
Simulation and Reconstruction of Muons at the

Munich ATLAS Cosmic Test Facility

with Athena

Diplomarbeit an der
Fakultät für Physik der

Ludwig-Maximilians-Universität
München

Vorgelegt von Alexander Brandt

München, 4. November 2003

Erstgutachter: Frau Professor Dr. Dorothee Schaile
Zweitgutachter: Herr Professor Dr. Martin Fässler

1

Preface

The MuonCosmicTeststand (MCT) software project was launched in August 2002 by Philipp
Schieferdecker. It is an approach for implementing a software package for a rather small ex-
periment (the Munich ATLAS Cosmic Test Facility, section 1.2) using the instruments of a
contemporary high-end experiment such as ATLAS (section 1.1). At present, the ATLAS col-
laboration is developing its software framework Athena, which is a state-of-the-art framework
that benefits from many years of software experience in high energy physics and software devel-
opment (chapter 2).

MCT does not aim to be the single authorized software solution for the Munich ATLAS Cos-
mic Test Facility; Oliver Kortner and Felix Rauscher already developed a stand-alone, framework
independent software solution that performs all tasks necessary for the fulfillment of the design
goals of the test stand. Motivations for MCT are

• learning about Athena considering a small experiment as an example and thus being
confronted with a great variety of data processing tasks such as simulation, calibration
and reconstruction,

• benefiting from useful Athena features: several tasks in high energy physics computing
are already accomplished in Athena in a very general way and can easily be adopted (e. g.
geometry- and event displays, figures 1.3 and 3.3),

• collaborating with other groups that operate muon test stands and easily exchanging code,

• verifying the results produced by the existing stand-alone software solution for the test
stand and

• supporting the Athena developers by permanently giving feedback.

Especially the last point should not be underestimated, since only a very few data-taking ex-
periments using Athena exist that rely on a broad variety of Athena components.

At the time this thesis started (November 2002), MCT was aleady capable of performing
parts of the simulation using Geant4 (section 3.1). During its development, MCT profited from
the experiences made with Oliver Kortner’s and Felix Rauscher’s program.

I would like to thank my Professor Dorothee Schaile and my supervisor Günter Duckeck for
their steady support on my diploma thesis.

I owe thanks (and beer) to Philipp Schieferdeckers and Felix Rauschers endurance and ex-
pertise in answering my questions on both software development and test stand matters. Philipp
gave me a perfect start-up in the beginning of my thesis work and Felix helped me with essential
last-minute contributions.

Special thanks go to my parents, to whom this work is dedicated.
Insbesondere möchte ich meinen Eltern danken, denen ich diese Arbeit widme.

2

Contents

Preface 2

1 Introduction 5
1.1 ATLAS Detector . 5
1.2 Munich Cosmic Ray Test Facility . 7

2 Athena Framework 9
2.1 Joboptions Mechanism . 10
2.2 Athena Components . 11

2.2.1 Athena Algorithms . 11
2.2.2 Athena Tools . 12
2.2.3 Athena Services . 12
2.2.4 Athena Converters . 12

2.3 StoreGate: Communication between Components 13
2.4 Special Athena Packages . 13

2.4.1 Geometry Model . 14
2.4.2 Interval of Validity Service . 15

3 Simulation and Reconstruction of Muons with the MCT Software Package 18
3.1 Detailed Description of a Simulation Job . 18

3.1.1 SingleParticleGun: Generation of Muons 19
3.1.2 MuonCTG4Sim: Tracking of the Particle 19
3.1.3 ScintiPreDigitizer, TriggerSim: Trigger Simulation 19
3.1.4 ScintiDigitizer, MDTDigitizer, StreamerDigitizer: Digit Production 20

3.2 Detailed Description of a Reconstruction Job . 20
3.2.1 TDCDelayAdjust: Calculation of Run Time Corrections 21
3.2.2 MDTTimeToRadTransform: Translation between Drift Times and

Drift Radii . 21
3.2.3 MDTPatternFinder: Definition of Subsets of Drift Circles that might

form a Muon Trajectory . 22
3.2.4 MDTTrackFitter: Fitting of Tracks . 22
3.2.5 MuonCTNTuple: N-Tuple Production 23
3.2.6 AtlantisXMLTrackConverter: Visualization of Tracks 24

4 Geometry and Calibration Aspects in MCT 25
4.1 Geometry Model Conversion . 25

4.1.1 Problem Definition: Derivation of Geant4 Boundary Conditions 26

3

4.1.2 Concept and Design . 27
4.1.3 Implementation . 28

4.2 Obtaining Calibration Data . 32
4.2.1 Problem Definition: Time Varying Data 33
4.2.2 Concept and Design . 34
4.2.3 Implementation . 36

