Introduction to the HistFitter framework

Jeanette Lorenz (LMU)
+ many other people

24 April 2020

Overview

- Step-0: define signal/control/validation regions
- Input TTrees (derived from xAOD), histograms, numbers
- Step-1: Construct PDF and the likelihood function

RooFit or HistFactory + RooFit

- Result from data is a distribution
- Model signal and background by PDF (prob. density func.)
- Construct likelihood(s) by joining data and model(s)
- $\quad \downarrow$
- RooWorkspace
- $\quad \downarrow$
- Step-2: Statistical tests on parameter of interest μ RooStats
- Construct test statistic q_{μ} from likelihoods
- Obtain expected distributions of q_{μ} for various $\boldsymbol{\mu}$ values
- Determine discovery po and signal exclusion limit
- Step-3: Repeat for each model (assumed value $\mathbf{m н}$)

HistFitter introduction

Introduction

- HistFitter is a statistical tool/framework used in (almost) all SUSY WG analyses since 2012 for fitting, interpretation and presentation of fit results
- Developed in SUSY strong production 1-lepton group, quickly adopted as recommended tool
- Small core team: Max Baak, Geert-Jan Besjes, David Cote, Alex Koutsman, Jeanette Lorenz and Dan Short
- Also used (more and more) in Higgs, Exotics and Top WGs

- HistFitter is:

- built on top of RooFit/HistFactory and RooStats
- consists of Python part for configuration and C++ part for CPU-intensive calculations
- Why HistFitter?
- HistFitter extends RooFit/HistFactory and RooStats in four key areas:
- Programmable framework: performing complete analysis (steps 0-4) from a simple configuration file
- Analysis strategy: common physics analysis strategy concepts, such as control/signal/validation regions, woven into the fabric of HistFitter design
- Bookkeeping: can keep track of numerous data models, from histogram production until final statistical tests \rightarrow handy when working with large collections of signal hypotheses (signal grids)
- Presentation and interpretation: multiple methods are provided to determine statistical significance of signal hypotheses, and produce publication-quality tables and plot summarizing the fit results (step 4)

Data analysis strategy

- Particle physics analyze large data samples for measurements of discovery
- Data interpretation relies on using external - simulation, Monte Carlo (MC) - predictions for backgrounds and signal
- HistFitter configures and builds parametric models from these predictions
- Typically one defines several phase space regions to study a specific phenomenon
- Definition depends on the purpose:
- Signal region: signal-rich region (SR)
- Control region: background-rich region (CR), fit simulated backgrounds to data
- Validation region: validation of extrapolation (VR)
- Concepts of CR/SR/VR woven into the fabric of HistFitter

Analysis strategy flow

- Each CR/VR/SR modeled by a separate PDF, combined in a simultaneous fit
- Parameters shared in all regions \rightarrow consistent background/signal prediction and systematics
- Sharing user-defined
- Analysis flow:
- Backgrounds normalized to data in a fit of control regions
- Extrapolate to validation/signal regions using transfer factors (ratio of events between CR and SR/VR)
- If good agreement in VR, unblind the SR
- If no excess, add signal prediction and interpret/set limits

Processing sequence

- Based on user-defined configuration file, processing sequence of HistFitter split in three stages

Model construction

- Models constructed using HistFactory from input histograms
- General form of the constructed likelihood:

$$
L\left(\boldsymbol{n}, \boldsymbol{\theta}^{0} \mid \mu_{\mathrm{sig}}, \boldsymbol{b}, \boldsymbol{\theta}\right)=P_{\mathrm{SR}} \times P_{\mathrm{CR}} \times C_{\mathrm{syst}}
$$

- $P=$ Poisson measurements of number of observed events in CR/SR (VR)
- $\mathrm{C}=$ Constraint terms for systematic uncertainties, auxiliary measurements
- Likelihood depends on number of observed events in all regions (n), predictions for various background processes (b), the nuisance parameter (θ) parametrizing the systematic uncertainties with their central value $\left(\theta^{0}\right)$ and signal strength ($\mu \mathrm{sIG}$)
- Likelihood has multiple building blocks:
- Control/validation/signal regions: called channel in HistFitter (HistFactory)
- Signal and background processes: called sample in HistFitter (HistFactory)
- Uncertainties: called systematic in HistFitter (HistFactory)
- Including statistical/theory/experimental uncertainties
- HistFitter is designed to build and manipulate PDFs of nearly arbitrary complexity
- Bookkeeping/configuration machinery realized through a user-defined Python configuration file
- Configuration manager (configManager) highest level (singleton) object in Python and C++
- Manages fitconfig objects that contain PDF and meta-data

