Going the Extra Mile to Push the Frontier — in — Searches for New Physics at the LHC

Alexander Mann

mann@cern.ch

DPG-Frühjahrstagung 15. – 19. März 2021

My Goal in This Talk

- Important to have the big picture in mind
 - there's a talk for that:
 PV II, Wolfgang Wagner: "Recent physics highlights of experiments at the LHC" (tomorrow)

My Goal in This Talk

- Important to have the big picture in mind
 - there's a talk for that:
 PV II, Wolfgang Wagner: "Recent physics highlights of experiments at the LHC" (tomorrow)

- Here: closer look at selected LHC searches
 - emphasis on recent results
 - potentially biased selection
 - trying to put analyses into context

My Goal in This Talk

- Important to have the big picture in mind
 - there's a talk for that:
 PV II, Wolfgang Wagner: "Recent physics highlights of experiments at the LHC" (tomorrow)

- Here: closer look at selected LHC searches
 - emphasis on recent results
 - potentially biased selection
 - trying to put analyses into context
- "Going the Extra Mile..."
 - highlight unique features of the analyses
 - interesting approaches, innovative methods, ...

- Introduction to Searches at the LHC
- Dedicated Direct + Indirect Searches
 - (non)resonant phenomena
 - lepton-flavor universality
 - specific models: LQ, SUSY, LLP
- Model-Independent Approaches
- Spotlights (will not have time for these conversation starter in break-out session?)

Introduction: Searches at the LHC

Why Fix It If It Ain't Broke?

The Standard Model of Particle Physics

- The Standard to describe how the known particles interact and decay
- Can predict outcome of collider experiments very precisely

Standard Model known to be incomplete: unexplained experimental observations

- Neutrino oscillations require m(v_{2,3}) > 0
 - neutrinos can transform into each other as reported by neutrino (dis-)appearance experiments
 - (📮 T48.3: Alfons Weber, "Neutrino Oscillations", tomorrow; 📮 T 99.1: Kathrin Valerius, "KATRIN", Friday)
- Matter content of universe dominated by unknown form of non-luminous matter
 - rotation curves of galaxy clusters / gravitional lensing suggest existence of this Dark Matter
- Matter-antimatter imbalance of the universe, accelerated expansion of universe, ...
- Weaknesses of theory: unification of forces, hierarchy problem (fine-tuning of Higgs mass), suggestive similarities of quark/lepton sector, strong CP problem, fermion masses, ...

How to Find a Better Theory

- Propose an extension
 - new, improved theory addressing one / some / all (?) flaws
- Make falsifiable predictions
 - new particles or interactions
 - · changes in behaviour of known particles / modification of couplings
 - compositeness, ...
- Test predictions: Searches for new phenomena at colliders

What Are We Looking For?

Direct Searches

Indirect Searches

- Precise measurements of production rates and / or branching ratios
 - · search for violation of SM predictions, e.g. violation of lepton universality
- EFT approach allows for systematic parametrisation

Searches = looking for deviations from Standard Model predictions

 \Rightarrow correct modeling of SM processes essential

- Different approaches to predict expected background yield in signal-enriched region (SR)
 - simulation-based: typically limited by systematic uncertainties (but also available sample size)
 - data-driven: typically limited by statistical uncertainties
- Analysis blinded during design: consolidate background estimate before looking at data in SR

Frontiers of Knowledge

- Why have we not observed the predicted new particles yet?
 - particles too heavy \Rightarrow energy frontier \Rightarrow need higher \sqrt{s}
 - interactions too feeble ⇒ intensity frontier ⇒ need higher luminosity (precision measurements)

- Searches can be carried out at all different kinds of colliders
- (LHC) = energy frontier, HL-LHC \rightarrow intensity frontier
 - searches = central piece of physics programme of LHC as a discovery machine

