Monte-Carlo-Methoden in der Teilchenphysik

Alexander Mann

a.mann@lmu.de

(mit Material von Johannes Elmsheuser, Günter Duckeck u. a.)

Blockkurs "Datenauswertung in der Teilchenphysik" 22. April 2020 München

Monte-Carlo-Methode

Zufallszahlen

- Beliebig verteilte Zufallszahlen
 - Monte-Carlo-Ereignis-Generatoren
 - Detektorsimulation

Übersicht

Monte-Carlo-Methode

Zufallszahlen

Monte-Carlo-Ereignis-Generatoren

Zusammenfassung

Ein klassisches Beispiel (I)

- Historisches Beispiel zur Berechnung der Zahl π: Buffons Nadel (Graf G.L.L. von Buffon, 1707 – 1788)
- N Nadeln der Länge *l* werden auf Fläche mit äquidistanten, parallelen Geraden geworfen (Abstand *d* ≥ *l*).
- Wahrscheinlichkeit f
 ür "Geradentreffer" einer einzigen Nadel:

 $p = l_{\rm eff}/d = l \left| \cos \varphi \right|/d$

- Integration über gleichverteilte φ : $p = \int_{0}^{2\pi} \frac{l|\cos\varphi|}{d} \frac{d\varphi}{2\pi} = \frac{2l}{2\pi}$
- von Mises: $N_{\text{Treffer}}/N \to p$ für $N \to \infty$ $\Rightarrow \frac{2 \cdot N \cdot l}{N_{\text{Treffer}} \cdot d} \to \pi$
- Frage: Was kommt oben rechts f
 ür π raus?

Ein klassisches Beispiel (I)

- Historisches Beispiel zur Berechnung der Zahl π: Buffons Nadel (Graf G.L.L. von Buffon, 1707 – 1788)
- N Nadeln der Länge *l* werden auf Fläche mit äquidistanten, parallelen Geraden geworfen (Abstand *d* ≥ *l*).
- Wahrscheinlichkeit f
 ür "Geradentreffer" einer einzigen Nadel:

 $p = l_{\rm eff}/d = l \left| \cos \varphi \right|/d$

- Integration über gleichverteilte φ : $p = \int_0^{2\pi} \frac{l|\cos\varphi|}{d} \frac{d\varphi}{2\pi} = \frac{2l}{\pi d}$
- von Mises: $N_{\text{Treffer}}/N \to p$ für $N \to \infty$ $\Rightarrow \frac{2 \cdot N \cdot l}{N_{\text{Treffer}} \cdot d} \to \pi$
- Frage: Was kommt oben rechts für π raus? mit $l \approx d$: $\pi \approx 2 \cdot 17/11 \approx 3,\overline{09}$

Ein klassisches Beispiel (II)

Ähnlich: Näherung der Kreiszahl π über das Verhältnis von "Treffern" tund der Gesamtzahl der "Versuche" n,

$$\lim_{n\to\infty} t/n = \pi/4$$
 (weil $A_{\square} = \pi r^2/4$ und $A_{\square} = r^2$)

(Implementation: animate_pi_circle.py)

Ein klassisches Beispiel (II)

Ähnlich: Näherung der Kreiszahl π über das Verhältnis von "Treffern" tund der Gesamtzahl der "Versuche" n,

$$\lim_{n\to\infty} t/n = \pi/4$$
 (weil $A_{\square} = \pi r^2/4$ und $A_{\square} = r^2$)

(Implementation: animate_pi_circle.py)

Analog: Integration einer Wahrscheinlichkeitsdichtefunktion

wie im vorhergehenden Beispiel: simuliere die Anzahl der "Treffer" und "Nicht-Treffer"

Wikipedia: Monte-Carlo-Algorithmen sind randomisierte Algorithmen, die mit einer nichttrivial nach oben beschränkten Wahrscheinlichkeit ein falsches Ergebnis liefern dürfen.

Weniger abstrakt: *numerische* Methode zur Berechnung von Wahrscheinlichkeiten und abgeleiteten Größen unter Benutzung von *Zufallszahlen*

Weniger abstrakt: *numerische* Methode zur Berechnung von Wahrscheinlichkeiten und abgeleiteten Größen unter Benutzung von *Zufallszahlen*

Nutzung

- Verfahren aus der Stochastik
- Anwendung in vielen Bereichen (statistische Physik, Biophysik, Teilchenphysik, Versicherungen, ...)
- löse analytisch nicht oder nur aufwendig lösbare Probleme numerisch
 - auch nützlich zur Bestätigung einer analytischen Lösung als unabhängige (und ggf. schnell implementierte) Gegenprobe
- Grundlage:
 - sehr häufig durchgeführte Zufallsexperimente
 - Gesetz der großen Zahlen

Weniger abstrakt: *numerische* Methode zur Berechnung von Wahrscheinlichkeiten und abgeleiteten Größen unter Benutzung von *Zufallszahlen*

Umsetzung

- Erzeuge eine Sequenz von gleichförmig verteilten Zufallszahlen u_i
- Benutze diese Sequenz, um eine andere Sequenz x_1, \ldots, x_n zu erzeugen, die einer für uns interessanten Wahrscheinlichkeitsdichtefunktion f(x) folgt
- Benutze die Werte x, um Eigenschaften von f(x) zu bestimmen, z. B. Anzahl von x_i in $a < x < b \approx \int_a^b f(x) dx$
- in Teilchenphysik oft Monte-Carlo-Berechnung $\widehat{=}$ Phasenraum-Integration $I = \int_a^b g(x) dx \approx I_{MC} = \frac{b-a}{n} \sum_{i=1}^n g(x_i)$

ightarrow Woher kriegen wir die Zufallszahlen?

