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A different view
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Where does machine learning (ML) fit in?

Data 
analysis

Data processing 
& reconstruction

Extensive validation studies 
required to understand results 

Possibly statistical limitations 

• Searches for/measurements of 
the Higgs boson (BDT) 

• Searches for new physics (BDT) 

• …

Comprehensible performance 

Sufficient size of datasets 

• Lepton identification (BDT) 

• W-boson and top quark 
identification (BDT, DNN) 

• b-quark tagging (RNN, DNN, 
BDT) 

• Quark/gluon jet tagging (CNN) 

• …
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Machine learning

Interdisciplinary field of computer science, statistics and probability theory 

Mathematical model mapping a set of input values to output values 

Estimation of a statistical model from data (learning) 
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Machine learning

Interdisciplinary field of computer science, statistics and probability theory 

Mathematical model mapping a set of input values to output values 

Estimation of a statistical model from data (learning) 

Make predictions on new data based on the estimated statistical model 

Widely applied in HEP: Analyis, Computing, Reconstruction, Triggering, etc. 

Multiple architectures available depending on the use case (boosted decision 
trees, neural networks, convolutional networks, …)

Training data

Train

Model

Evaluation

Test

Test data
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Neural networks (NN)

Form the basis of modern algorithms  

Mapping an n-dimensional input to a m-dimnesional output by matrix multiplication 

𝑓 indicates the activation of a single neuron (sigmoid, tanh, ReLU, …) 

By optimising the weights the predicted output is optimised

Input 
layer

Hidden 
layer

Output 
layer

Trainable 
parameters

Trainable 
parameters

X Y(2)

W(1)

Y(2) = XW(1)

a(2) = 𝑓(Y(2))

Y(3) = a(2)W(2)

ŷ = 𝑓(Y(3))
W(2)

ŷ
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Deep Convolutional Neural Network (CNN)

Entropy 2017, 19(6), 242; doi:10.3390/e19060242

Processing data of a grid-like topology (e.g. 2-d images) 

Convolutional layers are organised in feature maps (e.g. indicating different properties) 

Pooling layer creating an ’invariance to local translations’

https://doi.org/10.3390/e19060242
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Recurrent Neural Network (RNN)

’Deep Learning’, doi:10.1038/nature14539

Map an input sequence onto an output sequence 

Neurons get inputs from other neurons at different time steps 

Possible to process sequences of variable size
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Sequential application of cuts, final nodes classify an event as S or B 

• Easy to interpret and visualise 
• Weak variables are ignored  

(doesn’t deteriorate the performance) 
• But also very sensitive to statistical  

fluctuations in training data 

For each variable find the best partition (”cut”),  
and repeat with each subsequent node 

Boosted Decision Trees (1996) 
• Build highly effective classifiers by 

combining a large number of mediocre 
ones

AdaBoost

David Handl | string_data Workshop | 27th March 2018 

Boosted Decision Trees (BDT)
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ML techniques for 

reconstruction
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Quark versus gluon jets with jet images
ATL-PHYS-PUB-2017-017

• Quarks and gluons “hadronize“ in the 
detector and form a jet 

• Differentiating between quark-/gluon-
initiated jets has broad applicability in 
measurements and searches 

• Full detector simulation based on 
rotated, Lorentz boosted and 
normalised fixed size grids (jet 
images) 

• CNN utilises entire jet radiation pattern

http://cdsweb.cern.ch/record/2275641
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Truth particles Associated tracks

• Quarks and gluons “hadronize“ in the 
detector and form a jet 

• Differentiating between quark-/gluon-
initiated jets has broad applicability in 
measurements and searches 

• Full detector simulation based on 
rotated, Lorentz boosted and 
normalised fixed size grids (jet 
images) 
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Truth particles Associated tracks

Cluster

• Quarks and gluons “hadronize“ in the 
detector and form a jet 

• Differentiating between quark-/gluon-
initiated jets has broad applicability in 
measurements and searches 

• Full detector simulation based on 
rotated, Lorentz boosted and 
normalised fixed size grids (jet 
images) 

• CNN utilises entire jet radiation pattern
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Truth particles Associated tracks

Cluster Tower

• Quarks and gluons “hadronize“ in the 
detector and form a jet 

• Differentiating between quark-/gluon-
initiated jets has broad applicability in 
measurements and searches 

• Full detector simulation based on 
rotated, Lorentz boosted and 
normalised fixed size grids (jet 
images) 

• CNN utilises entire jet radiation pattern

http://cdsweb.cern.ch/record/2275641
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Average jet images
ATL-PHYS-PUB-2017-017
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• Gluon jets tend to have more constituents and a broader radiation pattern 

