
Introduction to the HistFitter framework

Jeanette Lorenz (LMU)

+ many other people

24 April 2020

J. Lorenz HistFitter 2

Overview

• Step-0: define signal/control/validation regions

• Input TTrees (derived from xAOD), histograms, numbers

• Step-1: Construct PDF and the likelihood function

RooFit or HistFactory + RooFit

• Result from data is a distribution

• Model signal and background by PDF (prob. density func.)

• Construct likelihood(s) by joining data and model(s)

• ↓

• RooWorkspace

• ↓

• Step-2: Statistical tests on parameter of interest μ

RooStats

• Construct test statistic qμ from likelihoods

• Obtain expected distributions of qμ for various μ values

• Determine discovery p0 and signal exclusion limit

• Step-3: Repeat for each model (assumed value mH)

HistFitter

• adds steps-0 and 3

• allows full analysis

chain from simple

configuration file

J. Lorenz HistFitter 3

HistFitter introduction

J. Lorenz HistFitter 4

Introduction
• HistFitter is a statistical tool/framework used in (almost) all SUSY WG analyses since

2012 for fitting, interpretation and presentation of fit results

• Developed in SUSY strong production 1-lepton group, quickly adopted as recommended tool

• Small core team: Max Baak, Geert-Jan Besjes, David Cote, Alex Koutsman, Jeanette Lorenz and Dan Short

• Also used (more and more) in Higgs, Exotics and Top WGs

• HistFitter is:

• built on top of RooFit/HistFactory and RooStats

• consists of Python part for configuration and C++ part for CPU-intensive calculations

• Why HistFitter?

• HistFitter extends RooFit/HistFactory and RooStats in four key areas:

• Programmable framework: performing complete analysis (steps 0-4) from a simple configuration file

• Analysis strategy: common physics analysis strategy concepts, such as control/signal/validation

regions, woven into the fabric of HistFitter design

• Bookkeeping: can keep track of numerous data models, from histogram production until final statistical

tests → handy when working with large collections of signal hypotheses (signal grids)

• Presentation and interpretation: multiple methods are provided to determine statistical significance of

signal hypotheses, and produce publication-quality tables and plot summarizing the fit results (step 4)

J. Lorenz HistFitter 5

Data analysis strategy
• Particle physics analyze large data samples for measurements of discovery

• Data interpretation relies on using external - simulation, Monte Carlo (MC) - predictions

for backgrounds and signal

• HistFitter configures and builds parametric models from these predictions

• Typically one defines several phase space regions to study a specific phenomenon

• Definition depends on the purpose:

• Signal region: signal-rich region (SR)

• Control region: background-rich

region (CR), fit simulated backgrounds

to data

• Validation region: validation of

extrapolation (VR)

• Concepts of CR/SR/VR woven into the

fabric of HistFitter

J. Lorenz HistFitter 6

Analysis strategy flow
• Each CR/VR/SR modeled by a separate PDF, combined in a simultaneous fit

• Parameters shared in all regions → consistent background/signal prediction and

systematics

• Sharing user-defined

• Analysis flow:

• Backgrounds normalized to data in a fit of control regions

• Extrapolate to validation/signal regions using transfer factors (ratio of events between CR and SR/VR)

• If good agreement in VR, unblind the SR

• If no excess, add signal prediction and interpret/set limits

J. Lorenz HistFitter 7

Processing sequence
• Based on user-defined configuration file, processing sequence of HistFitter split in three stages

step-0

Histogram production

step-1

PDF construction

Workspace building

step-2/3

Analysis of models

J. Lorenz HistFitter 8

Model construction
• Models constructed using HistFactory from input histograms

• General form of the constructed likelihood:

• P = Poisson measurements of number of observed events in CR/SR (VR)

• C = Constraint terms for systematic uncertainties, auxiliary measurements

• Likelihood depends on number of observed events in all regions (n), predictions for various background

processes (b), the nuisance parameter (θ) parametrizing the systematic uncertainties with their central value (θ0)

and signal strength (μSIG)

• Likelihood has multiple building blocks:

• Control/validation/signal regions: called channel in HistFitter (HistFactory)

• Signal and background processes: called sample in HistFitter (HistFactory)

• Uncertainties: called systematic in HistFitter (HistFactory)