Zufallszahlen

Monte-Carlo-Ereignis-Generatoren

Zusammenfassung

Erzeuge gleichverteilte Zahlen im Intervall [0, 1]

- Würfle eine Folge von Zahlen \rightarrow "Zufallszahlengenerator"
- Computeralgorithmen zur Erzeugung der Folge u1,..., un
- Computeralgorithmen: nur deterministische Zahlenfolgen, sogenannte "Pseudo-Zufallszahlen"
- (es gibt spezielle Hardware für echte Zufallszahlengenerierung)

Anforderungen:

- "zufällig" verteilt
 - Gleichförmigkeit, Unabhängigkeit
- lange Periode (lang $\gg 10^{\mathcal{O}(100)}$)
- schnell zu berechnen, geringer Speicherplatzbedarf
- Reproduzierbarkeit ist manchmal erwünscht, d. h. gleiche Zahlenfolge von Zufallszahlen bei gleichen Startbedingungen

Beispiele:

- linear kongruenter Generator:
 - $I_j = (a \cdot I_{j-1} + c) \mod m$
 - 3 ganzzahlige Konstanten: Multiplikator a, Summand c, Modul m
 - I₀: Initialwert (random seed)
 - Zahlenfolge I_1, I_2, \dots zwischen 0 und m-1
 - \Rightarrow I_j : periodische Folge mit maximaler Periode m
 - \Rightarrow Zufallszahlen $u_j = I_j/m$ in [0, 1)
- Multiplikativer linear kongruenter Generator:
 - Spezialfall mit c = 0 (dann muss $I_0 > 0$)

$$I_0 = 1$$

$$I_1 = (3 \cdot 1) \mod 7 = 3$$

$$I_2 = (3 \cdot 3) \mod 7 = 2$$

$$I_3 = (3 \cdot 2) \mod 7 = 6$$

$$I_4 = (3 \cdot 6) \mod 7 = 4$$

$$I_5 = (3 \cdot 4) \mod 7 = 5$$

$$I_6 = (3 \cdot 5) \mod 7 = 1 = I_0$$

$$I_7 = I_1 \text{ etc.}$$

- "Wirkt zufällig": $1, 3, 2, 6, 4, 5, \ldots$
- \Rightarrow Wähle a, m entsprechend, um lange Periode zu erhalten
- m nahe der größten Integerzahl des Computers
- weniger signifikante Bits sind weniger zufällig als Bits höherer Ordnung

$$I_{0} = 1$$

$$I_{1} = (3 \cdot 1) \mod 7 = 3$$

$$I_{2} = (3 \cdot 3) \mod 7 = 2$$

$$I_{3} = (3 \cdot 2) \mod 7 = 6$$

$$I_{4} = (3 \cdot 6) \mod 7 = 4$$

$$I_{5} = (3 \cdot 4) \mod 7 = 5$$

$$I_{0} = (3 \cdot 5) \mod 7 = 1 = I_{0}$$

$$I_{7} = I_{1} \text{ etc.}$$

- "Wirkt zufällig": $1, 3, 2, 6, 4, 5, \ldots$
- \Rightarrow Wähle a, m entsprechend, um lange Periode zu erhalten
- m nahe der größten Integerzahl des Computers
- weniger signifikante Bits sind weniger zufällig als Bits höherer Ordnung

$$I_{0} = 1$$

$$I_{1} = (3 \cdot 1) \mod 7 = 3$$

$$I_{2} = (3 \cdot 3) \mod 7 = 2$$

$$I_{3} = (3 \cdot 2) \mod 7 = 6$$

$$I_{4} = (3 \cdot 6) \mod 7 = 4$$

$$I_{5} = (3 \cdot 4) \mod 7 = 5$$

$$I_{6} = (3 \cdot 5) \mod 7 = 1 = I_{0}$$

$$I_{7} = I_{1} \text{ etc.}$$

- "Wirkt zufällig": $1, 3, 2, 6, 4, 5, \ldots$
- \Rightarrow Wähle a, m entsprechend, um lange Periode zu erhalten
- m nahe der größten Integerzahl des Computers
- weniger signifikante Bits sind weniger zufällig als Bits höherer Ordnung

$$I_{0} = 1$$

$$I_{1} = (3 \cdot 1) \mod 7 = 3$$

$$I_{2} = (3 \cdot 3) \mod 7 = 2$$

$$I_{3} = (3 \cdot 2) \mod 7 = 6$$

$$I_{4} = (3 \cdot 6) \mod 7 = 4$$

$$I_{5} = (3 \cdot 4) \mod 7 = 5$$

$$I_{6} = (3 \cdot 5) \mod 7 = 1 = I_{0}$$

$$I_{7} = I_{1} \text{ etc.}$$

- "Wirkt zufällig": $1, 3, 2, 6, 4, 5, \ldots$
- \Rightarrow Wähle a, m entsprechend, um lange Periode zu erhalten
- m nahe der größten Integerzahl des Computers
- weniger signifikante Bits sind weniger zufällig als Bits höherer Ordnung

$$I_{0} = 1$$

$$I_{1} = (3 \cdot 1) \mod 7 = 3$$

$$I_{2} = (3 \cdot 3) \mod 7 = 2$$

$$I_{3} = (3 \cdot 2) \mod 7 = 6$$

$$I_{4} = (3 \cdot 6) \mod 7 = 4$$

$$I_{5} = (3 \cdot 4) \mod 7 = 5$$

$$I_{6} = (3 \cdot 5) \mod 7 = 1 = I_{0}$$

$$> I_{7} = I_{1} \text{ etc.}$$

- "Wirkt zufällig": 1, 3, 2, 6, 4, 5, ...
- \Rightarrow Wähle a, m entsprechend, um lange Periode zu erhalten
- m nahe der größten Integerzahl des Computers
- weniger signifikante Bits sind weniger zufällig als Bits höherer Ordnung

$$I_{0} = 1$$

$$I_{1} = (3 \cdot 1) \mod 7 = 3$$

$$I_{2} = (3 \cdot 3) \mod 7 = 2$$

$$I_{3} = (3 \cdot 2) \mod 7 = 6$$

$$I_{4} = (3 \cdot 6) \mod 7 = 4$$

$$I_{5} = (3 \cdot 4) \mod 7 = 5$$

$$I_{6} = (3 \cdot 5) \mod 7 = 1 = I_{0}$$

$$I_{7} = I_{1} \text{ etc.}$$

- "Wirkt zufällig": 1, 3, 2, 6, 4, 5, ...
- \Rightarrow Wähle a, m entsprechend, um lange Periode zu erhalten
- m nahe der größten Integerzahl des Computers
- weniger signifikante Bits sind weniger zufällig als Bits höherer Ordnung