• Average is also determined for the other 3 types of images

http://cdsweb.cern.ch/record/2275641
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Results of quark/gluon classification
ATL-PHYS-PUB-2017-017

• Two types of images are stacked and classification is performed 

• CNN based tagging algorithm shows similar performance than individual physically 
motivated observables 

• Further improvements are under investigation
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Identifying b-tagged jets with RNN’s
ATL-PHYS-PUB-2017-003

• Important for precise SM 
measurements (H→bb) as well as 
exploring new physics 

• Aim to separate jets containing a b-
hadron from jets initiated by lighter 
quark flavours 

• Classify 4 categories:  
b-, c-, light-hadrons and hadronic τ 
decays 

• b-hadrons travel a few mm before 
decaying → secondary vertex

http://cds.cern.ch/record/2255226/
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Identifying b-tagged jets with RNN’s
ATL-PHYS-PUB-2017-003

ATLAS default high-level algorithm

Impact parameter  
based

Secondary vertex 
fitting

Multi-vertex decay 
chain finder

Boosted decision 
tree

Novel approach uses track properties as 
input to RNN

• Important for precise SM 
measurements (H→bb) as well as 
exploring new physics 

• Aim to separate jets containing a b-
hadron from jets initiated by lighter 
quark flavours 

• Classify 4 categories:  
b-, c-, light-hadrons and hadronic τ 
decays 

• b-hadrons travel a few mm before 
decaying → secondary vertex

RNN

http://cds.cern.ch/record/2255226/


• RNN replaces the impact parameter 
based algorithm 

• Default impact parameter based 
algorithm builds a discriminant from a 
likelihood method 

• RNN directly learns sequential 
dependencies (in this case multiple 
tracks according to a jet)
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Identifying b-tagged jets with RNN’s
ATL-PHYS-PUB-2017-003
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Network architecture
ATL-PHYS-PUB-2017-003

http://cds.cern.ch/record/2255226/


• Default high-level algorithm (MV2c10) also depicted as an upper limit on the performance 

•  Recurrent classifier (RNNIP) outperforms the current standard approach (IP3D) 

• Additional studies ongoing to further improve the tagging efficiency
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Performance of recurrent classifier
ATL-PHYS-PUB-2017-003
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ML techniques in 

data analyses
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Multivariate techniques in physics analyses 

Algorithms aim to separate particular events from each other  
(e.g. hypothetical supersymmetric signature from SM background) 

ML techniques to search for new particles is relatively novel 

There are also potential risks that have to be reduced or completely avoided 

Particular emphasis on following categories:

David Handl | string_data Workshop | 27th March 2018 
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Multivariate techniques in physics analyses 

Algorithms aim to separate particular events from each other  
(e.g. hypothetical supersymmetric signature from SM background) 

ML techniques to search for new particles is relatively novel 

There are also potential risks that have to be reduced or completely avoided 

Particular emphasis on following categories:

Statistics 
• How many training 

events? 
• Relation between  

trainable parameters 
and  training events 

• Ideas to increase 
statistics?

Optimisation 
• Algorithm? 
• Figure of merit? 
• Input variables 
• Trainable parameters 
• Avoid overtraining

Validation 
• Modeling of input? 
• What does the 

algorithm learn? 
• Correlations? 
• Modeling in CR and  

VR

Systematics 
• Fluctuations of syst. 

MC? 
• Uncertainties for 

different algorithms? 
• How to increase 

statistics? 
• Ideas for mitigation?
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Multivariate techniques in physics analyses 

Algorithms aim to separate particular events from each other  
(e.g. hypothetical supersymmetric signature from SM background) 

ML techniques to search for new particles is relatively novel 

There are also potential risks that have to be reduced or completely avoided 

Particular emphasis on following categories:

Understanding what the algorithm learns is vital!

No tight order of these categories — makes it more complex

Statistics 
• How many training 

events? 
• Relation between  

trainable parameters 
and  training events 

• Ideas to increase 
statistics?

Optimisation 
• Algorithm? 
• Figure of merit? 
• Input variables 
• Trainable parameters 
• Avoid overtraining

Validation 
• Modeling of inputs? 
• What does the 

algorithm learn? 
• Correlations? 
• Modeling in CR and  

VR

Systematics 
• Fluctuations of syst. 