Fit configuration

- fitConfig objects summarize channels, samples and systematics together with corresponding input histograms

Fit configuration properties

- fitConfig: can be cloned/extended (see next slide)
- channels : either single-bin or multi-bin (shape), property as CR/VR/SR
- samples: input from TTree, TH1 or raw (hard-coded) floats, correlated between channels
- systematics: provided as $\pm 1 \sigma$ variation of nominal histogram; input from TTree, TH1 or raw floats; can be correlated between samples and/or channels; many types available extended from HistFactory base types (see later); trickle-down mechanism (see backup)

Common fit strategies

- Background-only fit: estimate background yields in validation/signal regions; including only CRs in the fit to data; no signal component included in fit configuration
- Model-dependent signal fit: set exclusion limit on a specific signal model; possible use of multi-binned (or multi-SR) shape fit for a robust signal estimation - aka exclusion fit
- Model-independent signal fit: to obtain model-independent upper limits on number of BSM events beyond background prediction; only usable with one single-bin SR (otherwise not model-independent) - aka discovery fit

Fit setup	Background-only fit	Model-dependent signal fit	Model-independent signal fit
Samples used	backgrounds	backgrounds + signal	backgrounds + dummy signal
Fit regions	$\mathrm{CR}(\mathrm{s})$	$\mathrm{CR}(\mathrm{s})+\mathrm{SR}(\mathrm{s})$	$\mathrm{CR}(\mathrm{s})+\mathrm{SR}$

Presentation of results

- HistFitter includes a collection of tools (scripts/functions) to present/understand fit results

	SR1	SR2
Signal Region	16	19
Observed events	19.54 ± 3.93	20.47 ± 5.14
Fitted bkg events	4.02 ± 0.96	4.32 ± 1.04
Fitted Top events	9.89 ± 1.86	10.47 ± 1.91
Fitted $V+$ jets events	1.14 ± 0.15	1.19 ± 0.16
Fitted other background events	4.49 ± 2.72	4.49 ± 4.24
Fitted QCD events	24.85	26.32
MC exp. SM events	8.42	9.11
MC exp. Top events	10.82	11.55
MC exp. $V+$ +jets events	1.13	1.17
MC exp. other background events	4.49	4.49
Data-driven exp. QCD events		

Model-independent upper limits

Signal channel	$\left\langle\sigma_{\text {vis }}{ }_{\text {obs }}^{95}[\mathrm{fb}]\right.$	$S_{\text {obs }}^{95}$	$S_{\text {exp }}^{95}$	$p(s=0)$
SR3b	0.19	3.9	$4.4_{-0.6}^{+1.7}$	0.50
SR0b	0.80	16.3	$8.9_{-2.0}^{+3.6}$	0.03
J. Lorenz				HistFitter

Systematics Table

Uncertainty of channel	SR1	SR2
Total background expectation	19.54	20.47
Total statistical $\left(\sqrt{N_{\text {exp }}}\right)$	± 4.42	± 4.52
Total background systematic	$\pm 3.93[20.14 \%]$	$\pm 5.14[25.09 \%]$
QCD background	± 2.66	± 4.20
Statistical uncertainties	± 2.54	± 1.86
Jet Energy Scale	± 1.15	± 1.17
Top yield	± 0.82	± 0.88
Renormalization scale $(T o p)$	± 0.34	± 0.39
V +jets yields	± 0.28	± 0.29
Renormalization scale $(V+$ jets $)$	± 0.14	± 0.03

After Fit VRs pull plot

Exclusion contour with upper limits

HistFitter \& documentation

- HistFitter paper on arXiv: http://arxiv.org/abs/1410.1280
- HistFitter webpage with doxgen documentation: http://cern.ch/histfitter
- Tutorial (to be discussed next): https://twiki.cern.ch/twiki/bin/view/Main/HistFitterTutorialOutsideAtlas
- ACAT 2014 talk on HistFitter: https://indico.cern.ch/event/258092/session/8/contribution/39

