
GIT Tutorial

Martin Ritter
LMU Munich

Bachelor Einführung, 2019-05-02

Git

Martin Ritter GIT Tutorial 2 / 20Bachelor Einführung, 2019-05-02

Distributed Version Control created in 2005

https://git-scm.org

▶ tracks changes to files over time
▶ does not need a central server
▶ every user keeps full history

(aka clone)
▶ synchronized using push and pull

https://git-scm.org

Cryptographic Hash Function

Martin Ritter GIT Tutorial 3 / 20Bachelor Einführung, 2019-05-02

Create a checksum with fixed length from any input

Input Digest

Fox
cryptographic

hash
function

DFCD 3454 BBEA 788A 751A
696C 24D9 7009 CA99 2D17

The red fox
jumps over
the blue dog

cryptographic
hash

function

0086 46BB FB7D CBE2 823C
ACC7 6CD1 90B1 EE6E 3ABC

The red fox
jumps ouer
the blue dog

cryptographic
hash

function

8FD8 7558 7851 4F32 D1C6
76B1 79A9 0DA4 AEFE 4819

▶ small changes to input big changes to the hash value
▶ one-way function: practically impossible to calculate input from hash
▶ collision resistance: practically impossible to determine a different input with same hash

The Boring Theory

Martin Ritter GIT Tutorial 4 / 20Bachelor Einführung, 2019-05-02

▶ Git tracks how your files evolve over time

▶ You have to tell it what, when and why to track

▶ Every such point is called a commit and contains

▶ the date
▶ the name and content of all the tracked files
▶ the author of the commit
▶ a message identifying why the commit was made
▶ links to one or more previous commits

Commit ID

▶ SHA1 hash of the whole commit (all files + information)
▶ any change to any part of the commit would change the id
▶ usually abbreviated to 6-8 characters

Git Commit Tree

Martin Ritter GIT Tutorial 5 / 20Bachelor Einführung, 2019-05-02

A commit usually has one or more parents All commits in git form a merkle tree

References

▶ a branch points to any commit and gets updated when adding a new commit to this branch
▶ a tag points to any commit, can be annotated.

Everything else is efficient synchronization and working with this tree

Git Commit Tree

Martin Ritter GIT Tutorial 5 / 20Bachelor Einführung, 2019-05-02

A commit usually has one or more parents All commits in git form a merkle tree

References

▶ a branch points to any commit and gets updated when adding a new commit to this branch
▶ a tag points to any commit, can be annotated.

Everything else is efficient synchronization and working with this tree

Working with Git: Create Your First Repository

Martin Ritter GIT Tutorial 6 / 20Bachelor Einführung, 2019-05-02

Creating a git repository is easy:

git init

▶ configure git to track changes in

the current directory and all

subdirectories

▶ will create a .git/ directory

containing the whole history

▶ this is not a backup

▶ it only records changes in this

directory

Working with Git: Clone Existing Repository

Martin Ritter GIT Tutorial 7 / 20Bachelor Einführung, 2019-05-02

Working with existing repositories:

git clone other_git_repository

▶ other_git_repository can be just

another directory, a http url or a

ssh url

▶ will make a full local copy of the

remote repository

▶ it will contain the complete history

▶ git pull will update the local copy

▶ git push will try to add your

changes to the remote repository

Working with Git: add

Martin Ritter GIT Tutorial 8 / 20Bachelor Einführung, 2019-05-02

Before git tracks anything we have to

add files

git add filename

Git has a separate staging area

▶ record of all modified files marked

for commit

▶ git add is needed for each

commit.

▶ alternatively, git commit -a

commits all changes to tracked files

▶ git status will show files added to

the index, modified files, unknown

files

Working with Git: diff

Martin Ritter GIT Tutorial 9 / 20Bachelor Einführung, 2019-05-02

You can always inspect changes

▶ to see the unstaged changes

git diff

▶ or to see the staged changes

git diff --staged

▶ pro tip: for plain text or latex try

git diff --word-diff

Working with Git: add -p

Martin Ritter GIT Tutorial 10 / 20Bachelor Einführung, 2019-05-02

Pro Tip: git add can be run

interactively

▶ to mark all files in current directory

for commit if they are already

known to git:

git add -u .

▶ to ask you for all changes if you

want to stage them

git add -p .