Luminosity

Luminosity Scaling

- "Luminosity quadrupling time" t_4 : luminosity $\mathcal{L} \xrightarrow{t_4} 4 \cdot \mathcal{L}$
 - signal yield $S \xrightarrow{t_4} 4 \cdot S$
 - background yield $B \xrightarrow{t_4} 4 \cdot B$
 - approximate significance:

$$Z \sim \frac{S}{\sqrt{B}} \xrightarrow{t_4} \frac{4 \cdot S}{\sqrt{4 \cdot B}} = 2\frac{S}{\sqrt{B}} \sim 2Z$$

- e.g. recorded luminosity by CMS:
 - 2015 + 2016 data: $42 \, {\rm fb}^{-1}$
 - full Run-2 data: $150 \, {\rm fb}^{-1} \sim 4 \cdot 42 \, {\rm fb}^{-1}$
- ⇒ improvement in analysis sensitivity by factor 2 from luminosity alone

But:

- t_4 strongly increases over time \Rightarrow [need to come up with better ideas]
- (also: factor 2 sounds like a lot, but cross sections decrease exponentially with mass)

Alexander Mann (LMU München)

DPG-Frühjahrstagung 2021 // Searches at the LHC

ATLAS and CMS

- Two big, independent, multi-purpose detectors at the LHC: ATLAS and CMS
- Situated at Interaction Points 1 and 5 of the LHC
- Different concepts, but same basic structure
 - almost 4π coverage, forward-backward symmetric cylindrical geometry
 - tracking detectors, electromagnetic and hadronic calorimeters, muon system (+ magnets)
- Sophisticated trigger system to select collision events to be recorded (realtime / online filter)

Dedicated Direct + Indirect Searches

- Select *ee* and $\mu^+\mu^-$ events (reconstruction optimized for high- p_T leptons)
- Backgrounds:
 - dominantly DY, all estimated from MC (except fakes)
 - combined background shape normalized to data around Z peak
- Good agreement of data and MC
 - slight excess in ee tail >1.8 TeV
 - 2 dielectron and 2 dimuon events with $m_{\ell\ell} > 3.0 \,\mathrm{TeV}$ observed
- \Rightarrow proceed to set limits in various models

invariant mass distribution, including two example resonant signals

Models for interpretations

ATLAS Search for New Non-Resonant Phenomena at High $m_{\ell\ell}$ JHEP 11 (2020) 005

Strategy

- Search for deviation from expected gradient in m_{ℓℓ} spectrum in ee/µ⁺µ[−] events above Z peak
 - complements ATLAS search for heavy resonances (2019)
- Benchmark signal model: effective four-fermion CI
 ⇒ constructive / destructive interference with SM
- Background: parametric model fitted to data in CR
- First nonresonant dilepton search to use background estimate from data using functional form
 - large dedicated DY sample ($\sim 7.5\,{
 m ab}^{-1}$, "truth smearing")

probing high energy scales (compositeness scale Λ)

Lepton-flavor universality:

coupling of electroweak gauge bosons to leptons independent of lepton flavour in SM

• LEP measurement: long-standing 2.7σ discrepancy from SM prediction (1.0)

•
$$R(\tau/\mu) = \frac{\mathcal{B}(W \to \tau \nu_{\tau})}{\mathcal{B}(W \to \mu \nu_{\mu})} = 1.070 \pm 0.026$$

• LHC = " $t\bar{t}$ factory": 15 Hz production rate \Rightarrow search for violation of LFU in LHC dataset

Strategy

- Select pure sample of dileptonic $tar{t}$ events with 2 b-tags (plus $m_{\ell\ell}$ veto against Z / low-mass DY)
- Use *tag-and-probe* method in $e^{\pm}\mu^{\mp}$ or $\mu^{+}\mu^{-}$ events: e or μ as tag, (2nd) μ as probe
- Discriminate $W \to \mu \nu_{\mu}$ and $W \to \tau \nu_{\tau} \to \mu \nu_{\mu} \nu_{\tau} \nu_{\tau}$ based on
 - impact parameter $|d_0^\mu|$ (ightarrow lifetime of tau lepton)
 - *p*_T(µ) (→ energy shared with neutrino(s))
- Determine ratio $R(\tau/\mu) \rightarrow$ many systematic uncertainties cancel