• Beispiel einer periodischen Folge: $a = 3, m = 7, I_0 = 1$

$$I_0 = 1$$

$$I_1 = (3 \cdot 1) \mod 7 = 3$$

$$I_2 = (3 \cdot 3) \mod 7 = 2$$

$$I_3 = (3 \cdot 2) \mod 7 = 6$$

$$I_4 = (3 \cdot 6) \mod 7 = 4$$

$$I_5 = (3 \cdot 4) \mod 7 = 5$$

$$I_6 = (3 \cdot 5) \mod 7 = 1 = I_0$$

$$\Rightarrow I_7 = I_1 \text{ etc.}$$

• "Wirkt zufällig": $1, 3, 2, 6, 4, 5, \ldots$

=

- \Rightarrow Wähle a, m entsprechend, um lange Periode zu erhalten
- m nahe der größten Integerzahl des Computers
- weniger signifikante Bits sind weniger zufällig als Bits höherer Ordnung

- $\Rightarrow u_i = I_j/m \in [0,1)$ per constructionem aber auch wirklich zufällig?
 - Korrelationen würden MC-Berechnungen verfälschen
- Wähle *a*, *m*, so dass *u_i* "Zufallszahlentests" bestehen, zum Beispiel (vgl. Blobel / Lohrmann):
 - gleichförmige Verteilung
 - χ^2 -Test für Unterintervalle von [0,1]
 - Korrelationstest für n-dimensionales Gitter
 - ...
- (Implementation: demo2.sh, demo2b.sh, demo2c.sh)

Alexander Mann

Zufallszahlengeneratoren in ROOT: (Auszug aus Dokumentation)

- TRandom1, based on the RANLUX algorithm, has mathematically proven random proprieties and a period of about 10^{171} . It is however very slow.
- TRandom2, is based on the Tausworthe generator of L'Ecuyer, and it has the advantage of being fast and using only 3 words (of 32 bits) for the state. The period is 10^{26} .
- TRandom3, is based on the "Mersenne Twister generator", and is the recommended one, since it has good random properties (period of about 10^{6000}) and it is fast. Drawbacks: generates only 32 random bits and fails some random-generator tests
- TRandomMixMax, recent improvement on TRandom3, with 61 random bits, passing all "TestU01" random tests, fast

Aufruf:

- gRandom->Uniform()
- erzeugt unabhängige, gleichverteilte Zufallszahlen $\in [0, 1)$

Übersicht

Monte-Carlo-Methode

Zufallszahlen

Monte-Carlo-Ereignis-Generatoren

Zusammenfassung

Methoden

- Gesucht: Zufallszahlen mit beliebiger Verteilung f(x)
 - von Neumannsche Verwerfungsmethode ("acceptance-rejection method")
 - Transformationsmethode
- Spezialfall: z. B. gaußverteilte Zufallszahlen

Die Verwerfungsmethode

- Gesucht: Zufallszahlen mit Verteilung f(x)
- Erzeuge Zufallszahl x, gleichverteilt in $[x_{\min}, x_{\max}]$, d. h. $x = x_{\min} + u_1(x_{\max} - x_{\min})$, wobei u_1 gleichverteilt in [0, 1].
- Generiere zweite, unabhängige Zufallszahl gleichverteilt zwischen 0 und f_{\max} , d. h. $y = u_2 \cdot f_{\max}$ (wobei u_2 gleichverteilt in [0, 1])
- Wenn y < f(x), akzeptiere x als Zufallszahl; falls nicht, wiederhole
 - niedrige Effizienz, vor allem wenn f schlecht durch Rechteck angenähert

entspricht Integration

- Integration einer
 Wahrscheinlichkeitsdichtefunktion (probability density function, PDF)
- In 2-D: umschließe Funktion mit einer definierten Fläche

Beispiel von oben: Berechnung der Zahl π

Integration von $f(x)=\sqrt{1-x^2}$ im Intervall [0,1]

Akzeptiere Punktepaar, wenn $x^2 + y^2 <= 1$ Bilde Verhältnis von "Innerhalb/Gesamt" $\pi = 4 \cdot$ Innerhalb/Gesamt

Die Transformationsmethode (I)

- Gegeben: $u_1, ..., u_n$ gleichförmig verteilt in [0, 1]
- Gesucht:

Zufallszahlen x(u), die Wahrscheinlichkeitsdichtefunktion f(x) folgen

• PDF $f(x) \Rightarrow \text{CDF } F(x) : x \to [0,1]$

- mit kumulativer Verteilungsfunktion (CDF) $F(x) \doteq \int_{-\infty}^{x} f(t) dt$
- Umkehrfunktion $x(u) = F^{-1}(u): [0,1] \to \mathsf{Definitionsmenge}(f)$
 - Zufallszahlen $x_j = F^{-1}(u_i)$ folgen konstruktionsgemäß der PDF f(x)

Die Transformationsmethode (II)

Beispiel:

- **DEMO**: inversion.C ($\lambda = 2$)
- beachte: große x entsprechen kleinen u
 - \Rightarrow Auflösung von u_j limitiert x_j

Allgemeine Vss. für Anwendbarkeit der Transformationsmethode:

• Integral F(x) der Verteilung f(x) muss bekannt und invertierbar sein.

Erzeugung gaußverteilter Zufallszahlen

Standardisierte Normalverteilung: $\frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right)$

- Transformationsmethode funktioniert hier nicht
- Einfacher Algorithmus basierend auf Zentralem Grenzwertsatz: $m = \sum_{i=1}^{12} m = 6$

$$x_i = \sum_{j=1}^{12} u_j - 6$$

Nachteile:

Erzeugung gaußverteilter Zufallszahlen

Standardisierte Normalverteilung: $\frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right)$

- Transformationsmethode funktioniert hier nicht
- Einfacher Algorithmus basierend auf Zentralem Grenzwertsatz: Σ^{12}

$$x_i = \sum_{j=1}^{12} u_j - 6$$

- Nachteile:
 - ineffizient (12 Zufallszahlen nötig, um 1 zu erzeugen)
 - Werte begrenzt auf [-6,6]
- DO-IT-YOURSELF: naive_gauss.C
- Box-Muller-Verfahren:
 - Erzeuge gleichförmig verteilte u_1 , u_2 in [0,1]
 - Berechne: $v_1 = 2u_1 1$, $v_2 = 2u_2 1$ $(v_1, v_2 \text{ gleichförmig verteilt in } [-1, +1])$
 - Berechne: $r^2 = v_1^2 + v_2^2$.
 - Falls $r^2 > 1$, beginne von vorne.