4.3 IOV and Conditions Databases . 36
4.3.1 Problem Definition: Two Database Design of the IOV Service 36
4.3.2 Concept and Design . 37
4.3.3 Implementation . 38

4.4 Accessing Calibration Data from inside MCT . 39
4.4.1 Problem Definition: Different Views of Time Varying Data 39
4.4.2 Concept and Design . 40
4.4.3 Implementation . 41

5 Wire Position Measurements 46
5.1 Data Sample and Event Selection . 46
5.2 Wire Displacements . 47

5.2.1 Displacements in Y Direction . 48
5.2.2 Displacements in Z Direction . 48

5.3 Comparison with MTOffline . 48
5.3.1 Comparison of the Results . 48
5.3.2 Comparison of the Methods . 53

5.4 Conclusions . 53

6 Summary 55

7 Zusammenfassung 56

A Physical Streamer Digit Production 57

B Athena Components and Data Classes in MCT Sub Packages 59

C Detailed Example: Joboptions 72

D Description of the MCT N-Tuple 75

4

Chapter 1

Introduction

Investigating small structures requires big machines. The attribute ’big’ refers to every aspect
of a modern experiment in high energy physics. Not only are the operating machines big and
of course expensive. Integrating the number of people involved over time yields a number that
exceeds earlier experiments by far.1

LHC, the Large Hadron Collider, is currently being built into the ring tunnel facilities of
its predecessor LEP (Large Electron-Positron Collider) and is supposed to be commissioned in
2007. LHC is facing great scientific achievements of LEP, some of which are measurements of
W - and Z-Bosons, the exchange bosons of weak interaction and general precise Standard Model
tests. Although the LEP concept was challenging for its developers from the beginning, the
LHC storage ring is even more challenging for present scientists. The two concepts differ not
only in kinetic energy transferred to the particles. LEP used to accelerate electrons or positrons
up to about 100GeV while Protons at LHC are supposed to reach 7TeV. Interactions between
two protons at LHC will differ significantly from those at LEP. To our present understanding,
leptons, such as electrons and positrons, are point-like particles. Interactions, i. e. head on
collisions between two particles are therefore much simpler than in the case of LHC, where the
involved particles have a complex structure. The center of mass energy of a collision between
constituents of protons at LHC is expected to be significantly lower than two times the energy
of an accelerated proton - even worse, the energy is not exactly known.

LHC, as LEPs predecessor, is exposed to high expectations, and the physics it might allow us
to study is marvelous from the current point of view. It will recreate conditions which prevailed
in the universe 10−12 seconds after the Big Bang. With its four experiments, the LHC will
become a touchstone for the standard model (e. g. Higgs mechanism) and theories beyond, such
as Supersymmetry.

1.1 ATLAS Detector

ATLAS (A Toroidal LHC ApparatuS) is, besides CMS (Compact Muon Solenoid), one of the
two general purpose experiments operating at the LHC. Its geometry is the ordinary and well
approved onion skin configuration, consisting of (from inside to outside) tracker, calorimeter and
muon system (1.1).

It is designed to exploit a wide range of the physics opportunities offered by LHC, among

1Due to the large number of participating scientists, the per capita cost of an experiment is comparable to or
even lower than that of other disciplines in modern physics.

5

S. C. Air Core
Toroids

S. C. Solenoid

Hadron
Calorimeters

Forward
Calorimeters

Muon
Detectors

Inner
Detector

EM Calorimeters

Figure 1.1: Outline of the ATLAS detector (from inside to outside): tracker, calorimeter and
muon system. The beam pipe is located along the symmetry axis, with the interaction point in
the center of the setup.

which the reason for spontaneous symmetry breaking in electroweak theory appears as well as
the search for supersymmetry, detailed studies of heavy fermions and fermion compositeness.
The search for the Higgs Boson is one primary goal of the ATLAS detector and widely dictates
its design.

Discovery of new physics usually needs a high statistic, whereas ATLAS is designed to operate
at high luminosity (1034 cm−1s−1), picking up as much information as possible.

Figure 1.1 shows an outline of the detector. The inner detector consists of three sub
detectors covering the range |η| ≤ 2.52. A central solenoid magnet provides a magnetic field of
2T and thus allows identification of charged particles and momentum determination.