• Measured value from fit of 48 SR bins:

$$R(\tau/\mu) = \frac{\mathcal{B}(W \to \tau\nu_{\tau})}{\mathcal{B}(W \to \mu\nu_{\mu})} = 0.992 \pm 0.013$$

- Agrees well with SM ⇒ discrepancy seen by LEP not confirmed
- Most precise measurement of $R(\tau/\mu)$ to date

So all is well... or is it?

Lepton-Flavor Universality in *B*-Meson Decays

- Tests of lepton-flavor universality important part of physics program at B factories
- SM forbids FCNCs at tree level \Rightarrow rare transitions, sensitive to presence of new particles
 - could increase or decrease production rate or change angular distribution of final-state particles
 - if new particles couple differently to electrons and muons, LFU could be violated
- Measure FCNC transition $b \to s$ in ratio $R(K) = \frac{\mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)}{\mathcal{B}(B^+ \to K^+ e^+ e^-)}$

⇒ very precise tests of LFU (hadronic uncertainties in theoretical predictions cancel)

- Can also use charged-current process with SM tree-level diagram
- Measure FCCC transition $b \to c$ in ratio $R(D) = \frac{\mathcal{B}(B \to D\tau^- \nu)}{\mathcal{B}(B \to D\ell^- \nu)}$

Lepton-Flavor Universality in B-Meson Decays

Results from past measurements at BaBar, Belle, LHCb:

Name	Definition	Observed value	[ref]	SM prediction	[ref]	Discrepancy	
R_K	$\frac{Br(B^+ \rightarrow K^+ \mu^+ \mu^-)}{Br(B^+ \rightarrow K^+ e^+ e^-)}$	$0.745^{+0.090}_{-0.074}\pm0.036$	[2]	1	[9, 10]	2.6σ	RDS
R_{K^*}	$\frac{Br(B^0 \rightarrow K^{0*} \mu^+ \mu^-)}{Br(B^0 \rightarrow K^{0*} e^+ e^-)}$	$[0.66, 0.69]^{+0.11}_{-0.07} \pm 0.03$	[7]	$[0.926, 0.9965] \pm 0.0005$	[9,10]	$[2.2\sigma, 2.5\sigma]$,88 1-
R_D	$\frac{Br(B \rightarrow D^* \tau^- \nu)}{Br(B \rightarrow D\ell^- \nu)}$	$0.407 \pm 0.039 \pm 0.024$	[11]	0.299 ± 0.011	[12]	2.3σ	1503
R_{D^*}	$\frac{Br(B \rightarrow D^* \tau^- \nu)}{Br(B \rightarrow D^* \ell^- \nu)}$	$0.304 \pm 0.013 \pm 0.007$	[11]	0.252 ± 0.003	[13]	3.4σ	2 (20
$R_{J/\psi}$	$\frac{Br(B_c^+ \rightarrow J/\psi \tau^+ \nu)}{Br(B_c^+ \rightarrow J/\psi \mu^+ \nu)}$	$0.71 \pm 0.17 \pm 0.18$	[8]	0.29 ± 0.07	[14]	1.7σ	18)

- Updated result from LHCb: (PRL 122, 191801 (2019), superseding [2])
 - increased analyzed dataset from $3.0\,{\rm fb^{-1}}$ to $5.0\,{\rm fb^{-1}}$
 - $[\bar{R}_{K}] = 0.846^{+0.060+0.016}_{-0.054-0.014} \Rightarrow$ now at 2.5 σ w.r.t. SM
 - (I T 48.2: Michel De Cian, "Highlights from the LHCb experiment", tomorrow)