HistFitter tutorial

Running HistFitter

- HistFitter.py <options> <configuration_file>
- -t: Create histograms in all regions used for all backgrounds, signal, data from TTrees
- -w: Build workspaces from histograms
- -f: Fit
- -D: various drawing options, to be discussed later
- -L: log level \{VERBOSE,DEBUG,INFO,WARNING,ERROR,FATAL,ALWAYS\}
- -m PARAM: run Minos for asymmetric error calculation
- optionally give parameter names comma separated; for all parameters use 'ALL' or 'all'
- -I: Calculate upper limit
- -p: Calculate the CLs value for a specific signal model (for exclusion)
- -i: interactive mode, keeps you in python command line, but shows plots on your screen
- To see all options run: HistFitter.py --help

Simple example

- Simple example with one region with one bin:

```
HistFitter.py -w -f -D "before,after,corrMatrix" -i
analysis/tutorial/MyUserAnalysis.py
```

- Creates the workspace
- Runs the fit
- Plots before/after fit regions and correlation matrix
- Keeps you in interactive mode

Config file explained - I

- Define a configManager and setup afitconfig ana named SPlusB
- from configManager import configMgr
ana $=$ configMgr.addFitConfig("SPlusB")
- Add one channel/region to the fitconfig
- chan $=$ ana.addChannel("cuts", ["UserRegion"],1,0.5,1.5)
- One defines the region/channel in cutsDict (as one would in ROOT for TTree call)
- Here include all:
- configMgr.cutsDict["UserRegion"] = "1."
- Channels can also be binned (shape-fit)
- chan $=$ ana.addChannel("myObs", ["mySelection"], nBins, varLow, varHigh)

Config file explained - II

- Define samples: bkgSample, sigSample and dataSample
- \# Define samples
bkgSample = Sample("Bkg", kGreen-9) \# define a background sample with color KGreen-9 if plotting bkgSample.setStatConfig (True) \#This sample gets statistical uncertainties
bkgSample.buildHisto([nbkg], "UserRegion", "cuts") \#Build histograms from numbers defined by the user

```
bokgSample.buildStatErrors([n.bkgErr],"UserRegion","cuts")
```

sigSample = Sample("Sig",kPink) \#A signal sample with color kPink sigSample.setNormFactor("mu_Sig",1.,0.,100.) \# This samples receives a normalization parameter
sigSample.setStatConfig(True) \#This sample gets statistical uncertainties sigSample.setNormByTheory () \# and uncertainties due to the luminosity are added sigSample.buildHisto([nsig], "UserRegion", "cuts") sigSample.buildStatErrors([nsigErr],"UserRegion", "cuts")

```
dataSample = Sample("Data",kBlack) #Data sample
```

dataSample.setData()
dataSample.buildHisto([ndata], "UserRegion", "cuts")
\# add all samples to the fitconfig object and thus to all channels
ana.addSamples([bkgSample,sigSample, dataSample])

Config file explained - III

- Add systematics to signal/background samples
- Correlating systematics happens by giving them the same name
- \# Set uncorrelated systematics for bkg and signal (1 +- relative uncertainties)

```
ucb = Systematic("ucb", configMgr.weights, 1.2,0.8, "user","userOverallSys")
ucs = Systematic("ucs", configMgr.weights, 1.1,0.9, "user","userOverallSys")
# correlated systematic between background and signal (1 +- relative uncertainties)
corb = Systematic("cor",configMgr.weights, [1.1],[0.9], "user","userHistoSys")
cors = Systematic("cor",configMgr.weights, [1.15],[0.85],
"user","userHistoSys")
bkgSample.addSystematic(corb)
bkgSample.addSystematic(ucb)
sigSample.addSystematic(cors)
sigSample.addSystematic(ucs)
```