MC? 
• Uncertainties for 

different algorithms? 
• How to increase 

statistics? 
• Ideas for mitigation?
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No accurate answer! — Strongly depends on complexity of problem and learning algorithm 
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How much training data is needed

“Get as much as you can!“  — every Data Scientist always
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No accurate answer! — Strongly depends on complexity of problem and learning algorithm 

Rules and tools that help to tackle this question: 
• Perform learning curves 

(Error function can be mean squared error or any other) 
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How much training data is needed

“Get as much as you can!“  — every Data Scientist always
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Bias 
A more advanced 
algorithm reduce error

Variance 
More data can help 
closing the gap
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No accurate answer! — Strongly depends on complexity of problem and learning algorithm 

Rules and tools that help to tackle this question: 
• Perform learning curves 

(Error function can be mean squared error or any other) 

• 10-1 x more training  
data than trainable parameters 

• Chosen metric also depends on 
the problem  
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How much training data is needed

“Get as much as you can!“  — every Data Scientist always
er

ro
r

training events

test

train er
ro

r

training events

test

train

Bias 
A more advanced 
algorithm reduce error

Variance 
More data can help 
closing the gap

m
et

ric

training events / parameters

1

1 to 15

💡Metrics are 

parameters to evaluate 
algorithm performance
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Associated production of Higgs boson with top quark pairs

Higgs boson discovery by the ATLAS and CMS collaborations was a crucial milestone 

Measuring Yukawa interactions are important, which account for fermion masses  

So far, only the decay H→ττ has been observed and evidence of H→bb has been found 

Coupling of the Higgs boson to top quark could be sensitive to effects beyond the SM 

Direct measurement can be achieved via the process gg/qq̄→ttH̄

arxiv:1712.08891

https://arxiv.org/pdf/1712.08891.pdf
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ttH̄ production cross section is very small compared to SM background 

Extensive search strategy has been performed with many different final states:  
2 - 4 lepton final states considering electrons, muons and hadronically decaying taus

arxiv:1712.08891

Analysis strategy (ttH̄)

https://arxiv.org/pdf/1712.08891.pdf
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Analysis strategy (ttH̄)

ttH̄ production cross section is very small compared to SM background 
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arxiv:1712.08891

Each of these ”channels” are further splitted: 
• into control regions (CR) for background estimations 
• into signal regions (SR) with enhanced sensitivity 

In total 332 030 events are selected in data — 91! expected signal events 

All channels perform BDT’s to further improve the signal sensitivity

Analysis strategy (ttH̄)

https://arxiv.org/pdf/1712.08891.pdf
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arxiv:1712.08891

A maximum-likelihood fit is performed 
simultaneously on all search regions to extract 
the ttH cross section normalised to SM 
prediction 

Results (ttH̄)

BDT output
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Example: 2 lepton channel 

• Extensive optimisation and validation studies performed 

• Modeling of the input variables 

• Understanding correlation of input to the BDT output 

• Study the bins size to enhance sensitivity and/or to keep the 
remaining backgrounds under control 

• Very good agreement between data and SM prediction observed

https://arxiv.org/pdf/1712.08891.pdf
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arxiv:1712.08891

A maximum-likelihood fit is performed 
simultaneously on all search regions to extract 
the ttH cross section normalised to SM 
prediction 

Results (ttH̄)
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Excess of events over the SM prediction 
is found with an observed significance of 
4.1 standard deviations 

→ first evidence of associated production 
of Higgs boson and top quark pair

https://arxiv.org/pdf/1712.08891.pdf


Searching for supersymmetry with ML techniques
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Supersymmetry is a popular theory for physics beyond the SM 

Provides solutions to important open questions (hierarchy problem, dark matter, GUT, …) 

Basic principle is a symmetry between bosons and fermions 

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults
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Supersymmetry is a popular theory for physics beyond the SM 

Provides solutions to important open questions (hierarchy problem, dark matter, GUT, …) 

Basic principle is a symmetry between bosons and fermions 

Example: Searching for scalar top quarks 

Top (t1̃) and bottom squarks are superpartners of top and bottom quarks 

Naturalness arguments suggest a relatively light t1̃ 

t1̃ can be produced at LHC 

 

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults
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Supersymmetry is a popular theory for physics beyond the SM 

Provides solutions to important open questions (hierarchy problem, dark matter, GUT, …) 

Basic principle is a symmetry between bosons and fermions 

Example: Searching for scalar top quarks 

Top (t1̃) and bottom squarks are superpartners of top and bottom quarks 

Naturalness arguments suggest a relatively light t1̃ 

t1̃ can be produced at LHC 

Current searches derive mass limits 
in terms of simplified models 

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults


 57

Scalar top pair production
Simplified model 

• Direct stop pair production 

• mass splitting Δm ≡ mt1̃ - mχ1̃ 

• Neutralinos χ1̃ produce large ETmiss 

Difficult to distinguish from tt ̄bkg 

• Similar final state, except large ETmiss
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Scalar top pair production
Simplified model 