The pixel detector consists of layers of semiconductor sensors with a very high granularity
(“pixels” of size 50µm×300µm). It is designed to deliver precise measurements very close to the
interaction point of the beams and to determine the exact interaction point as well as displaced
secondary vertexes of the produced particles.

Double layers of silicon strips are the sensitive material of the semiconductor trackers (SCT),
aligned vertically to the beam direction. The two layers in one double layer are slightly tilt with
respect to each other (40mrad). Pixel and SCT sub detectors together build the precision
tracker.

The third inner detector subsystem is the transition radiation tracker (TRT), consisting of
∼ 36 layers of 4mm diameter straw tubes. Its main purpose is to identify and measure charged

2The pseudo rapidity η is a function of the energy and the transverse momentum of a particle. In the relativistic
limes, it changes additive under Lorentz transformations. Therefore, its distribution is independent of the reference
framework.

6

Longitudinal beam

In-plane alignment

Multilayer

Cross plate

Figure 1.2: Outline of an ATLAS MDT chamber.

particles.
ATLAS calorimeters are separated into an electromagnetic (EM) and a hadronic part.

The EM part is built by an accordion-shaped liquid argon (LAr) calorimeter, with lead absorber
plates alternating with copper electrodes on Kapton carriers for the barrel and the end cap.
The hadronic part is built of scintillating tiles in the barrel region and an LAr calorimeter with
copper or tungsten absorbers in the end caps.

Overall dimensions of the detector are defined by themuon spectrometer. Outer chambers
of the barrel are at a radius of about 11m. The muon system consists of superconducting barrel
and end cap toroids which establish a magnetic field of 0.8T to 1T. An air core system reduces
dead material in the detector and therefore the effect of multiple scattering.

The intended purpose of the muon system is twofold. One aim is to provide a fast trigger
system. This is done by resistive plate chambers (RPC) in the barrel of the detector and thin
gap chambers (TGC) at the end-caps. These chambers are very fast (t < 25 ns) but have a
coarse spacial resolution.

Monitored drift tubes (MDT) of 3 cm diameter are grouped together in multilayers, two of
them build up one chamber. They measure the coordinates of the muons in the bending plane
and serve precise momentum information. MDTs form the major part of the spectrometer. They
have a rather long drift time (t ∼ 500 ns) but give a good spacial resolution. Figure 1.2 shows
a schematic view of an ATLAS MDT chamber. The drift tubes are made of aluminum and are
operated at pressure of 3 bar and voltage between its W-Re anode wire and the aluminum wall
of 3080V. The drift gas is a 93 : 7 Ar : CO2 gas mixture.

With its 1194 chambers, the whole muon system covers an area of more than 5300m2.

1.2 Munich Cosmic Ray Test Facility

The University of Munich (LMU) in collaboration with the Max Planck Institute for Physics
(MPI) is responsible for the construction of MDT chambers of type BOS (barrel outer small).
These chambers consist of two multi layers of drift tubes, each layer built of three single layers.
This chamber type is the second largest used at the ATLAS spectrometer and has a size of
3.9m× 2.2m× 0.5m.

It is the main purpose of the Munich Cosmic Ray Test Facility to test the chambers (including
on-board electronics) and to produce maps of the chamber wire positions with an accuracy of
20µm. Furthermore, the test stand allows to gain experience with the operation and calibration

7

upper
reference chamber

lower
reference chamber

test chamber

iron absorber

lower hodoscope

upper hodoscope

streamer tubes

120 cm

y

x

z

Figure 1.3: Image of the test stand generated with Athena tools including a size comparison and
a coordinate system definition. The scintillator bars of the hodoscope are situated perpendicular
to the drift tubes while the streamer tubes are parallel.

of MDT chambers, both on the hardware as on the software side.
Figure 1.3 shows a schematic view of the test stand setup. This image was generated from the

geometry description inside the Athena framework. The setup consists of three MDT chambers,
an iron absorber (underneath the MDT chambers), one scintillator layer above the chambers and
a double layer below the iron absorber. At the very bottom is a layer of streamer tubes. Small
deviations of the nominal chamber positions as well as small transformations of the chamber
itself are detected with optical and capacitive alignment systems (RasNiK, [1]).

A coinciding signal of all the three scintillator layers causes the setup to record data, the
scintillator layers act as a trigger. Segmentation of the scintillator layers limits the inclination
of the muons in a plane perpendicular to the single scintillator bars.

A 34 cm iron absorber located between the scintillator layers ensures that only muons with
a momentum greater than 600MeV are triggered. In addition to that, a layer of streamer tubes
situated below the lower hodoscope provides information about the multiple scattering angle
inside the iron absorber. It is used as an estimate for the muon energy

Two of the MDT chambers act as reference chambers. Their wire position has been measured
with an accuracy of 2µm in an X-ray tomograph situated at CERN.