sonst: $x_1 = v_1 \sqrt{\frac{-2\ln r^2}{r^2}}$ und $x_2 = v_2 \sqrt{\frac{-2\ln r^2}{r^2}}$

- x₁ und x₂ sind unabhängig normal verteilt.
- (Implementation: ran3.py oder ran3.C)

- nicht immer sinnvoll, von gleichförmiger Verteilung auszugehen
- gau
 ßverteilte Zufallszahlen sind ein Beispiel
- gibt spezialisierte Algorithmen für viele weitere Fälle wie z. B.
 - gaußverteilte Zufallszahlen in n Dimensionen, ggf. korreliert
 - Poissonverteilung, χ^2 -Verteilung, Cauchy-Verteilung, ...
 - zufällige Winkelverteilungen
- Vorteile: effizienter durch
 - Vermeidung aufwendiger Rechenoperationen
 - sinnvolle Näherungen

Effizienz von Monte-Carlo-Berechnungen

Vergleiche Genauigkeit von Monte-Carlo mit anderen Methoden

• Monte-Carlo-Berechnung $\widehat{=}$ Integration

Für 1-dimensionales Integral:

- Numerische Integration mit Trapezregel (oder Simpsonscher Regel)
 - $n \sim \text{Anzahl der Intervalle}$
 - Fehler: $\sim 1/n^2~(\sim 1/n^4)$
- MC-Methode:
 - n: Anzahl der generierten Zufallszahlen
 - Fehler: $\sim 1/\sqrt{n}$
- Numerische Methoden genauer mit weniger Rechenaufwand

Für N-dimensionales Integral:

- Trapezregel: Fehler $\sim 1/(\sqrt[d]{n^2})$
- MC-Methode: Fehler $\sim 1/\sqrt{n}$ (unabhängig von Dimension)
- \Rightarrow MC-Methode besser für $d \ge 4$
 - außerdem: Integrationsgrenzen flexibler, Genauigkeit "erweiterbar"

Übersicht

Monte-Carlo-Methode

Zufallszahlen

Monte-Carlo-Ereignis-Generatoren

Zusammenfassung

Monte-Carlo-Ereignis-Generatoren

- Ereignis-Generatoren werden benutzt, um Teilchenreaktionen zu simulieren
- z.B. Pythia, Herwig++, Sherpa, Alpgen, PowHeg, ...
- Ausgabe: "Kollisionsereignisse", d. h. für jedes Ereignis wird eine Liste von Teilchen generiert zusammen mit den Vierervektoren, etc.

- Ereignis-Generatoren werden benutzt, um Teilchenreaktionen zu simulieren
- z.B. Pythia, Herwig++, Sherpa, Alpgen, PowHeg, ...
- Ausgabe: "Kollisionsereignisse", d. h. für jedes Ereignis wird eine Liste von Teilchen generiert zusammen mit den Vierervektoren, etc.
- allg. kurz "Ereignis" (event) = Menge aller Detektordaten, die einer Kollision von zwei Protonenbündeln zugeordnet werden
- Detektordaten: entweder "echte" Daten oder (wie hier) simulierte Daten
----- LHA event information and listing ----process = 1 weight = 1.8982e-05 scale = 3.3269e+02 (GeV) alpha em = 7.8165e-03 alpha strong = 1.0700e-01 Participating Particles 2 -1 0 501 0 0.000 0.000 2832.442 2832.442 -1 -1 0 0 501 0.000 -0.000 -60.011 60.411 1000024 1 1 2 0 21.435 218.452 526.439 600.411 m t 0.0 0.000 2 0.000 0.0 3 0.0 250.000 1000023 1 1 2 0 -21.435 -218.452 2270.102 4 0 2245.592 250.000 0.0 ----- End LHA event information and listing ------

$$u + \bar{d} \to \tilde{\chi}_1^+ + \tilde{\chi}_2^0$$

Beispiel

Warning: schematic only, everything simplified, nothing to scale, ...

Incoming beams: parton densities

Alexander Mann

Hard subprocess: described by matrix elements

Resonance decays: correlated with hard subprocess

Initial-state radiation: spacelike parton showers

Alexander Mann

Final-state radiation: timelike parton showers

Multiple parton-parton interactions

... with its initial- and final-state radiation

Beam remnants and other outgoing partons

Everything is connected by colour confinement strings Recall! Not to scale: strings are of hadronic widths

