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Basic questions

● Physics questions we want to answer...
• Is the Higgs boson a SM Higgs boson?

• What is its production cross section and couplings? → 
Measurement

• Is there physics beyond the Standard Model?

● Enormous efforts in many channels, millions of 
plots with signal/backgrounds expectations, with 
systematics and observed data

● How do you conclude on these questions?

As a layman I would now say, I think we have it
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Workflow in high-energy analyses

W. Verkerke
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Example 1: cross-section measurement

e.g. Measurement of W± and Z-
boson production cross sections in 
pp collisions at √s = 13 TeV with the 
ATLAS detector

Fiducial cross section calculated by

σ fid=
N data−Nbkg

C fid⋅L

[Phys. Lett. B 759 (2016) 601]

Signal events => Just counting events, use 
Gaussian uncertainties (see 
later), using simple error 
propagation
=> simplest case
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Example 2: multi-bin SUSY search

Most of the SUSY analyses use control regions to constrain backgrounds, 
some also binned signal regions.

E.g. Search for squarks and gluinos in events with an isolated lepton, jets and missing 
transverse momentum at √s = 13 TeV with the ATLAS detector  

Statistical combination of in total 28 bins (signal regions) + 28 bins (control regions), 
counting experiment in each bin 
→ better separation of signal and background by combining information from multiple bins

[Phys. Rev. D 96 (2017) 112010]
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Example 3: Search with continuous background

Example: Observation of a new 
particle in the search for the 
Standard Model Higgs boson with the 
ATLAS detector at the LHC

Background modeled in this case by a 
fourth-order Bernstein polynomial, 
so the background is given as a 
unbinned function.

→ Unbinned shape analysis

[Phys. Lett. B 716 (2012) 1-29]
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Outline

● Probability and likelihood

● Discovery case

● Exclusion case

● Statistical tools for high-energy physics
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Probability

...following G. Cowan (Statistical Data Analysis), and a bit simplified

Consider a set S called the sample space consisting of a certain number 
of elements. To each subset A of S one assigns a real number P(A) called 
a probability, defined by the following three axioms:

(1) For every subset A in S, P(A) >= 0.

(2) For any two subsets A and B that are disjoint, the probability 
assigned to the union of A and B is  the sum of the two corresponding 
probabilities, P(A U B) = P(A) + P(B).

(3) The probability assigned to the sample space is one, P(S) = 1.
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Interpretation of probability

Following the definition of probability two interpretations are commonly 
used:

1. Probability as relative frequency (classical statistics)

→ Very common interpretation in data analysis.
→ Elements of set S corresponds to possible outcome of a measurement.
→ Subset A of S corresponds to the occurrence of any of the outcomes in the subset 
and the subset is called an event.

→

2. Subjective probability (Bayesian)

→ Elements of sample space correspond to hypotheses or propositions, i.e. 
statements that are either true or false.
→ Interpretation as measure of belief:

P(A) = degree of belief that hypothesis A is true
→ closely related to Bayes’ theorem, e.g. interpretation in particle physics context:

P(theory|data) ~ P(data|theory) · P(theory)

P (A )=lim
n→∞

number of occurances of outcome A in n measurments
n

[again following definitions in G. Cowan ‘Statistical Data Analysis’]
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Example: binominal distributions

Consider throwing a coin – 
possible outcomes: number or 
back

Probability to obtain number: p = 0.5
Probability to obtain back: (1-p) = 0.5

Probability to obtain to get n times the 
number in N events:

f (n ; N , p)=
N !

n !(N−n)!
pn(1−p)N−n

e.g. for N=4

Mean:

In this case:

E [x ]=∫
−∞

∞

x f (x)dx=μ

E [n ]=∑
n=0

∞

n
N !

n !(N−n)!
pn(1−p)N−n=Np

Variance:

In this case:

V[n] = Np(1-p)

E [(x−E [ x ])2]=∫
−∞

∞

(x−μ)2 f (x )dx=σ2
=V [x ]

Called standard deviation
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Poisson distribution

For N → ∞ and p very small, but Np = ν equal, where ν is some finite value: The binomial 
distributions become Poisson distributions in this limit (n is an integer random variable):

