification in detector necessary
- \rightarrow semiconductor detectors:
- $\sim 22000~e^-/300~\mu m$
- $\rightarrow \text{direct measurement}$

What Info Are We Interested In?

- presence
- timing
- position

identity

- specific interactions
- $\frac{\mathrm{d}E}{\mathrm{d}x}$ measurement + p
- charge: from p

via mass:

$$E^2 - p^2 c^2 = m^2 c^4$$

(difficult)

momentum

- $p = \beta \gamma mc$
- magnetic field:
 p = qRB

energy

- $E = \gamma mc^2$
- identity + p
- range measurement
- measure complete energy deposition

Jona Bortfeldt (LMU München)

ATLAS - Inner Detector

Reminder: Band Model & Semiconductors

- Schrödinger equation for electron energy in periodic lattice \rightarrow quasi-continuous energy bands
- valence band: fully occupied @ T = 0 K, e^- bound to atoms
- conduction band: empty @ T = 0 K, e^- could move within lattice

Conductivity of Semiconductors

- valence band completely occupied
- conduction band empty
- $ightarrow \sigma = 0$
- \rightarrow insulating

- $\sigma = e(n_n\mu_n + n_p\mu_p)$
 - \rightarrow electrons (*n*) & holes (*p*) contribute to conductivity
- $n_n = n_p \sim 5 \times 10^{15} T^{3/2} \exp(-\frac{E_g}{2kT})$
- strong temperature dependence
- 300 K: $ho_{\mathrm{Si}} = 1/\sigma_{\mathrm{Si}} \sim 10^5\,\Omega\mathrm{cm}$
 - ightarrow low conductivity
 - \rightarrow strong dependance on impurities

Doping of Semiconductors $\rightarrow \rho \sim 10^3 \, \Omega {\rm cm}$

n-type

• add quinquevalent impurity (e.g. P)

p-type

• add trivalent impurity (e.g. B)

P-N Junction

- electrons diffuse into p-type
- holes diffuse into n-type
- \rightarrow recombine
- \rightarrow dopant trunks produce space charge
- \rightarrow space charge prevents further diffusion

formation of depletion region: no free charge carriers \rightarrow no current in reverse bias direction (diode behavior)

in reality: leakage current due to thermal excitation of semiconductor or contaminants and defects \rightarrow strong reduction by cooling

P-N Junction as Particle Detector

- charged particle
 → ionization & excitation
- charge separation only in depletion region
 - $\rightarrow \text{current pulse}$

- reverse bias voltage $U_b \sim 100\,{
 m V}$
 - \rightarrow increase depletion region
 - \rightarrow increase current pulse & active volume

Aging of Semiconductor Detectors

- higher leakage current
- capturing of e[−] or holes
 → charge collection efficiency
- space charge
- type inversion: n-type bulk \rightarrow p-type bulk
 - \rightarrow p-n junction at n^+-bulk interface
- ightarrow adapt U_b accordingly

- surface leakage current
- space charge

Annealing of Semiconductor Detectors

- empiric: damage \propto integrated dose Φ
- interstitials and vacancies diffuse within warm semiconductor

beneficial annealing

- recombination of single interstitions & vacancies
- short term

reverse annealing

- undesired
- long term

stable damage

Inner Detector

- momentum measurement with high resolution \rightarrow whole ID in 2 T solenoidal *B*-field
- primary & secondary vertex reconstruction
- pattern recognition
- electron identification

Jona Bortfeldt (LMU München)

- high spatial resolution
- high granularity
- transition radiation detector

Inner Detector Components

- transition radiation tracker
 - many layers 4 mm straw tubes
 → at least 36 individual
 position measurement points
 - embedded in TR radiator (polypropylene fibres (barrel) and foils (endcap)) → especially electrons produce TR X-rays, 7 to 10 detected TR photons with much higher pulse height per traversing electron
- four double-layers silicon microstrip detectors $(\sim 80 \mu m \times 12\, cm)$
- four layers silicon pixel detectors
 - insertable B-layer: $50\mu m \times 250 \mu m$ (planar and 3D pixels, not treated in this talk)
 - three outer layers: $50 \mu m \times 400 \mu m$