• Including statistical/theory/experimental uncertainties

• HistFitter is designed to build and manipulate PDFs of nearly arbitrary complexity

• Bookkeeping/configuration machinery realized through a user-defined Python configuration file

• Configuration manager (configManager) highest level (singleton) object in Python and C++

• Manages fitConfig objects that contain PDF and meta-data

J. Lorenz HistFitter 9

Fit configuration
• fitConfig objects summarize channels, samples and systematics together

with corresponding input histograms

J. Lorenz HistFitter 10

Fit configuration properties

• fitConfig: can be cloned/extended (see next slide)

• channels: either single-bin or multi-bin (shape), property as CR/VR/SR

• samples: input from TTree, TH1 or raw (hard-coded) floats, correlated between channels

• systematics: provided as ±1σ variation of nominal histogram; input from TTree, TH1 or raw

floats; can be correlated between samples and/or channels; many types available extended

from HistFactory base types (see later); trickle-down mechanism (see backup)

J. Lorenz HistFitter 11

Common fit strategies
• Background-only fit: estimate background yields in validation/signal regions; including only

CRs in the fit to data; no signal component included in fit configuration

• Model-dependent signal fit: set exclusion limit on a specific signal model; possible use of

multi-binned (or multi-SR) shape fit for a robust signal estimation - aka exclusion fit

• Model-independent signal fit: to obtain model-independent upper limits on number of BSM

events beyond background prediction; only usable with one single-bin SR (otherwise not

model-independent) - aka discovery fit

J. Lorenz HistFitter 12

Presentation of results
• HistFitter includes a collection of tools (scripts/functions) to present/understand fit results

Before Fit After Fit After Fit VRs pull plot

Yields Table Systematics Table

Model-independent upper limits

Exclusion contour

with upper limits

J. Lorenz HistFitter 13

HistFitter & documentation
• HistFitter paper on arXiv: http://arxiv.org/abs/1410.1280

• HistFitter webpage with doxgen documentation: http://cern.ch/histfitter

• Tutorial (to be discussed next): https://twiki.cern.ch/twiki/bin/view/Main/HistFitterTutorialOutsideAtlas

• ACAT 2014 talk on HistFitter: https://indico.cern.ch/event/258092/session/8/contribution/39

http://arxiv.org/abs/1410.1280
http://cern.ch/histfitter
https://indico.cern.ch/event/258092/session/8/contribution/39

J. Lorenz HistFitter 14

HistFitter tutorial

J. Lorenz HistFitter 15

Running HistFitter
• HistFitter.py <options> <configuration_file>

• -t: Create histograms in all regions used for all backgrounds, signal, data from TTrees

• -w: Build workspaces from histograms

• -f: Fit

• -D: various drawing options, to be discussed later

• -L: log level {VERBOSE,DEBUG,INFO,WARNING,ERROR,FATAL,ALWAYS}

• -m PARAM: run Minos for asymmetric error calculation

• optionally give parameter names comma separated; for all parameters use ‘ALL’ or ‘all’

• -l: Calculate upper limit

• -p: Calculate the CLs value for a specific signal model (for exclusion)

• -i: interactive mode, keeps you in python command line, but shows plots on your screen

• To see all options run: HistFitter.py --help

J. Lorenz HistFitter 16

Simple example
• Simple example with one region with one bin:

HistFitter.py -w -f -D "before,after,corrMatrix" -i

analysis/tutorial/MyUserAnalysis.py

• Creates the workspace

• Runs the fit

• Plots before/after fit regions and correlation matrix

• Keeps you in interactive mode

Before Fit After Fit

correlations matrix

J. Lorenz HistFitter 17

Config file explained - I
• Define a configManager and setup a fitConfig ana named SPlusB

• from configManager import configMgr

ana = configMgr.addFitConfig("SPlusB")

• Add one channel/region to the fitConfig

• chan = ana.addChannel("cuts",["UserRegion"],1,0.5,1.5)

• One defines the region/channel in cutsDict (as one would in ROOT for TTree call)

• Here include all:

• configMgr.cutsDict["UserRegion"] = "1."