With expectation value:

And variance:

● Corresponds to the usual distribution of events in particle physics.
● Can be treated as a continuous variable x as long as integrated over a range Δx which is 

large compared to unity.
● For large  mean values ν the Poisson variable behaves like a continuous variable following a 

Gauss distribution → of practical importance

f (n ;ν)= v
n

n !
e−ν

E [n ]=∑
n=0

∞

n ν
n

n !
e−ν=ν

V [n ]=∑
n=0

∞

(n−ν)
2 ν

n

n !
e−ν=ν
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Gaussian distribution
[N

. Berger, s ee literature ]

→ another important distribution, in 
particular for cases of a large number of 
events

With mean μ and variance σ2

f (x ;μ ,σ2)=
1

√2πσ2
e
−( x−μ)2

2σ2

Can be generalized to N dimensions:

With the mean μ and the covariance matrix C,
e.g. for two dimensions:

f (x ;μ ,C)=
1

(2π|C|)
N
2

e
−

1
2
(x−μ)TC−1 (x−μ)

[N
. Berger, s ee literature ]



22.4.2020 J. Lorenz, Introduction to statistics for high-energy physics 13

Gaussian quantile

A Gaussian distribution can be transformed into a 
standard Gaussian with µ =0 and σ = 1 by the 
transformation

The p.d.f of the standard Gaussian is:

And the cumulative distribution:

The cumulative distributions of the original Gaussian F(x) 
and the standard Gaussian Φ(z) are related by:

→ z is often used to express the deviation of a 
measurement from the mean – we come back to this 
later when talking about p-values

z=
x−μ
σ

ϕ(z )=
1

√2π
e−z

2/2

Φ( z)=∫
−∞

z

ϕ( z ' )dz '

F (x )=Φ( z)

z P(|x-μ|>zσ)

1 0.317

2 0.045

3 0.003

5 6 x 10-7

[N
. Berger, s ee literature ]

Called pull

68.3%



22.4.2020 J. Lorenz, Introduction to statistics for high-energy physics 14

Central limit theorem

Why are Gaussian distributions so 
important?

→ central limit theorem:

● Sum of n independent continuous random 
variables xi with means μi and variances σi

2 
becomes in the limit 
n → ∞ a Gaussian random variable

● Mean:

● Variance:

This means practically, regardless of the original 
distribution the average of the mean for many 
measurements is Gaussian → justification why 
the statistical error behaves like √N if N is large!

μ=∑
i=1

n

μi

σ
2
=∑

i=1

n

σi
2

Nice example by N. Berger

Draw random 
events from a 
chi2 
distribution

Repeating 
many 
times, the 
mean will 
be 
Gaussian 
distributed
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Chi2 test

Considering the sum of N independent 
squared Gaussian distributed variables:

This is distributed according to a χ2 
distribution for N degrees of freedom.

z=∑
i=1

N (xi−μ i)
2

σi
2

Important application: Pearson’s chi2 test

→ Typically used to quantify the agreement of two histograms, e.g. observed and expected

E.g. take a binned histogram of the variable x with observed values n1,n2, …, nN in the bins 
and if these are Poisson distributed with means ν1, ν2, …, νN

And this follows a χ2 distribution for N degrees of freedom. 
Χ2/N <= 1 is usually considered a good agreement (although there are caveats, see Cowan).

χ
2
=∑

i=1

N (ni−νi)
2

νi

[N
. Berger, s ee literature ]
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General PDF for searches

Learned now which distributions describe a 
few specific cases (there are of course 
more cases and more distributions).

The goal for every HEP analysis is to build a statistical 
model that describes the expectation and then to 
compare this to data.

W. Verkerke

f (n ;ν)= v
n

n !
e−ν

This statistical model will include two things:
● The randomness of data (thus we work with p.d.f.s),
● The model assumptions we have (e.g. the knowledge or expectation on how a certain 

physics process will be distributed or a certain systematic uncertainty is included).