Slide: Torbjorn Sjostrand

These are the particles that hit the detector

Monte-Carlo-Ereignis-Generatoren Beispiel

	 PYTHIA 	Event Listing	(complete	event]										
no	id name		status	not	hers	daughters		colours		p_x	p_y	p_z		
0	90	(system)	-11	0	0	0	0	0	0	0.000	0.000	0.000	8000.000	8000.000
1	2212	(p+)	-12	0	0	62	0	0	0	0.000	0.000	4000.000	4000.000	0.938
2	2212	(p+)	-12	9	9	63	0	0	0	0.000	0.000	-4000.000	4000.000	0.938
3	4	(0)	-21			2	2	501	5.03	0.000	0.000	2032.442	2032.442	0.000
2	1000024	(opar) (ochi 1+)	-22	3	4	9	9		501	21 435	218 452	526 439	622 751	250 000
6	1000023	(~chi 20)	-22	3	- 4	10	10	ŏ	ŏ	-21.435	-218.452	2245.592	2270.102	250.000
7	2	(u)	-42	41	41	3	3	501	0	-0.000	0.000	2832.442	2832.442	0.000
8	-1	(dbar)	-41	40	40	11	- 4	0	503	0.000	-0.000	-188.076	188.076	0.000
. 9	1000024	(~chi_1+)	-44	5	5	43	43	0	0	25.711	213.290	515.821	612.148	250.000
10	1000023	(~ch1_20)	-44		6	44	44	0	500	-20.347	-219.766	2256.062	2280.576	250.000
12	21	(g) (g)	-31	19	19	14	15	505	504	0.000	0.000	20 177	20 177	0.000
13	21	(g)	-31	20	0	14	15	50.4	506	0.000	0.000	-9.805	9.805	0.000
14	21	(g)	-33	12	13	16	17	507	506	-3.818	1.424	-9.162	10.028	0.000
15	21	(g)	-33	12	13	18	18	505	507	3.818	-1.424	19.534	19.955	0.000
16	21	(g)	-51	14	0	21	21	508	506	-1.731	3.062	1.424	3.795	0.000
10	21	(g) (a)	-52	16	16	23	23	507	508	2 262	-1.007	17 207	17 677	0.000
19	21	(g)	-42	25	25	12	12	505	504	-0.000	0.000	20.177	20.177	0.000
20	21	(q)	-41	2.6	0	2.4	13	509	506	0.000	-0.000	-41.014	41.014	0.000
21	21	(ĝ)	-4.4	16	16	27	27	508	506	-1.437	3.004	1.118	3.513	0.000
22	21	(g)	-44	18	18	28	28	505	507	3.409	-1.264	17.475	17.849	0.000
23	21	(g) (a)	-44	20	17	29	29	507	508	0.461	-2.217	-8.370	8.6/1	0.000
25	21	(g)	-42	51	ő	19	19	50.5	504	0.000	-0.000	20 177	20 177	0.000
2.6	2	(u)	-41	52	52	31	20	509	0	-0.000	0.000	-646.205	646.205	0.000
27	21	(q)	-44	21	21	37	37	508	506	-1.451	3.037	1.165	3.562	0.000
28	21	(ĝ)	-4.4	22	22	34	34	505	507	3.407	-1.259	17.429	17.804	0.000
29	21	(g)	-44	23	23	32	33	507	508	0.362	-1.985	-8.405	8.644	0.000
30	21	(g) (n)	-43	26	24	57	57	50.6	504	0.476	-1 115	-605 171	605 172	0.330
32	21	(g)	-51	29	ö	35	36	510	508	1.386	-1.799	-7,906	8.226	0.000
33	21	(q)	-51	29	0	50	50	507	510	-0.922	-0.223	0.020	0.949	0.000
34	21	(g)	-52	28	28	48	49	505	507	3.306	-1.221	16.910	17.273	0.000
35	21	(g)	-51	32	0	55	55	510	511	0.422	-1.705	-7.406	7.611	0.000
36	21	(g) (a)	-51	32	27	59	59	511	508	0.832	0.181	-0.394	0.938	0.000
38	21	(g)	-51	11	0	45	45	501	512	-1.091	0.455	-15 992	16.035	0.000
39	21	(q)	-51	11	ō	46	46	512	503	-4.273	6.022	-116.692	116.926	0.000
40	-1	(dbar)	-53	42	0	8	8	0	503	-0.000	0.000	-193.243	193.243	0.000
41	2	(u)	-42	62	62	.7	.7	501		-0.000	0.000	2832.442	2832.442	0.000
42	1000024	(coar)	-41	0.5	0.3	61	40		513	25 912	212 204	-217.113	611 095	250.000
44	1000023	(~chi 20)	-44	10	10	65	65	ŏ	ŏ	-20.321	-219.788	2256.233	2280.747	250.000
45	21	(q)	-4.4	38	38	66	66	501	512	-1.057	0.426	-15.993	16.034	0.000
46	21	(ĝ)	-4.4	39	39	67	67	512	503	-4.027	5.814	-116.702	116.916	0.000
47	21	(g)	-43	42	0	68	68	503	513	-0.408	0.343	-23.868	23.874	0.000
48	21	(g) (a)	-51	34	0	54	54	505	514	3.119	-1.352	16.843	17.183	0.000
50	21	(g)	-52	33	33	5.8	58	507	510	-0.844	-0.204	0.018	0.869	0.000
51	21	(q)	-41	69	69	61	25	505	515	0.000	0.000	22.541	22.541	0.000
52	2	(u)	-42	70	70	26	26	509	0	0.000	0.000	-646.205	646.205	0.000
53	21	(g)	-44	37	37	71	71	508	506	-1.310	2.800	1.037	3.261	0.000
54	21	(g) (a)	-44	48	48	72	72	505	514	3.189	-1.040	16.848	17.179	0.000
55	21	(g) (a)	-44	35	30	7.6	7.6	510	504	-2 705	1 224	-21 052	21 206	0.000
57	2	(9)	-44	31	31	75	75	50.6	0	0.476	-1.115	-605.145	605.147	0.330
58	21	(g)	-4.4	50	50	76	76	507	510	-0.842	-0.196	0.022	0.865	0.000
59	21	(g)	-44	36	36	77	77	511	508	0.833	0.186	-0.398	0.942	0.000
60	21	(g)	-44	49	49	78	78	514	507	U.110	U.114	u.067	0.172	0.000
62	21	(9)	-4.3	51	0	41	41	50.4	515	-0.084	-0.369	2832 440	2832 440	0.000
63	-1	(dbar)	-61	2	ŏ	42	42	- 0 4	504	0.466	-1.387	-217.111	217.116	0.000
64	1000024	(~chi_1+)	-62	43	43	83	84	õ	0	25.798	213.056	514.977	611.359	250.000
65	1000023	(~chi_20)	-62	44	44	102	103	0	0	-20.769	-219.221	2256.941	2281.397	250.000
66	21	(g) (a)	-62	45	45	129	129	501	512	-1.022	U.324	-116 725	16.031	0.000
68	21	(9)	-62	47	40	137	137	503	504	-0.357	0 191	-23.869	23 872	0.000
		A 100 A												