Table production

- YieldsTable.py produces customizable tables of yields before/after fit
- Example: YieldsTable.py -s Top,WZ,BG,QCD -c SLWR_nJet,SLTR_nJet -w results/MyConfigExample/BkgOnly_combined_NormalMeasurement_model_afterFit.root -o MyYieldsTable.tex

table.results.yields channel	SLWR_nJet	SLTR_nJet	SR1sl2j	SS_metmeff2Jet
Observed events	1794	269	25	26
Fitted bkg events	1800.73 ± 39.91	262.45 ± 11.47	28.53 ± 5.26	31.74 ± 8.50
Fitted Top events	117.20 ± 11.42	113.20 ± 12.53	6.17 ± 1.12	6.65 ± 1.26
Fitted WZ events	1629.37 ± 42.19	69.75 ± 6.63	13.95 ± 2.03	14.57 ± 1.98
Fitted BG events	43.49 ± 1.90	23.19 ± 1.94	0.96 ± 0.32	1.00 ± 0.32
Fitted QCD events	10.64 ± 0.51	56.30 ± 13.65	7.44 ± 3.75	9.52 ± 7.54
MC exp. SM events	1921.26	261.96	32.04	35.35
MC exp. Top events	165.16	153.98	8.75	9.38
MC exp. WZ events	1647.04	66.30	15.26	15.82
MC exp. BG events	40.96	25.03	0.59	0.63
data-driven exp. QCD events	68.06	16.64	7.44	9.52

- SysTable.py produces customizable tables of systematic breakdown per region (or sample)
- Example: SysTable.py -w results/MyConfigExample/BkgOnly_combined_NormalMeasurement _model_afterFit.root -c SR1sl2j -o systable_SR1sl2j.tex

Uncertainty of channel	SR1sl2j
Total background expectation	28.53
Total statistical $\left(\sqrt{N_{\text {exp }}}\right)$	± 5.34
Total background systematic	$\pm 5.26[18.43 \%]$
gamma_stat_SR1sl2j_cuts_bin_0	± 3.63
alpha_QCDNorm_SR1sl2j	± 3.63
alpha_JES	± 0.93
mu_Top	± 0.65
alpha_KtScaleTop	± 0.52
alpha_KtScaleWZ	± 0.37
mu_WZ	± 0.36

Signal model hypothesis test

- Once you have unblinded your SR , one can calculate the $\mathrm{CLs} / \mathrm{p}$-value on specific signal models using the exclusion fit (aka model-dependent fit setup)
- As simple in HistFitter as calling:

```
HistFitter.py -p analysis/tutorial/MyUserAnalysis.py
```

- Will calculate:
- CLs observed $=$ taking N observed events as data in all regions
- CLs expected $=$ taking N expected events as data in all regions

- yellow band next slide
- CLs observed ± 1 sigma signal theory uncertainty $=\mathrm{N}$ observed as data, ± 1 sigma signal theory
- need to set the name of the signal theory uncertainty systematic as Systematic ("SigxSec", ...)
- red-dotted lines next slide
- Setting calculator and test statistic type can be set in configManager (see backup):

```
## setting the parameters of the hypothesis test
#configMgr.nTOYs=5000
configMgr.calculatorType=2 # 2=asymptotic calculator, 0=frequentist calculator
configMgr.testStatType=3 # 3=one-sided profile likelihood test statistic (LHC default)
configMgr.nPoints=20 # number of values scanned of signal-strength for upper-limit
determination of signal strength.
```

- Result of '-p' stored in a ROOT file with 'hypotest' in the name:
results/MySimpleChannelAnalysis_fixSigXSecNominal_hypotest.root

Contour plot explained

- https://twiki.cern.ch/twiki/bin/view/AtlasProtected/SUSYLimitPlotting

Description of limit lines

The model limits should be computed using the HistFitter package. We present the following limits:

1. Observed limit (thick solid dark-red line): all uncertainties are included in the fit as nuisance parameters, with the exception of the theoretical signal uncertainties (PDF, scales).
2. Expected limit (less thick long-dashed dark-blue line): all uncertainties are included in the fit as nuisance parameters, with the exception of the theoretical signal uncertainties (PDF, scales).

We present the following uncertainty bands:

- $\pm 1 \sigma$ lines around observed limit (1) with style "thin dark-red dotted": re-run limit calculation (1) while increasing or decreasing the signal cross section by the theoretical signal uncertainties (PDF, scales).
- $\pm 1 \sigma$ band around expected limit (2) with style "yellow band": the band contours are the $\pm 1 \sigma$ results of the fit (2).