- p+ and n-type bulk
- 250 μ m thick n-type bulk
- readout electronic directly bonded onto sensor
- $50\mu m \times 400 \mu m$ pixel size \rightarrow spatial resolution 10 μm & 115 μm
- type inversion & ageing anticipated \rightarrow n⁺ pixels
 - $\rightarrow U_h$ from 150 V to 600 V
- cooled to -10° idle, 0° in operation

and n+ pixels

Aging of Pixel Modules

- aging: increase of effective dopant concentration
- increase bias voltage to reach full depletion
- 100 days operation @ 0°
- 30 days maintenance @ 20°
 → annealing
- rest: idle $@-10^\circ$
- $U_b = 600 \text{ V} \text{ maximum}!$

Silicon Microstrip Modules

- two layers per module, stereo angle 40 mrad
- conventional p-in-n-type: large area & cost
- readout electronic wire bonded to sensor
- spatial resolution 17 μ m & 580 μ m (from stereo angles)
- type inversion & ageing anticipated $\rightarrow U_b$ from 150 V to 500 V, sufficiently large margin
- cooled to -7° for reduced leakage current and reverse annealing

Transition Radiation Tracker

- radial *E*-field in straw tube
 - \rightarrow strong close to wire
- ionization along particle track (100 e)
- charge amplification around wire (25k)
- measure earliest arrival time
- $t_{\text{drift}} = \frac{r_{\text{drift}}}{v(r_{\text{drift}})}$ \rightarrow drift radius \leftrightarrow position $O(130 \,\mu\text{m})$
- TR: $E_{\gamma}\sim 20\,{
 m keV}
 ightarrow 900\,e$
- Why Xe (Z = 54, extremely expensive)? remember: $\sigma_{\rm photo} \propto Z^5$

ATLAS – Calorimeter

Measurement Principle: Electromagnetic Sampling Calorimeter

dominant interaction of

- high energy electrons: bremsstrahlung \rightarrow photons
- high energy photons: pair production remember: after $1X_0$:
 - $P_{
 m brems}\sim 63\%$
 - $P_{
 m pair} = 1 \exp(-7/9) \sim 54\%$
- ightarrow shower develops
 - shower stops when $E(t) < E_c$
 - number of $e^{\pm} \& \gamma$: $N(t) \sim 2^t$
 - mean particle energy: $E(t) \sim E_0/N(t) = E_0 2^{-t}$
 - at maximum depth: $E(t) = E_c$ $\rightarrow E_0 2^{t_{\text{max}}} = E_c$
 - total particle path \Leftrightarrow number of e^{\pm} : $S = \sum_{t=0}^{t_{\max}} \frac{2}{3}N(t) \sim \frac{2}{3}2^{t_{\max}+1} = \frac{4}{3}\frac{E_0}{E_c}$
 - note: for constant ionization: $S\propto Q$

Hadronic Sampling Calorimeter

- equivalent to EM calo but hadronic interaction \leftrightarrow bremsstrahlung/pair production
- nuclear interaction length $\lambda \gg X_0$ \rightarrow much thicker absorber plates than in EM
- hadron cascades: more particles with difficult energy determination (ν & μ leave calo, π⁰ → γγ are lost in absorber, slow nuclear fragments ionize strongly)
 → energy resolution worse than in EM calo

material	λ [cm]	<i>X</i> ₀ [cm]
LAr	85.8	14.0
Fe	16.8	1.76
Cu	15.3	1.44
Pb	17.6	0.56
W	9.95	0.35

ATLAS Calorimeter System

Electromagnetic Barrel Calorimeter

- absorber: lead (1.5 mm & 1.1 mm for $\eta >$ 0.8) between 0.2 mm steel
- active layer: twice 2.1 mm LAr
- two HV electrodes for electron-ion-separation
- charge signal collected by electrode
- three layers in depth: segmentation of signal electrode