What Are Leptoquarks

- Hypothetical particles with
 non-zero baryon and lepton number
- Carry color charge
 and fractional electric charge
- Decay into quark-lepton pair
- Can be a scalar or a vector particle

Why Introduce Them

- Appear in many BSM scenarios, e.g. GUTs with larger gauge groups
- Relate quark and lepton sector
 - may provide explanation for similarities
- LQ can explain observed deviations from lepton universality in *B*-meson decays

Motivation

- Some solutions proposed to explain B anomalies favor effective couplings to 3rd generation SM fermions at TeV scale
- Targets:
 - both (scalar) leptoquark, LQ $_s \to t \tau/b \nu$, and (vector) leptoquark, LQ $_v \to t \nu/b \tau$
 - both (single) and (pair) production

Model parameters

- LQ mass + coupling λ (only single production) + coupling k (only vector LQ)
- 15 models in total (LQ_s, LQ_v for k = 0, 1; pair prod. and single or combined for $\lambda = 1.5, 2.5$)
 - k = 0: minimal coupling case, k = 1: Yang-Mills case (larger cross section)
 - λ : coupling strength to lepton-quark pair (affects single LQ production cross section)

Strategy

- Search in $t \tau \nu ~(\rightarrow LQ)$ and $t b \tau \nu ~(\rightarrow LQLQ)$ final states
- Employs top tagging and W tagging on large-R jets (R=0.8)
- 4 separate event categories:

(Lorentz-boosted top or resolved top)

 $(= 1 \ b$ -jet or $\ge 2 \ b$ -jets)

- Background:
 - dominantly misidentified tau lepton:

estimated with fake-factor method

rest: from simulation, normalized in CR

3^{rd} -Generation Leptoquark Search (CMS, $137 \, {\rm fb}^{-1}$)

arXiv:2012.04178 (→ PLB)

Results

- First search to simultaneously consider both single and pair production
 - combination improves limits by 30 120 GeV depending on LQ type

gray area: region preferred by (some) models explaining B anomalies

JHEP 06 (2019) 144

3^{rd} -Generation Leptoquark Search (ATLAS, $36.1 \, {\rm fb}^{-1}$)

Overlay Plots

- 4 reinterpretations of SUSY searches for stop and sbottom pairs
- +1 reoptimized variant of di-higgs search

3^{rd} -Generation Leptoquark Search (ATLAS, $139 \, {\rm fb}^{-1}$)

Search for Leptoquarks with Mixed Decays (New)

• New ATLAS studies: searching for LQ pairs with cross-generational couplings

Search for Leptoquarks with Mixed Decays: $qq/cc/bb + ee/\mu\mu$ JHEP 10 (2020) 112

Strategy

- Select e^+e^- / $\mu^+\mu^-$ + ≥ 2 jets
- 7 event categories
 - based on number of b- and c-tagged jets
- Compute average reconstructed LQ mass m^{Av}_{li}
 - pairing minimizes mass difference of LQ candidates
 - mass resolution $\lesssim 7\,\%$ of LQ mass
- Normalization of and systematic uncertainties on dominant backgrounds derived from CRs
- First limits on these LQLQ decays

Search for Leptoquarks with Mixed Decays: $tt + ee/\mu\mu$

arXiv:2010.02098 (\rightarrow EPJC)

Strategy

- Select e^+e^- / $\mu^+\mu^-$ + 2 large-R jets (R = 1.0)
 - heavy LQ \rightarrow boosted top quarks
- BDT based on 29 (32) kinematic observables
 - parameterized in theoretical LQ mass
- Using "recursive jigsaw technique"
 - to construct rest frames of intermediate particle states (resolves kinematic and combinatoric ambiguities)
 - rest frames serve as natural basis for BDT inputs

- new scalars: sfermions = squarks \widetilde{q} + sleptons ℓ
- new spin-1/2 particles: gauginos = neutralinos $\widetilde{\chi}^0$ + charginos $\widetilde{\chi}^\pm$ + gluino \widetilde{g}