Working With Git: commit

Martin Ritter GIT Tutorial 11 / 20Bachelor Einführung, 2019-05-02

Once you are happy with the changes

▶ run git commit to open up an editor to write

commit message

git commit

▶ the editor can be configured. E.g. to use VS Code:

git config --global core.editor "code --wait"

▶ alternatively you can supply the commit message

on the command line

git commit -m "Here is my commit message"

Please take the time to write descriptive

commit messages

▶ it really helps others to understand the

changes
▶ it will also help you to remember what

you did

Working with Git: Graphical Interface

Martin Ritter GIT Tutorial 12 / 20Bachelor Einführung, 2019-05-02

Alternative you can use git gui

▶ prepare commits in a graphical way

▶ preview the changes

▶ prepare commit message

Most IDEs or modern editors have GIT

integration:

▶ almost no need to use git on command

line
▶ can show changes directly in file or

prepare commits

well worth to check out

Exercise

Martin Ritter GIT Tutorial 13 / 20Bachelor Einführung, 2019-05-02

1. Create a local git repository on your computer

2. Add one or two files to it and create a few commits

3. Familiarize yourself with the basic commands

Commands to try

▶ git init – to create a repository
▶ git status – to see the current status
▶ git add – to add files/changes
▶ git reset – to “unstage” changes
▶ git commit or git gui – to create commits
▶ git diff – to show differences to
▶ git log – to show commits
▶ gitk – to show commits and their changes in gui

Git Web Services

Martin Ritter GIT Tutorial 14 / 20Bachelor Einführung, 2019-05-02

Multiple popular web services offer advanced features for git

▶ web interface to git

▶ branch creation/deletion

▶ commenting and discussion of commits/changes

▶ pull/merge requests

▶ user repositories

“Social Coding”, focus on collaboration.

▶ https://gitlab.physik.lmu.de

▶ https://gitlab.lrz.de

https://gitlab.physik.lmu.de
https://gitlab.lrz.de

Working with Branches

Martin Ritter GIT Tutorial 15 / 20Bachelor Einführung, 2019-05-02

So far we learned “linear” history: working on one branch

▶ fine when working alone on a small project

▶ using multiple branches can be very powerful

Git allows to easily switch between different branches

▶ list all branches (and allow to modify/delete them)

git branch

▶ create a new branch and check switch to it

git checkout -b branchname

▶ switch to a branch

git checkout branchname

Remote branches

Martin Ritter GIT Tutorial 16 / 20Bachelor Einführung, 2019-05-02

remote branches are referenced with prefix: “origin/master” usually refers to the branch “master”

on the remote repository “origin”

git remote show

Check out remote branch

If a branch with the same name exists on the server git checkout branchname does exactly what

you’d expect: check out the server branch as a local branch

Branches can have an upstream branch

▶ git push will push current branch to its upstream branch
▶ if the branch has been created from remote it’s usually setup automatically
▶ if you created a branch locally you can set it manually using

git push --set-upstream origin branchname

Merging Branches

Martin Ritter GIT Tutorial 17 / 20Bachelor Einführung, 2019-05-02

After some time you usually want to integrate the changes of one branch

into another branch

▶ this is called “merge”
▶ git merge branchname will merge the changes from the given branch

in the current branch

There are three possible outcomes:

1. fast forward: the branch to merge just adds commits at the end. Just

move the reference.

2. normal merge: there are some commit different but everything can be

determined automatically. creates new “merge commit”

3. merge with conflict: both branches modified the same part of a file. Git

cannot determine what to do. Will pause the merge and ask the user to

resolve the conflicts.

Merging Branches (cont.)

Martin Ritter GIT Tutorial 18 / 20Bachelor Einführung, 2019-05-02

If your merge as conflicts:

▶ git will pause the merge and leave conflict markers in the file

▶ resolve conflicts by hand and call git add on all conflicted

files

▶ alternatively, git mergetool can be called to use a variety of

graphical merging tools (meld, gvimdiff, kdiff, …)

▶ git commit finishes the merge, git merge --abort aborts

<<<<<<< HEAD

This is the version in our current

branch

||||||| merged common ancestors

This it was was in the last

common ancestor

=======

This is the version in the branch

we merge

>>>>>>> branchname_to_be_merged

Final Remarks

Martin Ritter GIT Tutorial 19 / 20Bachelor Einführung, 2019-05-02

In the software world, git is everywhere

▶ there is a massive amount of documentation including a

online book

▶ google knows all the answers

▶ don’t be afraid but try to be a bit careful

▶ if you’re unsure, make a backup of the directory before

continuing

1

1If that doesn’t fix it, git.txt contains the phone number of a friend of mine who understands git. Just wait through a few
minutes of ”It’s really pretty simple, just think of branches as...” and eventually you’ll learn the commands that will fix everything.

https://git-scm.com/book/en/v2

Thank you

for your attention