Contour plot production

- Typically a grid of signal model points with varying signal parameters (m н or $\mathrm{m}_{\mathrm{g}} \mathrm{luino}$) get processed to produce an exclusion contour
- Five steps to produce (Part 5 of tutorial):

1. run hypothesis tests over all grid points (results saved in multiple hypotest files)
2. merge all the output root files into one using hadd (if stored in a separate files)
3. transform this set of hypothesis tests into a plain-text file: makelistfiles.C
4. create TH2D(s) from the ascii data in this list file: makecontourhists. C
5. plot TH2D(s) to draw contour lines and cosmetics: makecontourplots.c

- at the requested CLs level, typically $95 \% \mathrm{CL}, \mathrm{CLs}<0.05$

Signal strength upper limit

- Once you have unblinded your SR, one can set upper limits on specific signal models using the exclusion fit (aka model-dependent fit setup)
- As simple in HistFitter as calling:

HistFitter.Py -l analysis/tutorial/MyUserAnalysis.Py

- Technicalities similar to '-p'
- Hypothesis test inversion:
- find the value of mu_SIG for which CLs below 0.05 (or other required value) - instead of calculating the p-value for the specific signal
- run the hypothesis test for increasing values of signal strength mu_SIG
- scan range determined automatically
- upper limit on cross section = nominal cross section \times upper limit on signal strength (grey numbers in contour plots, run for each signal grid point)

Asymptotic CL Scan for workspace result_mu_SIG

Model-independent upper limit

- Calculate the upper limit on the number of BSM physics events that we exclude in our SR
- Typically used by theorists to check their favorite BSM model, that we have not looked at
- Requires the model-independent fit setup - aka discovery fit
- 'dummy signal' = exactly one event in signal region (none in CRs)
- upper limit on this 'dummy signal' = upper limit on BSM number of events
- Use the UpperLimitTable.py script:

UpperLimitTable.py -c SS -w
results/MyUpperLimitAnalysis_SS/SPlusB_combined_NormalMeasurement_model.root -
14.713 -n 1000

- Results in LaTeX table:

Signal channel	$\langle\epsilon \sigma\rangle_{\text {obs }}^{95}[\mathrm{fb}]$	$S_{\text {obs }}^{95}$	$S_{\text {exp }}^{95}$	$C L_{B}$	$p(s=0)$
SS	1.73	8.2	$6.1_{-1.3}^{+2.3}$	0.80	0.21

- 〈бvis〉95_obs : 95\% CL upper limits on the visible cross section obs
- S95_obs :95\% CL upper limits on the number of signal events obs
- S95_exp : 95\% CL upper limit on the number of signal events, given the expected number (and $\pm 1 \sigma$ excursions on the expectation) of background events
- CLB: the confidence level observed for the background-only hypothesis
- $p(s=0)$: discovery p-value - the probability, capped at 0.5 , that a background-only experiment is more signal-like than the observed number of events in a signal region

HistFitter - tutorial

HistFitter Tutorial - Parts 1 \& 2 \& 3

HistFitter tutorial start up

- A public version is available on the HistFitter webpage:

http://histfitter.web.cern.ch/histfitter/Software/Install/index.html

-> This version requires Root 5 (release of updated version foreseen for the next months)

For this tutorial we use the ATLAS-internal version, that you need to delete after completion of your bachelor thesis and you may not share it with other people. You obtain it via this link:
https://cloud.physik.Imu.de/index.php/s/P4Yz23jS4bYFzeJ

- Installation instructions:
- Untar the HistFitter package using the command tar -xzf HistFitter-master.tar.gz
- Setup ROOT (if not already done)!
- Go the HistFitter directory cd HistFitter
- Run the HistFitter setup script source setup.sh
- Go to the src/ directory and compile the C++ side of HistFitter cd src \& \& make
- Go back to the main HistFitter directory

HistFitter tutorial start up

Input data here:

- Link the input data to your HistFitter directory as follows if you work on the computers in Garching or in the CIPPool. This is recommended for this tutorial!!!
- In -s /project/etp3/jlorenz/shape_fit/samples/ samples
- If you do not work on these computers, copy the data via scp