Example simplified model with strong production of SUSY particles

Example simplified model with pair production of 3rd generation squarks

Example simplified model with electroweak production of gauginos

Example simplified model with direct production of sleptons

Search for Direct Production of Staus (ATLAS, $139 \, {\rm fb}^{-1}$)

- Search for direct production of tau-slepton pairs in final states with two hadronically decaying tau leptons
- Consider two scenarios
 - mass-degenerate $\tilde{\tau}_L \tilde{\tau}_L + \tilde{\tau}_R \tilde{\tau}_R$
 - production of $\tilde{\tau}_L \tilde{\tau}_L$ only
- First exclusion of non-degenerate staus at LHC!

What made these results possible?

- ABCD method cross-checked with fake-factor method
- "Tau promotion": simulation-based fake-factor method
 - reduces statistical uncertainty in (W+ jets) background
- Tau identification: BDT replaced by reoptimized RNN
 - 1×2 better rejection of fakes at same signal efficiency 1
 - ⇒ much better background suppression
- Research and development of improved algorithms together with / in CP groups crucial for success of analyses

SM process	SR -lowMass	SR -highMass
Diboson	1.4 ± 0.8	2.6 ± 1.4
W + jets	1.5 ± 0.7	2.5 ± 1.8
Top quark	$0.04^{+0.80}_{-0.04}$	2.0 ± 0.6
Z + jets	$0.4^{+0.5}_{-0.4}$	$0.05^{+0.13}_{-0.05}$
Multijet	2.6 ± 0.7	3.1 ± 1.4
SM total	6.0 ± 1.7	10.2 ± 3.3
Observed	10	7

largest backgrounds: fake tau leptons

SUSY Search: No $E_{\rm T}^{\rm miss}$ but Many Jets (CMS, $137\,{\rm fb}^{-1}$) arXiv:2102.06976 (ightarrow PRD)

Event recorded during 2016 with the CMS detector that contains 10 jets (orange cones) and a muon (red line).

Alexander Mann (LMU München)

Strategy

- Search for "low-E^{miss} SUSY" (e.g. *R*-parity violation model)
- Select events with 1 isolated e/μ + \geq 7 jets incl. 1 *b*-tag
- Background: predominantly $t\bar{t}$
- Discriminating features:
 - · more jets on average than SM processes
 - NN trained on lepton and jet 4-momenta and energy distribution

Background Modeling: Jet Scaling

- Modeling of events with large jet multiplicities tricky
 - ⇒ need data-driven estimate: "QCD jet scaling"
- Parameterize ratio $R(i) = M_{i+1}/M_i$ of M events with i jets
 - low N_{jets} : Poisson scaling R(i) = k/(i+1)
 - high N_{jets}: staircase scaling R(i) = const.
- Fit with 3 shape parameters + 4 normalisation parameters
 - 24 bins (6 in N_{jets}, 4 in NN output score)
 - ⇒ overconstrained fit ⇒ predictive

Jet Scaling vs NN

- Rely on NN to improve S/B separation
- $N_{\rm jets}$ distribution for $t\bar{t}$ in 4 bins of NN score: fit with same parameters
- Problem: jet scaling must be independent of NN
 - use gradient reversal technique

gradient reversal technique

SUSY Search: No $E_{\rm T}^{\rm miss}$ but Many Jets (CMS, $137\,{\rm fb}^{-1}$) arXiv:2102.06976 (ightarrow PRD)

Interpretation

- 95% CL cross-section limit for $\tilde{t}\tilde{t}$ production (right)
- Fitted signal strength and local *p*-value (bottom)
- First search of its kind at LHC
- Equivalent study in ATLAS: JHEP 09 (2017) 88 $(36.1\,{\rm fb}^{-1},$ w/o NN)

UL on xsec in RPV model

CMS-PAS-SUS-19-012

Spotlight: Multi-Lepton SUSY Search (CMS, $137 \, \mathrm{fb}^{-1}$)

