SM2 Micromegas Modules in the Cosmic Ray Facility

Maximilian Herrmann

Ludwig-Maximilians-Universität München - Lehrstuhl Schaile

NSW Software and Detector Integration 04.09.2019

SM2 Micromegas Modules for the NSW

M. Herrmann (LMU Munich)

SM2 in CRF

Cosmic Ray Facility

trigger	2 imes scintillator hodoscopes
track reconstruction	$2 \times$ Monitored Drift Tube chambers (MDTs)
active area	$2 \mathrm{m} \times 4 \mathrm{m}$
angular acceptance	\pm 30° to zenith
energy cut (hardware)	iron absorber (34 cm) $ ightarrow extsf{E}_{\mu} >$ 600 MeV
readout	12288 channels
	ightarrow 96 APVs (frontend electronics)
	\rightarrow 6 FECs (scalable readout system)
readout rate	100 Hz (muon rate)

M. Herrmann (LMU Munich)

SM2 in CRF

Charge and Time Resolved Readout using APV25 Electronics

 $96 \times APV25$ -chips

 $6 \times FEC$ -cards

strips parallel to MDT-wires

128 channel charge sensitive preamplifier 40 MHz signal sampling

thread to be a constrained of the second sec

jitter recorded individually \Rightarrow unbiased time-evaluation

 $\begin{array}{l} \mbox{reference track} \\ \Rightarrow \mbox{efficiency and resolution} \end{array}$

Measurement Overview

- central part of active area
 ⇒ 96 cm × 78 cm
 overall more than ¹/₂ billion trigger
- counts integrated over all amplification voltages
 ⇒ also low gain measurements
- CRF average pressure : 960 hPa ATLAS-cavern : 980 hPa
 ⇒ different gain
- CRF temperature : 21 °C

controlled to about $\pm 2\,^\circ\text{C}$

modules measured:

0, 1, 3, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16

Efficiency Turn On Curves (Module 1)

H8 testbeam 2018 $9 \text{ cm} \times 9 \text{ cm}$

Software Efficiency HV Scan SM2-M1 @ 0º PC8-S6

SM2 in CRF

Ē 24

18

16

14

12Ē

8

mm] 24

22

16

14

12

10

0

SM2 in CRF

v [54.4

y [54.4 20

efficiency map

0.65

0.6

0.55

0.5

14 16

12 x [100.0 mm]

Efficiency Turn On Curve (Module 3, eta-in)

central parts of active area for single High-Voltage Sectors \Rightarrow 32 cm \times 18.6 cm

04.09.2019 9 / 23

SM2 in CRF

04.09.2019 9 / 23

SM2 in CRF

stripnumber

efficiency VS electronic noise

efficiency VS electronic noise

Efficiency influenced by Pulse Height

Efficiency influenced by Pulse Height

Cluster Charge Evaluation - M8 eta-out (=L1) board 8

 \Rightarrow for higher fractions of CO₂, larger gains (~ efficiency) can be reached

dependence on board	quality (e.g. pillar height)?
\Rightarrow compare voltages	at same pulse height

[V]	93:7	85:15	80:20
mean	570	615	645
MPV	570	610	640

Cluster Charge Evaluation - M8 eta-out (=L1) board 8

 \Rightarrow for higher fractions of CO2, larger gains (\sim efficiency) can be reached

dependence	on board	qua	ality (e.g. pillar height)?	
\Rightarrow compare	voltages	at	same pulse height	

[V]	93:7	85:15	80:20
mean	570	615	645
MPV	570	610	640

Pulse Height Dependence on Pillar Height (M8, eta3)

	5011	00.10	00.20
mean %/µm	-(6.0±0.6)	-(5.7±0.6)	-(6.7±0.8)
MPV %/µm	-(9.8±1.0)	$-(10.4\pm1.1)$	$-(10.7\pm1.1)$

Cluster Properties (M8, eta-out, board 8)

Ar:CO₂ 93:7 vol% $U_{\rm drift} = 300 \,\rm V$

Ar:CO₂ 85:15 vol% $U_{\rm drift} = 300 \,\rm V$

+ 580 V

610 V

615 V

620 V

625 V

630 V

635

Ar:CO₂ 80:20 vol% $U_{\rm drift} = 475 \,\rm V$

SM2 in CRF

610V

630V

Efficiency Dependence on Cluster Charge (M8, eta-out = L1)

Efficiency Dependence on Cluster Charge (M8, eta-out = L1)

Efficiency Dependence on Pulse Height and Noise

- all gas-mixtures show a similar behavior
- for 90%-efficiency ⇒
 MPV of pulse-height has to exceed about 40 times the noise-level
- vice versa: noise should be kept below a 2%-level of pulse-height to reach 90%-efficiency

Tracking in the Cosmic Ray Facility

residual = measured - reference

= centroid \times pitch - track_{\rm MDTs} @ MM

Reconstruction of Readout Board Alignment (Module 1, eta-in)

undesired strip shape \Rightarrow calibration needed

humidity causes deviation from design: \Rightarrow known issue

Alignment Reconstruction Comparison (eta-panel 9)

mean hit-position-difference between

 \Rightarrow rotation between layers reconstructable in both measurements

Position Reconstruction using Charge and Drift-Time Measurements (M1)

reference angle [°] 04.09.2019 19 / 23

centroid clustertime corrected

SM2 in CRF

Position Reconstruction using two Layers of Inclined Strips

precision

= stereos mean / tan α

non-precision

- = stereos difference / 2 / tan α
- \Rightarrow alignment

non-precision coordinate

 \Rightarrow non-precision residual spoiled by coarse scintillator resolution

Stereo-Reconstruction Dependencies on Track-Inclination

precision = mean / cos α non-precision = difference / 2 / sin α track-inclination-correction : $-\frac{1}{2 \tan \alpha} \cdot \Delta z \cdot \tan \Theta \cdot \sin \Phi$

Timing Resolution

Summary

- about 13 SM2-Micromegas investigated in the Cosmic Ray Facility
- efficiency influenced by
 - noise behavior of preliminary APV25-electronics local setup : 30 - 40 ADC channel
 - pulse-height coupled to amplification-gap-height MPV : -10%/ μm
 - \Rightarrow MPV of pulse-height has to exceed 40 times noise-level to reach 90%-efficiency
- reference-tracking enables
 - alignment-reconstruction
 - \Rightarrow calibration of deviations
 - resolution estimation
 - \Rightarrow centroid similar results as testbeam
 - position-reconstruction using inclined strip-layers works as intended

Backup

Reconstruction of Pitch Deviations and Readout Board Alignment

04.09.2019 2 / 3

SM2 in CRF

Gain Dependencies

$$G = \exp(\alpha \cdot d)$$
$$= \exp\left[\frac{Apd}{T} \cdot \exp\left(-\frac{Bpd}{TU}\right)\right].$$

Taylor-series-expansion up to first order:

$$egin{aligned} G(d) &= \exp\left(a\cdot d_0\cdot e^{-b\cdot d_0}
ight) \ &+ a\cdot (1-b\cdot d_0)\cdot \exp\left(-b\cdot d_0+a\cdot d_0\cdot e^{-b\cdot d_0}
ight)\cdot (d-d_0) \ &+ \mathcal{O}\left((d-d_0)^2
ight) \ , \end{aligned}$$

where

$$a = \frac{A \cdot p}{T}$$
 and $b = \frac{B \cdot p}{T \cdot U}$

•