Monte-Carlo-Ereignis-Generatoren Beispiel

50	111	(pi0)	-83	129	138	241	242	0	0	0.016	-0.348	-1.427	1.475	0.135
151	-211	pl-	83	129	138	0	0	0	0	-0.713	0.092	-8.936	8.966	0.140
52	111	(pi0)	-83	129	138	243	244	0	0	-0.730	0.018	-6.471	6.514	0.135
153	2212	P ⁺	83	129	138	0	0	0	0	0.146	-0.262	-3.643	3.774	0.938
54	-2212	pbar-	83	129	138	0	0	0	0	0.002	-0.378	-3.757	3.890	0.938
55	211	pi+	84	129	138	0	0	0	0	0.096	0.236	0.254	0.386	0.140
56	-211	pi-	8.4	129	138	0	0	0	0	0.022	0.034	-0.651	0.667	0.140
157	111	(pi0)	-84	129	138	245	246	0	0	0.473	0.554	-0.572	0.936	0.135
158	111	(p10)	-84	129	138	247	248	0	0	0.076	0.007	0.592	0.612	0.135
59	211	pi+	84	129	138	0	0	0	0	-0.945	0.649	-0.623	1.312	0.140
60	-211	p1-	84	129	138	0	0	0		0.400	-0.003	0.444	0.613	0.140
61	111	(p10)	-84	129	138	249	250	0	0	-0.544	0.692	0.279	0.934	0.135
62	221	(eta)	-84	129	138	251	253	0		0.132	0.622	0.674	1.077	0.548
63	213	(rho+)	-84	129	138	205	206			-0.021	-0.167	1.093	1.321	0.723
04	221	(004)	-04	129	130	254	200			0.821	-0.503	3.000	3.051	0.340
65	111	(p10)	-84	129	138	257	258			0.302	0.326	0.641	0.792	0.135
67	111	(pi0)	-04	129	120	250	2.60			1 699	-0.656	4.701	4.730	0.140
60	211	(pro)	0.4	120	120		200	ő	ŏ	-0.201	0.076	0.951	0.916	0.140
60	-211	Par -	0.4	120	120	ŏ	ŏ	ŏ	ĕ	-0.097	-0.029	0 100	0.264	0 140
20	21.2	(abox)	-04	120	120	207	200	ő	ŏ	0.494	0.095	2 126	2 212	0.762
71	223	(cmera)	-84	129	138	261	263	ŏ	ň	-0.074	-0.733	-0.931	1 411	0.762
7.2	2	(11)	-71	76	76	174	197	50.6		1 1 2 9	0 455	-605 179	605 179	0.220
73	2103	(ud 1)	-21	80	80	174	187	000	506	-0.672	-0.594	1145 015	1145 016	0.771
7.4	213	(rhot)	-83	172	173	20.9	210	ő		0.819	0.624	-324 280	324 283	0.827
75	111	(pi0)	-83	172	173	264	2.65	õ	õ	0.143	-0.327	-166.885	166.885	0.135
76	111	(pi0)	-83	172	173	266	267	0	0	0.638	-0.266	-95,690	95.693	0.135
77	111	(pi0)	-83	172	173	268	269	0	0	-0.227	0.597	-10.469	10.489	0.135
78	-211	pi-	8.4	172	173	0	0	0	0	-0.175	-0.348	-0.982	1.066	0.140
79	213	(rho+)	-84	172	173	211	212	0	0	0.031	-0.002	-3.682	3.750	0.710
80	-213	(rho-)	-84	172	173	213	214	0	0	-0.506	0.187	-2.946	3.097	0.786
81	213	(rho+)	-84	172	173	215	216	0	0	0.474	-0.011	3.125	3.235	0.691
82	111	(pi0)	-84	172	173	270	271	0	0	-0.054	-0.655	9.355	9.379	0.135
83	-211	pi-	84	172	173	0	0	0	0	0.044	0.546	11.291	11.305	0.140
84	211	pi+	84	172	173	0	0	0	0	-0.146	-0.116	3.783	3.790	0.140
185	-211	p1-	84	172	173	0	0	0		0.136	0.647	60.209	60.212	0.140
86	2224	(Deita++)	-84	172	173	217	218	0	0	-0.253	-1.201	595.259	595.261	1.141
187	-211	pi-	84	172	173	0	0	0		-0.467	0.186	461.750	461.750	0.140
88	211	P1+	91	118	0	0.70	0.72			15.695	41.859	132.836	140.157	0.140
0.7	111	(p10)	-91	110		212	2/3			30.334	99.810	317.062	334.029	0.135
90	111	(pi0)	-91	110		274	275			1 792	0.320	15 271	16 129	0.140
62	2212	(pro)	91	102	ŏ			ŏ	ĕ	0.012	0.204	2 019	2 261	0.020
9.2		5 in	01	100			ŏ	ő	ŏ	0.221	0.216	0.962	0.929	0 140
94	211	hi+	91	123	ŏ	ŏ	ŏ	ŏ	ň	0.328	1 484	4 553	4 802	0 140
95	-211	ni-	91	123	ő	ő	ő	ő	- i	0.252	0.085	0.991	1.036	0 140
96	310	K 50	91	125	125	õ	õ	õ	õ	0.282	-0.250	0.413	0.749	0.498

