High-Rate Capable Micromegas Detectors for Ion Transmission Radiography Applications

Jona Bortfeldt et al.

LS Schaile Ludwig-Maximilians-Universität München

Symposium: Advanced Semiconductor Detectors for Medical Applications February $13^{\rm th}\ 2015$

Katia Parodi: Motivation and Requirements

Ion Transmission Radiography

- ions with known initial energy, higher than in therapy
- residual energy measurement
 - \rightarrow energy loss
 - \rightarrow contrast

Present Setup at HIT

- mean particle position from steering magnets (carbon beam \sim 3.4 mm FWHM)
- integrate over several 10^2 to 10^4 particles

Katia Parodi: Motivation and Requirements

Ion Transmission Radiography

- ions with known initial energy, higher than in therapy
- residual energy measurement
 - \rightarrow energy loss
 - $\rightarrow \text{contrast}$

Present Setup at HIT

- mean particle position from steering magnets (carbon beam \sim 3.4 mm FWHM)
- integrate over several 10² to 10⁴ particles

Future

- single particle tracks from Micromegas
 - spatial resolution ${\sim}0.1\,\text{mm}$
 - MHz/cm² particle rate (multi-hit separation, signal duration)
 - low material budget
- single particle range/energy from suitable telescope
 - scintillator based
 - maximum rate O(MHz)
- \rightarrow improve spatial resolution, decrease dose

• gas amplification 10³ to 10⁴

- charge signal on strips single strip readout
 - \rightarrow spatial resolution $\mathcal{O}(50\mu m)$
 - \rightarrow timing $\mathcal{O}(\mathsf{ns})$
- thin amplification gap & fine segmentation
 - \rightarrow fast drain of positive ions
 - ightarrow high-rate capable
- COMPASS: precision tracker, high flux
- CAST: photon detector, good energy resolution, low background
- T2K: TPC readout, large area

Floating Strip Micromegas

Floating Strip Micromegas

challenge: discharges

- charge density $\geq 2 \times 10^{6} \text{ e}/0.01 \text{ mm}^{2}$ (Raether limit)
- conductive channel
 → potentials equalize
- non-destructive, but dead time
 afficiency draw
 - \rightarrow efficiency drop

idea: minimize the affected region

- "floating" copper strips:
 - strip can "float" in a discharge
 - individually connected to HV via 22MΩ
 - capacitively coupled to readout electronics via pF HV capacitor
 - only two or three strips need to be recharged

 \rightarrow optimization in dedicated measurements & detailed simulation

Discharge Study with Floating Strip Micromegas

- alpha source

 → induces discharges
- voltage drop on one to three strips
 - \rightarrow recharge current
- global high voltage drop
 → affects all strips
- voltage signal on seven neighboring strips
 - \rightarrow discharge topology

Optimization of the Floating Strip Principle

- standard Micromegas (approximate): $100 \text{ k}\Omega$ 300 V drop, dead time \sim 80 ms
- intermediate: $1\,M\Omega$ 20 V drop, dead time ${\sim}10\,\text{ms}$
- floating strip: $22 M\Omega$ $0.5 V drop \rightarrow negligible$

Detailed Investigation of the Global Voltage Drop

- measure voltage drop of common HV potential
- discrete structure \rightarrow probably corresponds to discharge of one, two or three strips
- how can we show this?
 - \rightarrow investigate discharge topology
 - \rightarrow develop simulation
 - \rightarrow compare predicted with measured voltage drop

Discharge Topology - Expected Amplitude Correlation

amplitude strip 3

- measure voltage signal on neighboring strips
- two reasons for signals on strips:
 - discharge onto strip
 - capacitive coupling from neighboring strips

Discharge Topology - One Strip

- discharges on separate strips distinguishable
- substructure quantitatively described by simulation

- consider the involved capacitances e.g. between neighboring strips, coupling capacitors, cable capacitance ...
- simulate discharges (blue switch)

Optimum Configuration: Global Voltage Drop

- good agreement between simulation and measurement
- only two free parameters
 - response time of HV supply: 500 ms
 - voltage difference between strips at which leakage stops: 220 V
- peaks correspond indeed to discharge of one, two or three strip

floating strip principle works

- discharges: negligible effect on common high-voltage
- discharges are localized

measurements

- ion tracking at highest rates at HIT Micromegas tests
- gas studies and μTPC reconstruction at Tandem/Garching
- first test of a 2d ion radiography system at Tandem/Garching