All chambers assembled by MPI and LMU will undergo a series test, presumably until the
end of 2004.

8

Chapter 2

Athena Framework

Athena is the fully object-oriented framework for the integration of all data processing steps
concerning the ATLAS experiment. It is currently being developed by the ATLAS collaboration
and is designed to cover simulation, calibration, reconstruction and physics analysis of a high
energy physics experiment. It is written entirely in C++.

Athena itself is based on the experiment-independent Gaudi framework [2], initially devel-
oped for the LHCb experiment. The development of Gaudi is much inspired by the experience
that high energy physics experiments are expected to run for many years and it is very likely that
underlying technologies, such as storage technologies, may change. Therefore Gaudi avoids any
direct dependency on external technologies and introduces a layer of abstraction between them
and Gaudi applications. Concrete external software is then integrated into a Gaudi application
by the joboptions mechanism, described later in this chapter.

In the following sections, I will not explicitly distinguish between Gaudi and Athena contri-
bution to the ATLAS software framework and generally write Athena, even if ’Gaudi/Athena’
or ’Gaudi’ would be more appropriate.

The Athena framework offers concepts, which allow a huge number of developers to con-
certedly work on a large and complex software project.1 Intuitive communication mechanisms
lead to humanly readable code and allow a consistent treatment of data from different stages
of data processing or even different subsystems of the detector. Athena makes heavy use of the
object-oriented features of C++ and follows modern guides for object oriented-software design
(as in [3]). With its blackboard-like communication mechanism and its concept of separated,
sequentially executed algorithms (see below), a maximum decoupling of data and algorithms is
achieved. This makes Athena code flexible and easily to reuse or to extend.

Athena’s most important concepts will be explained in this chapter. Some certain Athena
packages become of special interest later for the MCT project and shall be introduced here,
too. A more detailed and technical description of the Gaudi framework is found in the Gaudi
Developers Guide, available from [2].

Conventions

The following, programming-related speech conventions will be used throughout this chapter
and the rest of this document. A little experience in object-oriented programming on part of

1To give ’huge’ and ’large’ a number: the release 6.3.0 of the ATLAS software package occupied 4.8 gigabyte
of disc space, excluding the underlying Gaudi framework. The number of subscribers of the most general ATLAS
software mailing list (’atlas-sw’) was 899 in October 2003.

9

ApplicationMgr

jobOptions.txt

ApplicationMgr.TopAlg = {Algorithm1, ...

is read in

EventLoopMgr

G4Svc

...

instantiates at run time

Algorithm1

− initialize()

− finalize()
− execute()Algorithm2

− initialize()

− finalize()
− execute()Algorithm3

− initialize()

− finalize()
− execute()

Figure 2.1: Central role of the application manager: user code is requested in joboptions files.
The application manager instantiates the objects at run time.

the reader is not mandatory but facilitates reading.
In some places, the name of a class is used synonymously for an instance of this class,

especially if only one instance of a class exists within a certain Athena job (e. g. StoreGate as
described below).

Furthermore, the difference between an Algorithm and an algorithm is that the former is a
class derived from the common Athena base class Algorithm (or an instance of a class derived
from this base class), whereas the latter corresponds to the commonly accepted definition of an
algorithm. Generally speaking, bold-faced words indicate class names.

Citations from the source code are set in the typescript font family. A (...) inside a source
code citation indicates that small parts of the code have been omitted in order to increase
readability.

I will adopt the commonly accepted “is-a” speech when referring to classes and their objects.
Saying “ObjectB” is-a ClassA means: “ObjectB” is an instance of a class, let us say ClassB,
that is derived from ClassA. In other words: every method defined in ClassA is served from
“ObjectB”. Or: every piece of code that can handle objects instantiated from ClassA will also
be able to handle objects instantiated from ClassB, since ClassB inherits all properties from
ClassA.

2.1 Joboptions Mechanism

An Athena application is concentrated around the ’athena.exe’ executable. This executable is
framework specific and does not contain any user code.

Figure 2.1 demonstrates the central role of the application manager, which is the only object
contained and instantiated in the ’athena.exe’ executable. Once initialized, it reads a joboptions

10

file2, which is a simple, static text file. The joboptions define which libraries to load and which
objects to instantiate for the application manager.

As figure 2.1 suggests, an Athena application is far from being a static application. An
Athena job with a minimal joboptions text file is unable to produce anything reasonable.