• Channels can also be binned (shape-fit)

• chan = ana.addChannel("myObs", ["mySelection"], nBins, varLow,

varHigh)

J. Lorenz HistFitter 18

Config file explained - II
• Define samples: bkgSample, sigSample and dataSample

• # Define samples

bkgSample = Sample("Bkg",kGreen-9) # define a background sample with color KGreen-9 if plotting

bkgSample.setStatConfig(True) #This sample gets statistical uncertainties

bkgSample.buildHisto([nbkg],"UserRegion","cuts") #Build histograms from numbers defined by

the user

bkgSample.buildStatErrors([nbkgErr],"UserRegion","cuts")

sigSample = Sample("Sig",kPink) #A signal sample with color kPink

sigSample.setNormFactor("mu_Sig",1.,0.,100.) # This samples receives a normalization

parameter

sigSample.setStatConfig(True) #This sample gets statistical uncertainties

sigSample.setNormByTheory() # and uncertainties due to the luminosity are added

sigSample.buildHisto([nsig],"UserRegion","cuts")

sigSample.buildStatErrors([nsigErr],"UserRegion","cuts")

dataSample = Sample("Data",kBlack) #Data sample

dataSample.setData()

dataSample.buildHisto([ndata],"UserRegion","cuts")

add all samples to the fitconfig object and thus to all channels

ana.addSamples([bkgSample,sigSample,dataSample])

J. Lorenz HistFitter 19

Config file explained - III
• Add systematics to signal/background samples

• Correlating systematics happens by giving them the same name

• # Set uncorrelated systematics for bkg and signal (1 +- relative uncertainties)

ucb = Systematic("ucb", configMgr.weights, 1.2,0.8, "user","userOverallSys")

ucs = Systematic("ucs", configMgr.weights, 1.1,0.9, "user","userOverallSys")

correlated systematic between background and signal (1 +- relative uncertainties)

corb = Systematic("cor",configMgr.weights, [1.1],[0.9], "user","userHistoSys")

cors = Systematic("cor",configMgr.weights, [1.15],[0.85],

"user","userHistoSys")

bkgSample.addSystematic(corb)

bkgSample.addSystematic(ucb)

sigSample.addSystematic(cors)

sigSample.addSystematic(ucs)

J. Lorenz HistFitter 20

Table production
• YieldsTable.py produces customizable tables of yields before/after fit

• Example: YieldsTable.py -s Top,WZ,BG,QCD -c SLWR_nJet,SLTR_nJet -w

results/MyConfigExample/BkgOnly_combined_NormalMeasurement_model_afterFit.root

-o MyYieldsTable.tex

• SysTable.py produces customizable tables of systematic breakdown per region (or sample)

• Example: SysTable.py -w results/MyConfigExample/BkgOnly_combined_NormalMeasurement

_model_afterFit.root -c SR1sl2j -o systable_SR1sl2j.tex

J. Lorenz HistFitter 21

Signal model hypothesis test
• Once you have unblinded your SR, one can calculate the CLs/p-value on specific signal models using the

exclusion fit (aka model-dependent fit setup)

• As simple in HistFitter as calling:

HistFitter.py -p analysis/tutorial/MyUserAnalysis.py

• Will calculate:

• CLs_observed = taking N observed events as data in all regions

• CLs_expected = taking N expected events as data in all regions

• CLs_expected ±1sigma experimental uncertainty = N expected as data, ±1sigma fit results

• yellow band next slide

• CLs_observed ±1sigma signal theory uncertainty = N observed as data, ±1sigma signal theory

• need to set the name of the signal theory uncertainty systematic as Systematic("SigXSec", ...)

• red-dotted lines next slide

• Setting calculator and test statistic type can be set in configManager (see backup):

setting the parameters of the hypothesis test

#configMgr.nTOYs=5000

configMgr.calculatorType=2 # 2=asymptotic calculator, 0=frequentist calculator

configMgr.testStatType=3 # 3=one-sided profile likelihood test statistic (LHC default)

configMgr.nPoints=20 # number of values scanned of signal-strength for upper-limit

determination of signal strength.