Ion Tracking with Thin Micromegas at Highest Rates @ HIT

beams

- ¹²C @ 88 MeV/u to 430 MeV/u
 2 MHz to 80 MHz
- p @ 48 MeV to 221 MeV 80 MHz to 2 GHz
- thanks to S. Brons and the HIT accelerator team for the support

floating strip Micromegas

- 6.4×6.4 cm² doublet
- low material budget (FR4 + Cu \leq 200 µm)
- Ar:CO₂ 93:7 gas mixture

additional detectors

- $9 \times 9 \text{ cm}^2$ monitoring Micromegas with x-y-readout
- trigger on secondary charged particles

Pulse Height for 88 MeV/u ^{12}C pulse height vs E_{amp}

- exponential rise as expected (Townsend theory)
- gas gain can be selected over wide range as needed
- 30 kV/cm = 450 V

cathode

mesh

Edrift

pulse height vs E_{drift}

 $E_{
m drift} < 0.15\,kV/cm$:

- low charge separation
- low drift velocity

large $E_{\rm drift} > 0.5 \, \rm kV/cm$:

low electron mesh transparency

Efficiency for 88 MeV/u ^{12}C

optimum value: > 99% in micom0

Beam Characterization

signal timing $^{12}\text{C},\,5\times10^{6}\,\text{Hz}$

bunch spacing

- good multihit resolution
- bunch spacing measureable
- bunch filling measureable

Signals at Lowest and Highest Rate

 12 C, E = 430 MeV/u, 5 MHz

p, E = 221 MeV, 2 GHz

3 particles clearly distinguishable \rightarrow single particle tracking possible

integration over \sim 800 coincident particles \rightarrow envelope of beam profile

20 40

pulse height [arb. units] 1000 200

0

-500

16420 11700 123 108 6420

100 120

strips

80

Pulse Height & Spatial Resolution vs Rate for 88 MeV/u ^{12}C

- up to 80 MHz single particle tracks visible but not all of them separable
- only 20% pulse height reduction @ 80 MHz

- highest rates: slight distortion of hit position by hits on adjacent strips
- limited by multiple scattering
- sufficient for medical application
- \rightarrow tracking of carbon ions at highest rates possible

Detection Efficiency and Up-Time

p, 221 MeV

 \rightarrow no efficiency & up-time reduction in floating strip Micromegas

Rate Capability & Multi-hit Resolution

reconstructed hits per multi-event

track finding algorithm

• reconstruction of all particles up to $10 \text{ MHz} = 7 \text{ MHz/cm}^2$

- Hough transform: d = x · cos(α) + z · sin(α) point in position space ⇔ line in Hough space line in position space ⇔ point in Hough space
- up to seven coincident tracks reconstructable

23 MeV Proton Tracking at the Tandem/Garching

goal

- further improve Micromegas high-rate capability \leftrightarrow decrease signal duration
 - \rightarrow fast Ne:CF4 gas mixtures
- investigate single plane track inclination reconstruction
- commission range telescope
- test custom amplifier electronics

floating strip Micromegas

- two 6.4×6.4 cm² doublets, 128 strips
- low material budget (FR4 + Cu $\leq 200\,\mu\text{m}$)
- APV25 based readout

range telescope

- 13 layers 1 mm scintillator
- two wavelength-shifting fibers per layer
- read out with 64 pixel multi-anode photomultiplier
- discrete voltage & spectroscopy amplifiers
- VME based QDC & TDC readout system

Pulse Height and Efficiency for Ne:CF₄ 80:20

pulse height vs $E_{\rm drift}$

efficiency vs $E_{\rm drift}$

- high gas gain
- low diffusion

 \rightarrow moderate decrease with increasing drift field

\rightarrow excellent performance with new mixture

• above 96% for all drift fields

Track Inclination Reconstruction in a Single Detector Plane

linear fit to data points

rise time fit

simulated signals

method:

- $\bullet \text{ arrival time} \leftrightarrow \mathsf{drift} \text{ distance}$
- measure arrival time of charge cluster on strip
 - \rightarrow signal timing t_0
- linear fit to time-strip data points
 - \rightarrow track inclination
 - \rightarrow alternative hit position
 - \rightarrow drift velocity

systematics:

- capacitive coupling of signals onto neighboring strips
- simulation with parameter-free LTSpice detector model

