Belle II

Prof. Thomas Kuhr

http://www.flavor.physik.uni-muenchen.de

Suche nach neuer Physik

- Es muss bisher unentdeckte Teilchen oder Kräfte geben (z.B. um Baryonasymmetrie zu erklären)
- Direkte Suche: Produktion neuer Teilchen → ATLAS, CMS @ LHC
- Indirekte Suche: Beitrag virtueller neuer Teilchen zu beobachteten Prozessen → Flavor-Physik

Z

a

Indirekte Suche

- Vergleich Messung mit Vorhersage f
 ür Standardmodell (SM)
- Gute Übereinstimmung bisheriger Messungen mit SM

Experimentell beobachtbar:

 $|A_{SM} + A_{NP}|^2 = |A_{SM}|^2 + 2Re(A_{SM}^*A_{NP}) + |A_{NP}|^2$

 \blacktriangleright Interferenz \rightarrow CP-Verletzung

Im SM unterdrückte oder verbotene Prozesse

- B-Mesonen bieten viele Möglichkeiten nach NP zu suchen →
- Hohe b-Quark-Masse \rightarrow störungstheoretische Rechnungen

Lepton- / Hadron-Collider

- Kinematik des Anfangszustands genau bekannt
- Nur eine Kollision pro Ereignis
- Ereignisse ohne Fragmentationsprodukte
- Viele Messungen nur an Lepton-Kollidern möglich

B-Fabrik

- Reaktion: $e^+e^- \rightarrow Y(4S) \rightarrow B^0\overline{B}{}^0$ oder B^+B^- , jeweils ~50%
- m(Y(4S)) = 10,58 GeV, 2 x m(B) = 10,56 GeV

- > Oszillation von B⁰-Mesonen
- CP-Verletzung bei B-Mesonen erstmals beobachtet bei Belle und BaBar
- Bestätigung des Standardmodells
- Viel genauere Messungen erforderlich, um kleine Effekte neuer Physik zu sehen

SuperKEKB

Belle II-Detektor

Pixel Vertex Detektor

FET gate clear gate P+ source n+ clear P+ drain deep n-doping 'internal gate' deep p-well deep p-well p+ back contact

Vertex-Detektor 2 Lagen DEPFET r = 1.4 and 2.2 cm

1110

Start der Datennahme am 25.3.2019

Belle II Kollaboration

R

Belle II

Computing und Software

- Erwartete Rohdatenrate vergleichbar mit ATLAS
- Daten-Speicherung und Verarbeitung an Zentren weltweit

- Software f
 ür Simulation, Rekonstruktion und Analyse
- ~1.000.000 Zeilen C++ und Python-Code
- ~100 Autoren

Produktion und Zerfall von B-Mesonen

- $^{\succ} e^{+}e^{-} → Y(4S) → B^{0}\overline{B^{0}} (50\%)$ $→ B^{+}B^{-} (50\%)$
- m(Y(4S)) = 10,58 GeV
- 2 x m(B) = 10,56 GeV

- Eigenzustände des Hamiltonoperators: $|B^{0}_{1,2}\rangle = p|B^{0}\rangle \pm q|\overline{B}^{0}\rangle, p,q = 1/\sqrt{2}$ $|B^{0}_{1,2}(t)\rangle = exp(-im_{1,2}t - \frac{1}{2}\Gamma_{1,2}t) |B^{0}_{1,2}\rangle$
- → Oszillationen → zeitabhängige CP-Verletzung

CP-Verletzung

 $a_f(t) = \frac{\Gamma(\bar{B}^0 \to f) - \Gamma(B^0 \to f)}{\Gamma(\bar{B}^0 \to f) + \Gamma(B^0 \to f)} \approx -\xi_f \sin(2\phi_1) \sin(\Delta m t)$

B⁰_{sig}

 B^0

tao

Asymmetrische Strahlenergien

Verschränkung

e

- Zerfall eines B-Mesons zum ^π_s
 Zeitpunkt t_{tag} im Flavor-Eigenzustand Q
 - Flavortagging

 Δz

- Anderes B-Meson ist zum Zeitpunkt t_{tag} im Flavor-EZ Q
- Zeitmessung: $\Delta t = t_{sig} t_{tag} = \Delta z / c\beta \gamma$

μ

 π

K⁺

π

Vollständige Rekonstruktion

- Vollständige Rekonstruktion eines hadronisch zerfallenden B-Mesons
- Impuls und Ladung des Signal-B-Mesons bekannt
- Alle verbleibenden Teilchen gehören zum Signal-B-Meson
- Rekonstruktion von Zerfällen mit Neutrinos

v

B_{tag}

Seltene Zerfälle

ν

← extrapolation with MC

 $\mathsf{B}_{\mathsf{sig}}$

Inklusive Zerfälle

- → Hinweise auf Neue Physik auch in $B \rightarrow X_s I^+I^-$?
- $B \rightarrow X_s \gamma$
- Inklusiv rekonstruiertes B_{tag}

...

Weitere Themen bei Belle II

- Messung von Zerfällen von Charm-Hadronen (e⁺e⁻ → cc̄)
- > Messung von Zerfällen von tau-Leptonen ($e^+e^- \rightarrow T^+T^-$)
- Suche nach und Vermessung von exotischen Hadronen
- Messung von Y-Zerfällen

 \geq

Typische Analyse

- Ziel: (Limit auf) Verzweigungsverhältnis oder Parameter von CP-Verletzung von Zerfällen X → Y
- 0. Simulation von Signal und Untergründen
- → Untergründe: Kontinuum ($e^+e^- \rightarrow q\overline{q}$), komb., ähnliche Zerfälle
- 1. Rekonstruktion der Zerfallskette
- In inverser Reihenfolge
- 2. Selektion von Kandidaten zur Verbesserung des Signal-zu-Untergrund-Verhälnisses (Optimierung mit Simulationsdaten)
- → Variablen: inv. Massen, Impulse, Winkel, PID, ..., NN, BDT, ...
- Effizenz von Rekonstruktion und Selektion
- 3. Bestimmung der physikalischen Parameter durch Anpassung von Verteilungen
- Oft Parametrisierungen angepasst an Simulationsdaten
- 4. Bestimmung von systematischen Unsicherheiten
- → Blinde Analyse: Daten erst anschauen, wenn Analyse "fertig"