• Result of ‘-p’ stored in a ROOT file with ‘hypotest’ in the name:

results/MySimpleChannelAnalysis_fixSigXSecNominal_hypotest.root

J. Lorenz HistFitter 22

Contour plot explained
• https://twiki.cern.ch/twiki/bin/view/AtlasProtected/SUSYLimitPlotting

https://twiki.cern.ch/twiki/bin/view/AtlasProtected/SUSYLimitPlotting

J. Lorenz HistFitter 23

Contour plot production
• Typically a grid of signal model points with varying signal parameters (mH or mgluino) get processed to

produce an exclusion contour

• Five steps to produce (Part 5 of tutorial):

1. run hypothesis tests over all grid points (results saved in multiple hypotest files)

2. merge all the output root files into one using hadd (if stored in a separate files)

3. transform this set of hypothesis tests into a plain-text file: makelistfiles.C

4. create TH2D(s) from the ascii data in this list file: makecontourhists.C

5. plot TH2D(s) to draw contour lines and cosmetics: makecontourplots.C

• at the requested CLs level, typically 95% CL, CLs<0.05

J. Lorenz HistFitter 24

Signal strength upper limit
• Once you have unblinded your SR, one can set upper limits on specific signal models

using the exclusion fit (aka model-dependent fit setup)

• As simple in HistFitter as calling:

HistFitter.py -l analysis/tutorial/MyUserAnalysis.py

• Technicalities similar to ‘-p’

• Hypothesis test inversion:

• find the value of mu_SIG for which

CLs below 0.05 (or other required value)

• instead of calculating the p-value

for the specific signal

• run the hypothesis test for

increasing values of signal strength

mu_SIG

• scan range determined automatically

• upper limit on cross section =

nominal cross section × upper limit on

signal strength (grey numbers in contour

plots, run for each signal grid point)

J. Lorenz HistFitter 25

Model-independent upper limit
• Calculate the upper limit on the number of BSM physics events that we exclude in our SR

• Typically used by theorists to check their favorite BSM model, that we have not looked at

• Requires the model-independent fit setup - aka discovery fit

• ‘dummy signal’ = exactly one event in signal region (none in CRs)

• upper limit on this ‘dummy signal’ = upper limit on BSM number of events

• Use the UpperLimitTable.py script:

UpperLimitTable.py -c SS -w

results/MyUpperLimitAnalysis_SS/SPlusB_combined_NormalMeasurement_model.root -

l 4.713 -n 1000

• Results in LaTeX table:

• ⟨σvis⟩95_obs : 95% CL upper limits on the visible cross section obs

• S95_obs :95% CL upper limits on the number of signal events obs

• S95_exp : 95% CL upper limit on the number of signal events, given the expected number (and ±1σ excursions

on the expectation) of background events

• CLB: the confidence level observed for the background-only hypothesis

• p(s = 0): discovery p-value - the probability, capped at 0.5, that a background-only experiment is more signal-like

than the observed number of events in a signal region

J. Lorenz HistFitter 26

HistFitter - tutorial

HistFitter Tutorial - Parts 1 & 2 & 3 Parts 4 & 5

J. Lorenz HistFitter

• A public version is available on the HistFitter webpage:

http://histfitter.web.cern.ch/histfitter/Software/Install/index.html

-> This version requires Root 5 (release of updated version foreseen for the next

months)

For this tutorial we use the ATLAS-internal version, that you need to delete after

completion of your bachelor thesis and you may not share it with other people.

You obtain it via this link:

https://cloud.physik.lmu.de/index.php/s/P4Yz23jS4bYFzeJ

• Installation instructions:

• Untar the HistFitter package using the command tar -xzf HistFitter-master.tar.gz

• Setup ROOT (if not already done)!

• Go the HistFitter directory cd HistFitter

• Run the HistFitter setup script source setup.sh

• Go to the src/ directory and compile the C++ side of HistFitter cd src && make

• Go back to the main HistFitter directory

HistFitter tutorial start up

27

http://histfitter.web.cern.ch/histfitter/Software/Install/index.html
https://cloud.physik.lmu.de/index.php/s/P4Yz23jS4bYFzeJ

J. Lorenz HistFitter

Input data here:

• Link the input data to your HistFitter directory as follows if you work on the

computers in Garching or in the CIPPool. This is recommended for this tutorial!!!

• ln -s /project/etp3/jlorenz/shape_fit/samples/ samples

• If you do not work on these computers, copy the data via scp

HistFitter tutorial start up

28