• Direct stop pair production 

• mass splitting Δm ≡ mt1̃ - mχ1̃ 

• Neutralinos χ1̃ produce large ETmiss 

Difficult to distinguish from tt ̄bkg 

• Similar final state, except large ETmiss

Mass plane of 
top squark (x)  
- neutralino (y)
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Search for scalar top quarks in one lepton final states

 59David Handl | string_data Workshop | 27th March 2018 

arxiv:1711.11520
• Along the diagonal Δm ≡ mt1̃ - mχ1̃ ~ mt the 

decay is identical to top quark pair production 

→ Analysis performs 3 independent BDTs 
along the diagonal line
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arxiv:1711.11520
• Along the diagonal Δm ≡ mt1̃ - mχ1̃ ~ mt the 

decay is identical to top quark pair production 

→ Analysis performs 3 independent BDTs 
along the diagonal line
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arxiv:1711.11520
• Along the diagonal Δm ≡ mt1̃ - mχ1̃ ~ mt the 

decay is identical to top quark pair production 

→ Analysis performs 3 independent BDTs 
along the diagonal line
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arxiv:1711.11520
• Along the diagonal Δm ≡ mt1̃ - mχ1̃ ~ mt the 

decay is identical to top quark pair production 

→ Analysis performs 3 independent BDTs 
along the diagonal line
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• Dominant SM background is 
estimated in data with low output 
score 

• Signal region defined by large 
output score 

• Likelihood fit is performed in 
signal region 

https://arxiv.org/pdf/1711.11520.pdf
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Searching for supersymmetry with ML techniques
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• After likelihood fit no 
significant excesses are 
observed compared to SM 
expectation 

• Exclusion limits are derived for 
model of top squark pair 
production 

• Large improvement of the 
expected limit using BDT 
compared to the previous 
analysis

arxiv:1711.11520

https://arxiv.org/pdf/1711.11520.pdf
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The HiggsML challenge

Public competition organised by ATLAS 
in 2014 (https://higgsml.lal.in2p3.fr) 

Goal was to separate ATLAS simulated 
H→ττ events from background  

After 4 weeks almost 200 teams had 
beaten the in-house benchmark 

In total 1785 teams or individuals 
participated in the competition

Center for Data Science

Paris-Saclay

the HiggsML challenge
May to September 2014

When High Energy Physics meets Machine Learning

Joerg Stelzer - Atlas-CERN
Marc Schoenauer - INRIA

Balázs Kégl - Appstat-LAL
Cécile Germain - TAO-LRI

David Rousseau - Atlas-LAL
Glen Cowan - Atlas-RHUL

Isabelle Guyon - Chalearn
Claire Adam-Bourdarios - Atlas-LAL

Thorsten Wengler - Atlas-CERN  
Andreas Hoecker - Atlas-CERN 

Organization committee Advisory committee

info to participate and compete : https://www.kaggle.com/c/higgs-boson

https://higgsml.lal.in2p3.fr
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The HiggsML challenge

The winner performed an algorithm using 
the average of 70 DNNs with 35 inputs, 3 
hidden layers of 600 nodes each, and 2 
outputs 

This is a classifier with more than 70 million 
fitted parameters! 

Another award was given to the team that 
submitted a model potentially most useful 
to the collaboration 

The winners’ software framework is 
commonly known as XGBoost 

Center for Data Science

Paris-Saclay

the HiggsML challenge
May to September 2014

When High Energy Physics meets Machine Learning

Joerg Stelzer - Atlas-CERN
Marc Schoenauer - INRIA

Balázs Kégl - Appstat-LAL
Cécile Germain - TAO-LRI

David Rousseau - Atlas-LAL
Glen Cowan - Atlas-RHUL

Isabelle Guyon - Chalearn
Claire Adam-Bourdarios - Atlas-LAL

Thorsten Wengler - Atlas-CERN  
Andreas Hoecker - Atlas-CERN 

Organization committee Advisory committee

info to participate and compete : https://www.kaggle.com/c/higgs-boson
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Massive amounts of data are processed and analysed by the ATLAS collaboration 

Machine learning techniques attract more and more attention at the experiment 

Several fields of applications exploit the benefits of advanced learning algorithms: 
• Particle reconstruction and identification 
• Separation of new signatures from standard model background 

ML applications outside HEP care less about systematics — In HEP those effects are 
essential! 

Summary

Intensive optimisation and validation studies are necessary

Understanding what the algorithm learns is vital!