Often the collection of data is described by a Poisson distribution for observing n events (this 
is the simplest case, we consider more complicated cases in the following slides):

ν is typically composed of a background expectation B and a signal expectation S:

f (n ;B+μS)=
(B+μ S)n

n!
e−(B+μ S ) μ is the signal strength and a priori 

unknown → parameter of interest (POI)
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Binned case

Often analyses consider different search 
regions:

● Signal region: signal-rich region (SR)
● Control region: background-rich 

region (CR), fit simulated backgrounds
to data

● Validation region: validation of
extrapolation (VR)

In this case we have a Poisson distribution for every of these regions or bins 
(well, at least for CRs and SRs), and the total p.d.f. becomes:

Where fB,i and fS,i indicate the fractional contribution of the background and the signal in every bin.

f ( {ni };B+μS)=∏
i

N (B⋅f B ,i+μ S⋅f S , i)
ni

ni !
e−(B⋅f B , i+μ S⋅f S ,i)
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Unbinned case
[Phys. Lett. B 716 (2012) 1-29]

Instead of counting events in every bin 
and compare this to background and 
signal predictions in every bin, can also 
also model background and signal as 
continuous functions.

The p.d.f. will then be something like e.g.

Where mi runs from 1,…, nevts

f (mi ; S ,B)=
e−(S+B)

nevts !
∏
i=1

nevts

S Psig (mi)+B Pbkg (mi)

Probability to find 
nevts events
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Construction of a likelihood

So far we looked at the p.d.f., so f(n; parameters), the probability that a 
certain data outcome is realized assuming a certain model.

But in HEP we usually have the opposite situation: we have the data 
recorded and want to know the model describing the data.

→ The parameters are the unknowns.

So instead of using the p.d.f we use 
the likelihood:

f(n; parameters) = L(parameters)

Data is unknown, 
parameters are 
known

Parameters 
are unknown, 
data is known

Parameters 
to match the 
data?

[P
hy

s.
 L

ett
. B

 7
16

 (2
01

2)
 1

-2
9]
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Inclusion of systematic uncertainties

Any model and measurement has uncertainties – statistical, systematic 
uncertainties and theoretical uncertainties

→ need to include these into the p.d.f. or likelihood
→ p.d.f. for data yields now also depend on systematic uncertainties + additional 
constraint terms for systematic uncertainties from auxiliary measurements

E.g. for a binned likelihood (see also histfactory documentation):

Nuisance 
parameters

Includes 
POIs

https://cds.cern.ch/record/1456844/?ln=de
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Modelling of systematic uncertainties

● A common solution is to introduce degrees of freedom in model that describe specific 
systematic/uncertainty!

●  The +1/-1 σ variations sampled from MC simulation are compared to nominal MC 
response (usually obtained by external measurements) 

● Interpolation, performed between +1σ ↔ nominal ↔ -1σ taken into the model as 
nuisance parameter
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Example for a complex model
[W. Verkerke at SOS 2014]
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Maximum likelihood estimation

What are the values for the parameters in the likelihood?

→ Need to estimate them using data which fluctuate.
→ Maximum likelihood estimator (MLE)

Consider the likelihood L(μ) – find the value μ which maximizes L(μ) for the given data (which 
is thus the most likely value for μ given this particular data).

→ maximum likelihood estimator:                                                   

^μ depends on data! - Thus itself an observable and not the true value, but rather ‘best guess’.

μ̂=maxμ  for which
∂ L
∂μ

=0

[N
. Berger, s ee literature ]
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Example for a binned analysis

Take the likelihood for a binned analysis (without systematic uncertainties):

To maximize the likelihood it is usually easier to look at – log (L) and to minimize this:

Advantage that derivation of a sum, not of a product, also omission of constant terms.

For the special case of Gaussian distributions (instead of Poisson):

→ chi2 formula!

Few properties of the MLE:
● For n → ∞ ^μ converges against the real value of μ.
● For large n, ^μ is asymptotically Gaussian distributed.

L(μS ;ni)=f (ni ;μ S)=∏
i=1

N

Pois(n i;μ Sf S , i+Bf B ,i)

−2 log L(μ S ;ni)=−2∑
i=1

N

 log Pois(ni ;μ Sf S , i+Bf B ,i)

λGaus=∑
i=1

N

−2 log G (ni;μ Sf S , i+B f B ,i ,σ i)=∑
i=1

N

(
ni−(μ Sf S , i+B f B, i)

σ i
)

2
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Profiling of nuisance parameters

Likelihood contains nuisance parameters 
next to the POIs that are constrained by 
additional constraint terms:

→ Not only MLE estimate for POIs needed, 
but also for nuisance parameters θ → ^θ.