- Several models with electroweak production of $\widetilde{\chi}^{\pm}/\widetilde{\chi}^{0}$
- Channels with $\ell^{\pm}\ell^{\pm}$ / 3ℓ / 4ℓ : low SM background
 - define 12 categories based on lepton charge and numbers
- 3ℓ OSSF category uses parametric NNs (large WZ bg.)
 - optimize hyperparameters: evolutionary algorithm
 - aside from pNN also define SRs (as in other 11 categories)
 - (direct comparison) shows sensitivity boost of 30–100 %

Collider Signatures of Long-Lived Particles

- Causes for longevity (of particles):
 - weak coupling to decay products
 - small mass difference in decay chain (i.e. not much phase space for decay)
 - decay through off-shell particles
 - nearly conserved quantum numbers

- Multitude of signatures depending on • lifetime, charge, and decay
- Searches for promptly decaying particles often not sensitive

Collider Signatures of Long-Lived Particles

- Causes for longevity (of particles):
 - weak coupling to decay products
 - small mass difference in decay chain (i. e. not much phase space for decay)
 - · decay through off-shell particles
 - nearly conserved quantum numbers

- Multitude of signatures depending on lifetime, charge, and decay
- Searches for promptly decaying particles
 often not sensitive

Search for Displaced Jets (CMS, $132 \, \text{fb}^{-1}$)

- arXiv:2012.01581 (\rightarrow PRD)
- Search for long-lived particles using displaced jet in 2017+2018 data
- Inclusive search with interpretations in many different models

Strategy

Form dijet candidates

in events with $H_{\rm T} > 500(700) \, {\rm GeV}$

- Associate tracks to each jet, build secondary vertex from displaced tracks
- Background purely estimated from data
 - using "ABCD" method
- Dominant background sources:
 - nuclear interactions with detector material
 - long-lived SM hadrons
 - displaced vertices from accidentally crossing tracks

New techniques:

- additional trigger (recovers eff. for heavy LLPs)
- veto map for nuclear interactions (NI)
- new variable (based on $\sum Sig[IP_{2D}]$)
- BDT for S-B discrimination
- \Rightarrow reduce bg. rate by $\times 3$ + increase signal eff.

arXiv:2012.01581 (→ *PRD*)

95 9 fb⁻¹ (13 To\/)

Search for Displaced Jets (CMS, $132 \, \text{fb}^{-1}$)

	Support Tails		33.318 (13164)
Selections Observed events	5-20 burdandandandandandandanda	fer the state of t	Observed supertr
Displaced-jet triggers, 17758640	E ₂₀₀ CMS		T Coserved events
offline H _T selections	>150	ш ₁₀	Background predictions
Offline jet p _T and η selections, 8387775	100	Signal region	m _x = 300 GeV, cr ₀ = 3 mm
vertex $\chi^2/n_{dof} < 5.0$		103	m _x = 300 GeV, ct _o = 30 mm
Vertex p _T > 6 Gev 3/94960 Vertex invariant mass > 4 CeV 1120521	Thepuppe	Ē	
Second largest Sig[IPap] > 15 422449		10 ²	-
Charged energy fraction from the SV $\epsilon > 0.15$ 93873			• • •
Energy fraction from the PVs $\zeta < 0.20$ 15891	lavers	10	
Veto using the NI-veto map 13721	-150-	Æ	
N ^{3D} _{tracks} < 3 for each jet 2753	-200		Land Street Stre
(GBDT > 0.988 1)	-250 -200 -150 -100 -50 0 50 100 150 200 250	10-1	i
	x [mm]	0,1 0,2 0,3	0.5 0.7 0.9 0.90 0.90
Selection requirements of SR	Material man for NI veto	95029503	9505950795095095095095950
·	material map for renvete		GBDT score g
		1	
	10813	2 fb ⁻⁺ (13 TeV)	132 fb ⁻⁺ (13 TeV)
Input to BDT.	£ aua 95%	CL upper limits	95% CL upper limits
input to BB1.	6 10 ⁷ CMS	Observed b 10 ⁶ CMS	Observed
several "geometrical" variable	S 10 ⁶	Median expected	······ Median expected
eereral geenieal ranabi		68% expected 10"	68% expected
1 data event observed in SR	10 [°] Jet-jet model	m _x = 50 GeV 10 ⁴ Jet-jet	model ct_ = 3 mm
	104	m _x = 100 GeV	 cτ₀ = 30 mm
 consistent with expected background 		m _x = 300 GeV 10 ³	ct = 300 mm
	10	10 ²	010 0000 1111
 likely from material interaction 	10 ²	a 🥒 - 🐪 🛝	
with silicon strip detect		10	
		ENN	
Desults sevelsingel with 0010 smaller	1		
Results combined with 2016 analys	IS 10 ⁻¹	10-1	
Most stringont limits to date	10-2	10 0 200 4	00 600 800 1000 1200 1400 1600