Electromagnetic Barrel Calorimeter - Signal Electrode

Hadronic Barrel Calorimeter

- absorber: steel (5 mm×97 mm×200 mm to 5 mm×187 mm×400 mm)
- active layer: 3 mm plastic scintillator tiles
- scintillation light from both sides decoupled via wavelength-shifting fibers
- fibers grouped & read out via photomultiplier
- three layers in depth

ATLAS – Muon System

Quarter of the ATLAS Muon System

ATLAS Muon System

- 2 mm gas gap, $C_2H_2F_4$:i C_4H_{10} :SF₆
- highly resistive plates, contacted by graphite layers
- charged particle \rightarrow ionization
- homogenous E-field (49 kV/cm) ightarrow gas amplification & electron-ion separation
- fast signal on perpendicular readout strips (1.5 ns resolution, 5 ns duration)
- coarse position information $O(35\,\mathrm{mm})$ per module
- two modules per chamber

Trigger Endcap: Thin Gap Chambers

- 2.8 mm planar gas gap, CO_2 :n C_5H_{12}
- 50 μm wires, pitch 1.8 mm, 2.9 kV
- charged particle \rightarrow ionization
- electrons drift to wires \rightarrow saturated gas amplification
- signal on wire
- signal on perpendicular readout strips
- spatial resolution O(5 mm) per layer, timing resolution 4 ns

Tracking Barrel/Endcap: Monitored Drift Tube Chambers

- 30 mm aluminum tube, Ar:CO₂ 93:7, 3 bar
- central 50 µm wire, 3 kV
- charged particle \rightarrow ionization
- electrons drift to central wire (max 700 ns) \rightarrow gas amplification
- measure earliest arrival time of electrons \rightarrow drift radius
- combine 6 to 8 tube layers \rightarrow particle track $O(35\,\mu{
 m m})$
- $2 \times 5 \text{ m}^2 \text{ max size} \rightarrow \text{deformation: temperature gradients, mounting position}$ \rightarrow wire position has to be known with $O(30 \, \mu \text{m})$
 - \rightarrow monitor relative position and internal deformation via optical system

Tracking Inner Endcap: Cathode Strip Chambers

- 5 mm planar gas gap, Ar:CO₂
- 30 µm wires, pitch 2.5 mm, 1.9 kV, not read out
- charged particle → ionization
- electrons drift to wires \rightarrow gas amplification
- mirror signal on two layers of perpendicular readout strips
- precision coordinate: 1.85 mm pitch, every third read out \rightarrow spatial resolution $O(60 \,\mu m)$ per layer
- coarse coordinate: 21 mm & 13 mm pitch \rightarrow spatial resolution O(5 mm)per laver

Summary

Summary

- charged particles & photons: EM interaction dominant
 - excitation
 - ionization

Bethe-Bloch

- Cherenkov radiation
- transition radiation
- bremsstrahlung
- neutral hadrons: strong interaction
- charge detectors \leftrightarrow light detectors
- detectors: presence, timing, position
- momentum measurement (track radius in *B*-field), energy (range or calorimetric), identity
- ATLAS:
 - transition radiation tracker
 - electromagnetic lead-LAr calorimeter
 - hadronic steel-scintillator calorimeter
 - resistive plate chambers
 - thin gap chambers
 - monitored drift tube chambers
 - cathode strip chambers

muon trigger

muon track

Summary

- charged particles & photons: EM interaction dominant
 - excitation
 - ionization

Bethe-Bloch

- Cherenkov radiation
- transition radiation
- bremsstrahlung
- neutral hadrons: strong interaction
- charge detectors \leftrightarrow light detectors
- detectors: presence, timing, position
- momentum measurement (track radius in *B*-field), energy (range or calorimetric), identity
- ATLAS:
 - transition radiation tracker
 - electromagnetic lead-LAr calorimeter
 - hadronic steel-scintillator calorimeter
 - resistive plate chambers
 - thin gap chambers
 - monitored drift tube chambers
 - cathode strip chambers

muon trigger

muon track

Thank you!