Track Inclination Measurement in a Single Detector Plane with Ar:CO₂ 93:7

- track inclination reconstruction possible for angles $20^\circ \le \vartheta \le 40^\circ$ with angular resolution $\binom{+6}{-4}^\circ$
- systematic effect understood \rightarrow calibration possible
- combined position reco possible (µTPC + centroid)

Track Inclination Measurement with the New Gas Ne:CF₄

- track inclination reconstruction possible with fast Ne:CF₄ gas mixture
- angular resolution $\binom{+5}{-4}^{\circ}$ for $E_{\rm drift} < 0.6\,{\rm kV/cm}$

Improvement of High-Rate Capability with Ne:CF4

- signal duration = electron drift time + ion drift time
- electron drift time: $150 \, \text{ns} \rightarrow 60 \, \text{ns}$
- ion drift time: 260 ns ightarrow 85 ns
- \rightarrow factor 3 improvement

Range Telescope Commissioning - Pulse Height Behavior

\rightarrow difficult to use pulse height information \rightarrow rather use hit/miss info

Range Telescope Commissioning – One-Dimensional Position Resolution mean range vs position

- Tandem beam not mono-energetic
 → use additional collimators behind
 bending dipole
- mean range homogeneous over detector
- absorber edge visible track resolution $\sim 0.8\,\text{mm}$ due to multiple scattering

First Two-Dimensional Ion Radiography

• PLA step phantom visible

First Two-Dimensional Ion Radiography

- PLA step phantom visible
- ball point pen visible
- spatial resolution limited by multiple scattering
- resolution improvable by additional MM layers

Jona Bortfeldt (LMU München)

Summary

- floating strip Micromegas were optimized and work
- discharges:
 - behavior and topology understood
 - negligible influence on efficiency
- carbon ion and proton tracking at highest rates at HIT
 - separation of all particles at rates $\leq 10 \text{ MHz}$
 - spatial resolution better 180 μm at all rates ${\leq}80\,MHz$
 - stable operation up to highest rates of 2 GHz
- 23 MeV proton tracking at Tandem/Garching
 - successful: fast Ne:CF₄ gas mixture
 - \rightarrow decrease signal duration by factor 3
 - single plane track inclination reconstruction possible
- Micromegas + scintillator range telescope in 23 MeV proton beams
 - single particle range determination using hit/miss information
 - first 2d ion radiography successful
 - spatial resolution limited by multiple scattering

floating strip Micromegas:

discharge tolerant, high-rate capable tracking detectors with good spatial resolution \rightarrow suitable for medical applications

Summary

- floating strip Micromegas were optimized and work
- discharges:
 - behavior and topology understood
 - negligible influence on efficiency
- carbon ion and proton tracking at highest rates at HIT
 - separation of all particles at rates $\leq 10 \text{ MHz}$
 - spatial resolution better 180 μm at all rates ${\leq}80\,MHz$
 - stable operation up to highest rates of 2 GHz
- 23 MeV proton tracking at Tandem/Garching
 - successful: fast Ne:CF₄ gas mixture
 - \rightarrow decrease signal duration by factor 3
 - single plane track inclination reconstruction possible
- Micromegas + scintillator range telescope in 23 MeV proton beams
 - single particle range determination using hit/miss information
 - first 2d ion radiography successful
 - spatial resolution limited by multiple scattering

floating strip Micromegas:

discharge tolerant, high-rate capable tracking detectors with good spatial resolution \rightarrow suitable for medical applications

Thank you!

backup – Discrete & Integrated Floating Strip Micromegas

- exchangable Rs and Cs \rightarrow optimization possible
- more complicated assembly → soldering ×2 for each strip
- space requirements due to HV sustaining components
 - \rightarrow strip pitch limited to 0.5 mm

- anode strips: connected to HV via printable paste resistors
- readout strips: second layer of copper strips capacitive coupling through the board,

intrinsically HV sustaining

backup – Track Inclination Reconstruction Systematics: LTSpice-Simulation

- use LTSpice to simulate 16 neighboring strips, read out via charge-sens.-preamps
- consider mesh-anode strip, anode strip-ground, anode strip-anode strip, coupling, stripline-stripline and stripline-ground capacitance, no free parameter
- inject time dependent current on anode strips \rightarrow study signals on all other strips

backup

backup - Hough Transform Based Track Building

- for improved stability: use Hesse normal form as transform function
- up to seven valid tracks reconstructed per event