Most stringent limits to date on these models

95 % CL upper limits on pair-produced LLP X

cτ₀ [mm]

m_x [GeV]

• Inp

arXiv:2012.01581 (\rightarrow PRD)

05 0 / 1 / 40 T 1 /

Search for Displaced Jets (CMS, $132 \, \mathrm{fb}^{-1}$)

Observed events

17758640

8387775

3794960

1129531

422449

93873

15891

13721

2753

		95.9 ID	(13 TeV)
, 	50 10 ⁴ CMS	Observed ev	ents
	á l	Background p	redictions
	10 ⁴ Signal region	m _x = 300 Ge	v, cτ _o = 3 mm
	10 ³	m _x = 300 Ge'	√, cτ _o = 30 mm
		m _x = 300 Ge	√, cτ _o = 300 mm
	10 ²		
	10	····	
50	10-1		
1	0,1 0,2 0,3	0.5 0.7 0.9	0.9c 0.9ec
to	950,2950,3	950,5 ⁹⁵ 0,7 ⁹⁵ 0,8	950,95950,988951
		GBI	DT score g

Selections

Displaced-jet triggers

offline H_T selections Offline jet p_T and η selections,

vertex $\chi^2/n_{dof} < 5.0$ Vertex $p_T > 8 \text{ GeV}$

Vertex invariant mass > 4 GeV

Second largest $Sig[IP_{2D}] > 15$

Veto using the NI-veto map

 $N_{tracks}^{3D} < 3$ for each jet

GBDT > 0.988

Charged energy fraction from the SV $\epsilon > 0.15$

Energy fraction from the PVs $\zeta < 0.20$

several "geometrical" variables

1 data event observed in SR

Selection requirements of SR

- consistent with expected background
- likely from material interaction
 with silicon strip detector
- Results combined with 2016 analysis
- Most stringent limits to date

on these models

improvements in UL: $132 \, \text{fb}^{-1}$ vs. $35.9 \, \text{fb}^{-1}$

Support Tail

x (mn

CMS

Material map for NI ve

Model-Independent Approaches

Past discoveries often came through targeted searches for particles forecasted by theory

(e.g. h, ν_{τ}, t, W, Z)

- Now much less clear where new particles would show up
- Direct searches so far show no evidence for BSM physics
- Make sure not to miss anything, new phenomena may appear elsewhere than anticipated
- Dedicated searches often restricted to (few final states)
 - number of possible final-state combinations is huge
 - alternative: try to cover all possible final states, complementary to dedicated searches
- Dedicated searches often restricted to limited range of models
 - typically start with specific theoretical model
 - simulate signal, develop classifiers to separate from background (uncorrelated selections or MVA)
 - alternative: anomaly detection, ideally independent of signal and background model