Monte-Carlo-Ereignis-Generatoren Beispiel

64	22	ganna	91	175	0	0	0	0	0	0.004	-0.108	-30.867	30.868	0.00
265	22	ganna	91	175	0	0	0	0	0	0.139	-0.219	-136.017	136.018	0.00
266	22	ganna	91	176	0	0	0	0	0	0.247	-0.106	-46.600	46.601	0.00
267	22	ganna	91	176	0	0	0	0	0	0.391	-0.160	-49.090	49.092	0.00
268	22	ganna	91	177	0	0	0	0	0	-0.080	0.072	-1.807	1.810	0.00
269	22	ganna	91	177	0	0	0	0	0	-0.147	0.525	-8.662	8.679	0.00
270	22	gamna	91	182	0	0	0	0	0	-0.067	-0.169	2.172	2.179	0.00
271	22	ganna	91	182	0	0	0	0	0	0.013	-0.486	7.184	7.200	0.00
27.2	22	ganna	91	189	0	0	0	0	0	31.604	81.710	259.501	273.891	0.00
273	22	ganna	91	189	0	0	0	0	0	6.950	18.099	57.561	60.738	0.00
274	22	ganna	91	191	0	0	0	0	0	1.298	3.466	11.072	11.674	0.00
275	22	gamna	91	191	0	0	0	0	0	0.493	1.402	4.199	4.454	0.00
276	22	ganna	91	200	0	0	0	0	0	0.200	0.244	-1.796	1.824	0.00
277	22	qamma	91	200	0	0	0	0	0	0.104	0.016	-0.727	0.734	0.00
278	22	gamna	91	204	0	0	0	0	0	-0.185	0.244	-5.078	5.088	0.00
279	22	qamma	91	204	0	0	0	0	0	-0.216	0.552	-11.493	11.508	0.00
280	22	qamma	91	206	0	0	0	0	0	-0.075	0.141	0.469	0.496	0.00
281	22	gamna	91	206	0	0	0	0	0	-0.036	0.096	0.090	0.136	0.00
182	22	qamma	91	208	0	0	0	0	0	0.146	0.024	0.439	0.463	0.00
283	22	qamma	91	208	0	0	0	0	0	0.499	0.106	0.888	1.025	0.00
84	22	qamma	91	210	0	0	0	0	0	0.293	0.232	-166.316	166.317	0.00
285	22	qamma	91	210	0	0	0	0	0	0.220	0.286	-122.073	122.074	0.00
286	22	qamma	91	212	0	0	0	0	0	0.119	-0.015	-2.768	2.770	0.00
287	22	qamma	91	212	0	0	0	0	0	0.041	0.060	-0.632	0.636	0.00
88	22	qamma	91	214	0	0	0	0	0	-0.106	0.244	-1.883	1.902	0.00
289	22	qamma	91	214	0	0	0	0	0	-0.023	0.098	-0.321	0.336	0.00
290	22	qamma	91	216	0	0	0	0	0	0.104	-0.041	0.759	0.767	0.00
291	22	qamma	91	216	0	0	0	0	0	0.068	-0.211	1.419	1.436	0.00
192	22	qamma	91	220	0	0	0	0	0	-0.174	-0.564	3.400	3.450	0.00
293	22	qamma	91	220	0	0	0	0	0	-3.225	-10.397	59.384	60.374	0.00
294	22	qamma	91	221	0	0	0	0	0	-2.664	-7.819	47.018	47.739	0.00
295	22	gamma	91	221	0	0	0	0	0	-0.791	-2.198	13.646	13.844	0.00
296	22	qamma	91	230	0	0	0	0	0	-0.072	0.196	-2.758	2.766	0.00
297	22	qamma	91	230	0	0	0	0	0	0.003	0.139	-0.921	0.931	0.00
298	22	qamma	91	231	0	0	0	0	0	0.041	0.070	-2.433	2.435	0.00
299	22	qamma	91	231	0	0	0	0	0	0.015	0.045	-0.214	0.219	0.00
800	22	gamma	91	232	0	0	0	0	0	0.008	0.033	-0.075	0.082	0.00
801	22	qamma	91	232	0	0	0	0	0	0.089	0.005	-1.321	1.324	0.00
80.2	22	gamma	91	237	Ó	Ó.	0	ó	0	-1.449	0.969	-38,188	38.227	0.00
803	22	gamma	91	237	0	0	0	0	0	-0.015	0.009	-0.814	0.814	0.00
80.4	22	ramma	91	251	0	ó	Ó.	Ó.	0	0.017	0 190	0.065	0.201	0.00
805	22	gamma	91	251	õ	õ	õ	õ	õ	0.030	0.209	0.247	0.325	0.00
80.6	22	gamma	91	252	0	0	0	0	0	0.026	0.171	0.049	0.180	0.00
80.7	22	ramma	91	252	0	ó	Ó.	Ó.	0	0.006	0.049	0.122	0.132	0.00
808	22	gamma	91	253	õ	õ	õ	õ	ő	-0.035	-0.032	0.043	0.064	0.00
9.09	22	gamma	91	253	ö	ö	ő	ö	ő	0.087	0.036	0.147	0.175	0.00
810	22	gamma	91	256	õ	õ	õ	õ	ő	0.043	0.037	0.274	0.280	0.00
11	22	ramma	91	256	ő	ő	ő	õ		0.120	-0.088	0.322	0.355	0.00
312	22	gamma	91	263	õ	õ	õ	õ	õ	0.015	-0.171	-0.139	0.221	0.00

Monte Carlo generation

Matrix elements (ME):

1) Hard subprocess: $|\mathcal{M}|^2$, Breit-Wigners, parton densities.

Parton Showers (PS):

3) Final-state parton showers.

2) Resonance decays: includes correlations.

4) Initial-state parton showers.

Monte Carlo generation

6) Beam remnants, with colour connections.

5) + 6) = Underlying Event

7) Hadronization

8) Ordinary decays: hadronic, τ , charm, ...

Monte-Carlo Event Generation

Generatoren bei Belle 2

•	$e^+e^- \rightarrow Y(4S) \rightarrow B\overline{B}$ 34 Anfangszustand genau bekannt \rightarrow Generation startet mit Y(4S)-Teilchen \rightarrow Zerfallskette simuliert mit EvtGen-Software	00553 (Upsilon(4S)) 521 (B+) 443 (J/psi) 211 (pi+) -211 (pi-) 211 (pi+) -213 (rho-)
	(Verzweigungsverhältnisse und Zerfallsmodelle) -211 (p1-) 111 (pi0)
		22 (gamma)
		22 (gamma)
	—	323 (K*+)
•	$e^+e^- \rightarrow dd$	311 (KU)
	Oire detien and Ere and entertien	310 (K_S0)
	Simulation von Fragmentation	211 (p1+) 211 (pi
	ähnlich wie hei ATLAS	-211 (p1-)
	anniich wie dei ATLAS	$-521 (B_{-})$
		423 (D*0)
		421 (D0)
		-321 (K-)
•	$e^+e^- \rightarrow \ell^+\ell^-$	211 (pi+)
		22 (gamma)
	Spezielle Generatoren	15 (tau-)
	hasiarand auf OED Deehnungen	13 (mu-)
	basierend auf QED-Rechnungen	-14 (anti-nu_mu)
		16 (nu_tau)
		-16 (anti-nu_tau)

Slide: Thomas Kuhr

Übersicht

Monte-Carlo-Methode

Zufallszahlen

Monte-Carlo-Ereignis-Generatoren

Detektorsimulation

Zusammenfassung

- Detektorsimulation:
 - erhält Teilchenliste aus Ereignis-Generator als Eingabe
 - simuliert Durchgang aller Teilchen durch Detektorkomponenten
 - Coulombstreuung (simuliert Streuwinkel)
 - Teilchenzerfälle (simuliert Lebensdauer)
 - Ionisierungsenergie (simuliert ΔE)
 - Elektromagnetische / hadronische Schauer
 - schlussendlich: Signale in Detektorausleseelektronik
- Simulierte Ausgabe hat gleiches Format wie echte Daten
 - · Einfacher Vergleich zwischen Daten und MC

(vorausgesetzt die Effizienzen sind gleich)

- Programmpaket: GEANT4 (toolkit for the simulation of the passage of particles through matter using MC methods, initiated 1994, CERN)
 - verwendet von ATLAS, CMS, ALICE, LHCb, ILC, ..., Astrophysikern, für klinische Studien, für Simulation von Strahlungsgefahr für Astronauten, in der Mikroelektronik, ...