→ best fit values.

→ As the nuisance parameters will 
propagate as  uncertainties to the final 
results of the analysis, care is needed both in 
the way the constraint terms are 
parametrized as also the fit result for 
nuisance parameters needs to be 
understood (see next slide).

L(μS ,θ)=∏
i=1

N

Pois(ni ;μ Sf S , i+Bf B ,i)⋅∏
j=1

N '

G (θobs ,θ)

Reduction of 
uncertainties 
in the fit

[e.g. ATLAS ttH(bb) analysis - Phys. Rev. D 97 (2018) 072016]
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Pull plots
[e.g. ATLAS ttH(bb) analysis - Phys. Rev. D 97 (2018) 072016]

Although systematic uncertainties might have 
any values, in the likelihood NP typically 
parametrized as standard Gaussian → a 
systematic uncertainty has a central value and 
an uncertainty.

Meaning of values for nuisance parameters:

● NP has central value = 0: corresponds to 
unmodified systematic uncertainties, e.g. as 
derived from MC.

● NP has an uncertainty of 1 (σ): the original 
uncertainty on the NP, as put into the constraint 
terms.

Different results after fit possible:

● Central value of NP ≠ 0: some discrepancy 
between data and statistical model was absorbed 
→ needs to be understood

● Uncertainty on NP < 1 (profiling): the systematic 
uncertainty was constrained (was reduced) by the 
data → needs to be understood (opposite 
direction  with uncertainty on NP >1 also 
possible...)
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Hypothesis testing

Statistical model built → want to check agreement with data:

● Is there are an (unknown) signal in the data?
→ discovery p-values

● Is this model of new physics excluded? 
→ exclusion limits

● In case of measurements: which is the allowed range for this POI? 
→ confidence intervals

New particle?

[J H
EP 09 (2016)  001]
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Overview on different hypothesis tests

[N
. Berger, s ee literature ]

Hypothesis: probability that data gets realized for certain model parameters
→ usually we consider two hypotheses: one that the background model corresponds to 
data (e.g. H0), and the other that the background+signal model (e.g. H1) corresponds to 
data

Test: specify a critical region W, so that there is only a small probability α that assuming a 
hypothesis H0 the data falls into the critical region W: P(x in W|H0) < α

→ α is the significance level of the test
→ α needs to be chosen such that the possible errors are minimized:

Type I error: H0 is true, but gets rejected (false discovery claim)
Type II error: H1 is true, but gets rejected (missed discovery!)
Try to minimize type II error for given level of type I error
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Different hypotheses in practice

● Discovery: is the data compatible with the background?

→ try to reject H0: background model
→ p-values and significances

● Exclusion: In case of no excess observed – which signal can be rejected?

→ H0 is signal+background, H1 is only background
→ Try to reject H0

→ Upper limits and exclusion limits

● Parameter measurements: 

→ H0 corresponds to certain values of the parameter μ
→ Which parameter values of μ are not rejected at 68% CL level?
→ 1σ confidence interval for μ

Trying to reject H0 in all cases, so be careful, definition of H0 changes!
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Neyman-Pearson lemma

Test statistics:

● Hypothesis depends in general on multiple parameters, e.g. x1, x2,…, xN

● Can map these parameters on a scalar by a function t(x1, x2,…, xN) = tcut → test 
statistics.

● Transform now all p.d.f.s to be now functions of t, i.e. f(t;H0) → the distributions are 
now 1-dimensional.

● The boundary tcut encloses a critical region to reject the hypothesis.

Neyman-Pearson lemma:

● Optimal choice of critical region?

● Given by: 

● Means we always need two hypotheses H0 and H1

t (x)=
P (x∣H1)

P (x∣H0)
>c
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Discovery test statistics

Is the data consistent with the background-model?

● Two hypotheses: μS=0 and μS≠0
● However, μS≠0 not just one parameter value.