"MUSiC": model unspecific search for new physics

- CMS, 35.9 fb⁻¹, arXiv:2010.02984 (→ EPJC)
- BSM search through data-MC comparisons
- Relies on correct modelling of data in simulation
- Analogous approach in ATLAS: "General Search" EPJC 79 (2019) 120 $(3.2 \, {\rm fb}^{-1})$
 - also done at Tevatron experiments and H1@HERA

Classification w/o labels in a dijet bump hunt

- ATLAS, 139 fb⁻¹, PRL 125 (2020) 131801
- BSM search through anomaly detection (bump hunt)
- Completely data-driven approach

Ansatz

Automated approach to quantify deviations of simulated SM processes vs. observed data

Background modelling: purely based on MC simulation ("every final state is a SR")

Strategy

- Sort events based on (known) particles
 - $e, \mu, \gamma, q/g$ jets, b-jets, E_{T}^{miss} (if $> 100 \,\text{GeV}$)
 - tau-lepton ID or W/Z/t tagging not considered
 - require ≥ 1 isolated e/μ to reduce QCD (number of simulated events not adequate)
- Form 3 types of classes
 - 498 exclusive (disjunct)
 - 571 inclusive ("+X")
 - 530 jet-inclusive ("+N jets")
 - (with ≥ 1 obs. data or > 0.1 exp. events)

Evaluation

Study total yields per class and kinematic distributions

MUSiC (CMS, $35.9 \, \text{fb}^{-1}$)

Identify "region of interest" with largest deviation

- Large trials factor / look-elsewhere effect
- LEE correction computed through pseudo-experiments \Rightarrow "post-trial p value" \tilde{p}

MUSiC (CMS, $35.9 \, {\rm fb}^{-1}$)

• Sensitivity tested by injecting signal (W' or sphalerons) or removing one SM process (WZ)

- Overall no significant deviations
- What if? Could be...
 - ...mismodeling of detector
 - ... overlooked systematic effects
 - ... or BSM physics

event yields and $p\mbox{-values}$ for classes with largest deviations

Classifi

ldea

- Goal: train neural network to improve S/B ratio w/o simulated signal model
- Problem: data = unlabelled
 - · employ "weak supervision": exploit structures in data w/o per-event labels
 - · requires two samples with different signal fractions

Strategy

- Events with ≥ 2 large-R jets (with $p_{\rm T} > 500, 200 \, {\rm GeV}$)
- Model dependence:

assume signal localized ("resonant") in m_{JJ}

- Define training samples based on m_{JJ} slices
 - one labelled "signal"(-rich), another "background"(-rich)
 - do not need to know the fraction
 - can now apply any supervised-learning technique
 - here: use standard neural network
- Train on what features? ightarrow here: m_{J1}, m_{J2}
- Place threshold on NN output score,

do standard bump hunt

in SR 1 – 6

PRL 125 (2020) 131801

Weak Supervision in Dijet Search (ATLAS, $139 \, {\rm fb}^{-1}$)

Results

- Observed upwards fluctuations in SRs found consistent with statistical fluctuations
- Upper limits set on W' signal cross section
 as example of specific BSM model
- Low m_B and m_C suffer from larger SM background
 - · dedicated dijet / diboson searches are stronger here

mapped output of NN output score (SR 2, with injected signal)

(compared to JHEP 03 (2020) 145 and JHEP 09 (2019) 091)

DPG-Frühjahrstagung 2021 // Searches at the LHC

Spotlights (removed)

In Conclusion

Summary

- Presented general overview + selected recent highlights of searches at the LHC
 - non-exhaustive cross-section of the vast search program carried out at the LHC
 - emphasis on impressive collection of innovative approaches in many different analysis aspects
 - if you missed DM: PV V: Priscilla Pani, "On top of Dark Matter searches at the LHC" (Friday)

Winter (Spring??) Conferences

- 21.03. 27.03.2021 (Moriond Electroweak Interactions & Unified Theories)
- 27.03. 03.04.2021 (Moriond QCD and High Energy Interactions)
- \Rightarrow expect flurry of new hot results already in next weeks