SM2 Micromegas Modules in the Cosmic Ray Facility

Maximilian Herrmann

Ludwig-Maximilians-Universität München - Lehrstuhl Schaile

Muon Week 20.10.2020

Quality Control Using Cosmic Muon Passages

MDT tracks

⇒ comparison of both methods to check for compatibility

*

M. Herrmann (LMU Munich)

14

Comparison of External and Internal Tracking (e.g. M29)

20.10.2020 4 / 11

SM2 in CRF

SM2 in CRF

Effect of Pillarheight Trend on Cluster Charge (at 580V)

affected PCB of SS6-type \Rightarrow stereo boards 6 of Modules 29 to 32

 \Rightarrow no clear correlation between height difference and cluster charge change

Pulseheight Dependencies - Pressure and Pillarheight

pressure dependence fitted for each readout-board individually \Rightarrow evaluation as function of pillarheight (linear fit)

Pulseheight Dependencies - Module Summary

 $\mathsf{MPV}\ \mathsf{cluster}\ \mathsf{charge} \Rightarrow$

at 920 mBar * VS pillar height

pillar height times pressure

 \Rightarrow relative pulseheight change at 120 µm : 570 V : -3.5 \pm 2.0 % / µm 580 V : -3.2 \pm 2.1 % / µm

* pressure offset about -30 mBar

M. Herrmann (LMU Munich)

Alignment Analysis by Fabian Vogel (new PhD student)

results of his Masterthesis

https://www.etp.physik.uni-muenchen.de/publications/theses/download/master_fvogel.pdf

 \Rightarrow calibration of jig and CMM using Saclay reference data (panel eta10,stereo11)

Compatibility Reconstruction of Measurements by Fabian Vogel

 \Rightarrow good agreement between measurements within error estimation

 \Rightarrow summary of single mask residuals reconstruct systematics during gluing

M. Herrmann (LMU Munich)

SM2 in CRF

20.10.2020 10 / 11

Summary

quality control of the full SM2 active area using cosmic muons

- alternative method for tracking implemented to check efficiency reconstruction
 ⇒ compatible results of internal and external tracking
- pulsheight dependencies investigated:
 - pillarheight-trends visible
 - \Rightarrow magnitude not yet correlated
 - pressure-dependence for each PCB individual
 - \Rightarrow pillarheight correlation in the order of -3 % / μm
- improved alignment reconstruction by Fabian Vogel using multiple measurements
 ⇒ calibration of jig and CMM

Backup

Validation using Cosmic Muons - Cosmic Ray Facility

trigger

track reconstruction

active area angular acceptance energy cut readout (full module) readout rate $\begin{array}{l} \mbox{scintillator hodoscope} \\ \mbox{resolution} \sim 10\mbox{ cm} \\ \mbox{Monitored Drift Tubes (MDTs)} \\ \mbox{resolution} \sim 0.2\mbox{ mm} \\ \mbox{2.2 m} \times 4\mbox{ m} \\ \mbox{\pm} 30^{\circ} \\ \mbox{iron plate} \rightarrow E_{\mu} > 600\mbox{ MeV} \\ \mbox{12288 channels} \\ \mbox{100 Hz (online zerosuppression)} \end{array}$

SRS-based Data-Acquisition

CRF hit distribution

M3 eta_out, 5 mm efficient

20.10.2020 3 / 9

Pulse Height and Efficiency (Ar:CO₂ 93:7 vol%) Module 21

20.10.2020

4/9

SM2 in CRF

MMS200021 L1 gain

MM\$200021_L1_efficiency

x [mm]

0 200 x [mm]

1400-1200-1000 -800 -400 -400 -200

-1400-1200-1000 -800 -600 -400 -200 0

1

E 600

200

200

.

2500 LILE

9 2000

150

100

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

411.7

1185

LIR7

SM2 in CRF

20.10.2020 6 / 9

SM2 in CRF

Theoretical Gain Description

Gain by Townsend (1910) :

 $\textit{G} = \exp\left[\textit{\textbf{d}} \cdot \alpha\right]$

lpha by Rose and Korff (1941) :

$$G = \exp\left[\frac{d}{T} \cdot \frac{pA}{T} \cdot \exp\left(-\frac{dpB}{TU} \right) \right]$$

effective description :

$$G = f(dp; U)$$

paper by Giomataris mentioning the prospects of a large sample of gap widths ($d \doteq$ pillar heights):

https://www.slac.stanford.edu/pubs/icfa/fall99/paper1/paper1.pdf

Pulse-Height Amplification-Gap Dependence

 \Rightarrow for a single measurement period a good correlation is given

 \Rightarrow comparison of different periods require pressure compensation

Pulse-Height Pressure Dependence (M3 long term test)

 \Rightarrow clear pressure dependence, as expected

 \Rightarrow dependence on pillar-height NOT straight forward

(pressure biased: offset about 30 mBar)