Monte-Carlo-Detektorsimulation

Komplexes Beispiel zur Monte Carlo Methode

- -Moderne Experimente der Hochenergiephysik bestehen aus sehr vielen einzelnen-Detektoren
 - L3 am LEP Beschleuniger (CERN) hatte u.a. etwa 11 000 Kristalle zur Energiemessung
 - CMS am LHC Beschleuniger wird ca. 15 000 Silizium-Streifendetektoren enthalten mit etwa 10⁷ einzelnen Kanälen

Zur Analyse der Daten werden sehr detailierte MC Simulationen benötigt

 Simulation der physikalischen Reaktion: alle enstehenden Teilchen und deren erwartete Energie-, Impuls- und Winkelverteilungen

- Nachweiswahrscheinlichkeit f
 ür jedes Detektorelement
- Orts- und Energieauflösung jeder einzelnen Detektorkomponente

Am Ende der Simulation stehen digitalisierte Signale der einzelnen Detektorkomponenten, die sich nicht von echten Daten unterscheiden

Der simulierte Datensatz dient dann zur Optimierung der Selektion und Bestimmung der Akzeptanz

Datenanalyse in der Physik Vorlesung 9 – p. 2

Monte-Carlo-Detektorsimulation

Komplexes Beispiel zur Monte Carlo Methode

-CMS Experiment am LHC Beschleuniger am CERN: Simulation eines Top-Paar-Ereignisses $pp \rightarrow t\bar{t} + X$

Datenanalyse in der Physik Vorlesung 9 - p. 2

Alexander Mann

Monte-Carlo-Detektorsimulation

Komplexes Beispiel zur Monte Carlo Methode

-CMS Experiment am LHC Beschleuniger am CERN: Im Vergleich zu einem realen Ereignisse in den Daten $pp \rightarrow t\bar{t} + X$

Datenanalyse in der Physik Vorlesung 9 - p.

Alexander Mann

Monte-Carlo-Methoden in der TP

Monte-Carlo Event Generation: in ATLAS

Monte Carlo (MC) - What is MC?

- MC simulates what happens at the LHC and ATLAS
- Many different programmes can be used at each stage

Monte-Carlo Event Generation: "Truth Record"

MC Generation

- MC Generator stops with set of "stable" final state particles
- Complete 4-vector info is known about every particle
- All parent-daughter relations are known and stored
- High energy parton state known as parton level
- Stable particle state known as hadron level
- This level of information is often called the truth record
- This is the pure event before it interacts with any apparatus

Monte-Carlo Event Generation: "Reconstruction"

Reconstruction

Going from electronic pulses to analysis objects

- Data and MC pass through the same reconstruction algorithms
- Raw electronic pulses reconstructed into:
 - Tracks
 - Calorimeter deposits
- Which are then reconstructed into:
 - Jets, electron, muons, taus,
 - Photons, tracks, missing E_{T}

Real life issues need to be reflected in the MC

- Some parts of the detector become faulty over time
- e.g. A section of the calorimeter readout dies and cannot be repaired until the detector is opened up in a shutdown
- Lets say that this affects x% of the data luminosity
- Need to generate MC with this problem in x% of the MC
 - Cannot know x until end of year
 - $\bullet \ \Rightarrow$ Need to reprocess the MC at the end of the year
- Some MC bugs do not become apparent for some time

Teilchenidentifikation in ATLAS

- Schematische Darstellung von Teilchenidentifikation in ATLAS
 (und ähnlich aufgebauten Detektoren)
- Tatsächliche Implementation = komplexe Algorithmen, oftmals mit ML

Alexander Mann

Übersicht

Monte-Carlo-Methode

Zufallszahlen

Monte-Carlo-Ereignis-Generatoren

Was haben wir gelernt:

- Monte-Carlo-Methoden: Definition und Beispiele
- Erzeugung von (Pseudo-) Zufallszahlen am Computer
- Erzeugung von beliebig verteilter Zufallszahlen
- Anwendung von Monte-Carlo-Methoden in der Teilchenphysik
- MC-Simulation: Ereignisgenerator, Detektorsimulation, Rekonstruktion

Extra

Transformationsmethode

- Seine f(x), g(y) Wahrscheinlichkeitsdichtefunktionen
- zusammenhängend über eine Transformationsfunktion y = y(x)

•
$$\Rightarrow$$
 allgemein $g(y) = f(x(y)) \left| \frac{\mathrm{d}x}{\mathrm{d}y} \right|$

- Speziell für f(x) gleichverteilt zwischen 0 und 1: $g(y) = \left| \frac{dx}{dy} \right|$
- Damit ergibt sich (z. B.) mit analoger Rechnung wie oben:
 - (... um die Transformation einer Gleichverteilung in die Exponentialverteilung zu finden)

•
$$\left|\frac{\mathrm{d}x}{\mathrm{d}y}\right| = \lambda \cdot \exp(-\lambda \cdot y)$$
 $(y \ge 0)$

•
$$\int dx = \int \lambda \cdot \exp(-\lambda \cdot y) dy$$

•
$$x = 1 - \exp(-\lambda \cdot y)$$

• $y = -\ln(1-x)/\lambda$

Transformationsmethode

Herleitung

- \bullet Generate a continuous random variable $X \sim F$ as follows :
 - 1. Generate a uniform random variable U

2. Set
$$X = F^{-1}(U)$$

• Proof: Have to show that the CDF of the samples produced by this method is precisely F(x).

$$\mathbf{P}(X \le x) = \mathbf{P}(F^{-1}(U) \le x)$$

= $\mathbf{P}(U \le F(x))$ (1)
= $F(x)$ (2)

where

- (1) follows by the fact that F is an increasing function - (2) follows from the fact $0 \le F(x) \le 1$ and the CDF of a uniform $F_U(y) = y$ for all $y \in [0, 1]$

Quelle

What they do