→ Define as test statistics for discovery: 

And more precisely, as we do not want to reject the background-only 
hypotheses if we have an underfluctuation in data:

t (μ)=−2 ln λ(μ)=−2 ln (
L(μ S)
L(μ̂ S)

)=−2 ln (
L(μ , ^̂θ)

L(μ̂ , θ̂)
)

q0={t (0)       μ̂≥0
0           μ̂<0 }
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Discovery p-value

Large values of q0 means that L(^S) and L(S=0) are more and more 
different/incompatible 

→ Define p-value:

Probability to obtain observed data, or more extreme, given the hypothesis 
in future repeated identical experiments

[G
. Cow

an, s ee literature ]
p0= ∫

−q0,obs

∞

f (q0∣0)dq0
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Discovery significance

Can transform the p-value in significances – useful as 
interesting p-values small.

Reminder: Gaussian quantiles

Idea: how many standard deviations σ of a standard 
Gaussian corresponds the p-value to?

→ 

z P(|x-μ|>zσ)

1 0.317

2 0.045

3 0.003

5 6 x 10-7

[N
. Berger, s ee literature ]

Z=Φ−1
(1−p)

[Phys. Lett
. B  716 (2012)  1-29]
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Asymptotic approximation and useful hand formulas

● In certain situations, i.e. in case of a large data statistics, can use the Wald 
approximation (see details on lectures of G. Cowan).

→ In these cases Z = Φ-1(1 – p0) = √q0

● For large N, if the process is Gaussian, the significance also takes a simple 
form:

→ 

● In case of Poisson distributions a bit more complex formula:

→ 

● Also note that in case of calculating a discovery sensitivity (so expected), 
one needs f(q0|μ’) and not f(q0|0).

Z=√q0=
μ̂ S

√B

Z=√2((μ̂S+B) log (1+
μ̂ S
B
)−μ̂ S)
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Exclusion test statistics

Is it possible to exclude this signal model with the measured data? What is 
the upper limit?

● H0: μS = S0 (so a specific signal model), H1: μS<S0

→ Use as test statistics:

In particular an upward fluctuation should not result in an exclusion of the signal model.

→ Usually we know however, that μS >= 0, and do not want to allow for 
negative S. Modified test statistics (similar to qμ):
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CLs method

This definition can get problematic if background (B) and 
background+signal (μS+B) models very similar → in this case 
can get exclusions of a signal where one would not think to 
be sensitive to.

Example: Nobs = 2 → pS+B(μS=0) = 0.04
μS≥0 excluded at 95% C.L. ?

Modified approach to protect against such
inference on signal – a little bit ad-hoc, 
but working nicely:

Instead of requiring pS+B <= 5%,
require

Example: Nobs = 2 → S>3.4 excluded at 95% CLs
For large Nobs effect on limit is small as pb → 0

[N
. Berger, s ee literature ]
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Example: contour plot
[Phys. Rev. D 96 (2017) 112010]

Expected limit: 
Limit if data would 
correspond to the 
background model

Uncertainties on the 
expected limit, depend 
also on the nuisance 
parameters

Observed limit, 
calculated with the 
data

Uncertainties on the 
observed limits 
(varying the signal 
cross section +- 1 σ) 

Every point in this plane corresponds to a 
signal model – this exact signal model is 
then tested
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Confidence intervals

Parameter estimation: what is the allowed range (confidence interval) for a 
parameter, i.e. the interval that contains at a level of x% of the times the 
true value of the parameter?

Consider Gaussian case (^μ ~ G(μ*,σ)):

→ the interval [^μ – σ, ^μ + σ] will contain 
the true value μ* in 68% of the times

P (μ*
−σ<μ̂<μ

*
+σ)=68 %

⇔P (|μ̂−μ*
|<σ)=68%

⇔P (μ̂−σ<μ*
<μ̂+σ)=68 % [N

. Berger, s ee literature ]
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Confidence intervals with likelihoods

● In case of likelihoods test H(μ0) use the test statistics 

● This test needs to be two-sided as the true value can be lower or higher 
than the observed value.

Example 1D:

● Plot tμ
● Minimum is at ^μ
● +- Z σ uncertainties given by crossings 

of tμ with Z2

● Gaussian case: [^μ – σ, ^μ + σ] for
 68% coverage

tμ0
=−2 ln

L(μ=μ0)

L(μ̂ )

[ATLAS-CO
N

F-2017-047]
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Example in 2D

[ATLAS-CO
N

F-2017-047]

Essentially the same procedure, but now for multiple parameters.
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Overview on tools in ROOT

● RooFit: tool/language for building 
probability models: datasets, 
likelihoods, minimization, toy data, 
visualization

● HistFactory: tool to construct 
binned template models of 
arbitrary complexity using classes 
of physics concepts: 
channel/region, sample, 
uncertainties
Builds a RooFit stat. model from 
HistFactory physics model

● RooWorkspace: persistent RooFit 
object to transport a likelihood, 
containing model/data. Completely 
factorizes process of building and 
using likelihood functions.

● RooStats: tool/suite to calculate 
intervals and perform hypothesis 
tests using a variety of statistical 
techniques; easy to use with 
RooWorkspace
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HistFitter

step-0

Histogram production
step-1

PDF construction

Workspace building

step-2/3
Analysis of models

The statistical tool/framework HistFitter is built around RooFit/histfactory/RooStats + extends 
them in key areas → the user can perform a full statistical analysis based on just a user 
specific configuration file

[Eur.Phys.J. C75 (2015) 153]
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Summary

Presented a few of the key concepts in statistics for high-energy physics, of 
course being very brief on many aspects.

→ Just an appetizer for more detailed lectures (see literature in the next slide).

In practice, many of the concepts are nicely implemented in statistical 
tools like RooFit/histfactory/RooStats/HistFitter and others so that you 
usually do not need to worry about the fine print.

Nevertheless, one should understand the concepts to make sure that the 
own analysis is solid in terms of the statistical methods used!
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To read more and references

These slides are largely based on the great lectures by:

● Nicolas Berger, Introduction to statistics for high energy physicists, statistics course in 
Geneva, 2018, Slides, Slides2 and Slides3 

● Glen Cowan, Statistics and Discoveries at the LHC, slides.

There are also few other lectures available:

● Kyle Cranmer’s lectures: slides
● Lorenzo Moneta’s and Louis Lyons’ lectures: slides

And some recommended books:

● G. Cowan, Statistical Data Analysis, Clarendon Press, Oxford, 1998. 
● R.J.Barlow, A Guide to the Use of Statistical Methods in the Physical Sciences, John Wiley, 

1989; 
● F. James, Statistical Methods in Experimental Physics, 2nd ed., World Scientific, 2006; 

W.T.Eadie et al., North-Holland, 1971; 

http://dpnc.unige.ch/~sfyrla/teaching/Statistics/lectures/GenevaStats2018_Lecture1-expanded.pdf
http://dpnc.unige.ch/~sfyrla/teaching/Statistics/lectures/GenevaStats2018_Lecture2-expanded.pdf
http://dpnc.unige.ch/~sfyrla/teaching/Statistics/lectures/GenevaStats2018_Lecture3-expanded.pdf
https://indico.cern.ch/event/77830/
https://indico.cern.ch/event/126254/
https://indico.cern.ch/event/545212/
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Backup
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Summary of which p.d.f to use when by N. Berger



HistFitter overview
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HistFitter extends RooFit/HistFactory/RooStats in four key areas:
• Programmable framework: 

Performing complete statistical analyses, using a user-defined configuration file
• Analysis strategy: 

Concepts of analysis control, validation and signal regions deeply woven into the design of 
HistFitter

• Bookkeeping: 
HistFitter keeps track of numerous data models - including construction and statistical tests of 
all of them in an organized way

• Presentation and interpretation: 
Easy-to-use tools to present data and interpret results (statistical significances; quality of 
likelihood fits; tables and plots summarising the results; etc.)

HistFitter used in numerous analyses (e.g. SUSY searches) of the ATLAS Collaboration at the LHC.

HistFitter: software framework for statistical data analysis.
• Built on top of HistFactory/RooFit (construction of parametric models) and RooStats (statistical  

tests of data)
• Consists of a Python part for configuration and a C++ part for CPU-intensive calculations
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