The ability to dynamically load libraries is remarkable and differs from usual Linux/Unix
library sharing: the libraries are loaded at run time. The libraries contain class implemen-
tations which represent the functional code of an Athena application. These classes have to
be derived from common Athena base classes (the most important are Algorithms, Services
and Tools) some of which will be introduced later. The objects, instantiated by the applica-
tion manager following directives in the joboptions file, can be configured via the same jobop-
tions file. Properties of an object are usually assigned in an object oriented style, such as
ObjectName.ObjectProperty = ‘‘value’’. The configuration of the application manager ob-
ject does not differ from the configuration of an arbitrary object instantiated in an Athena
application: ApplicationMgr.TopAlg=‘‘Algorithm1/MyAlg’’ tells the application manager
object to instantiate an object of class Algorithm1 and assign it the name ’MyAlg’. This
object can later be configured via its name ’MyAlg’.

As mentioned above, Gaudi aims to be able to handle changes in underlying technologies,
such as storage technologies. In fact, when developing Algorithms (or other components), the
user should not care about the concrete underlying technology. He interacts with an abstract
Gaudi interface which hides the concrete technology. The choice of technology is finally done in
the joboptions file and can be easily changed.

A more advanced feature of the Athena framework is the possibility to instantiate multiple
instances of one class, giving it different names. This way, every instance of this class can be
configured individually.

2.2 Athena Components

In order to be able to instantiate objects at run time, the classes need to inherit from certain
Athena base classes. They differ in their purpose and are described in the following subsections.

2.2.1 Athena Algorithms

Due to the nature of high energy physics experiments, data processing is subordinated to an
event-by-event cycle.3 Every step to be done in an Athena application (such as calculating muon
tracks out of a collection of drift circles), will be the same for every event. Objects performing
concrete calculations therefore have to be instances of classes that derive from a common base
class (Algorithm) and overload three methods:

• initialize() To be done at the beginning of a job, such as configuration following the
definitions in a joboptions file.

• execute() Perform reasonable calculations for each event.

• finalize() To be done at the end of a job, such as writing out job statistics.

2Instead of static text files, Athena has the ability to interact with the user via an interactive Python interface.
This feature is supposed to become common in the future for Athena applications.

3This is the reason why high energy physics applications are usually relatively easy to parallelize.

11

Figure 2.1 gives an idea of how Algorithms are instantiated. The joboptions define which
Algorithms shall be instantiated and in which order their execute()-method shall be invoked.
The presence of Algorithms in Athena emphasizes its properties of being a framework: The
user overloads classes, whose methods are invoked (only) by the framework itself.

2.2.2 Athena Tools

Instances of classes that inherit from the Athena Tool base class are helper objects, that can
be requested by every other Athena component, e. g. Athena Algorithms. Their purpose is
to implement small algorithms that can be used at several places within an Athena job. This
concept has two major advantages: first, frequently used algorithms need to be implemented
only once and can be used from everywhere inside the Athena framework by simply requesting
a certain Tool from the ToolSvc (tool service, see below). Second, since the Tool is requested
by submitting a simple string to the ToolSvc, the concrete Tool requested can be steered via
joboptions (this, of course, implies a common interface for Tools that serve identical exercises).

The flexibility of choosing concrete Tools via joboptions is exploited at different places in
the MuonCT package. The MuonCT reconstruction Algorithm calls the concrete track fit
algorithm via an abstract Tool interface (more precisely: an ITool interface). The concrete
reconstruction Tool (and therefore the algorithm used) is defined via joboptions!

As Algorithms, Tools can implement initialize()- and finalize()-methods.
It is worth mentioning that components requesting Tools have the choice of requesting one

common instance of a Tool or an individual instance, the latter can be configured individually
by the requesting component.

2.2.3 Athena Services

Services are objects that usually exist in one single instance and can be used from everywhere
inside the Athena framework. The tool service ToolSvc has been mentioned above as an
example for a service: every Athena component requesting a Tool needs to interact with the
single ToolSvc instance.

2.2.4 Athena Converters

The concept of Converters is central to a technology independent architecture. As mentioned
above, one main goal of the Athena framework is to be independent of future technology changes.
This is realized by adding additional layers of abstraction. In case of storage technology, this
abstraction layer is provided by Converters (and corresponding ConversionSvces, conversion
services). This leads to a strict distinction between the transient representation (i. e. in memory)
of a data object and its corresponding persistent representation (e. g. on hard disk or tape). If
the underlying technology changes, only converters have to be updated, not the operational
code.

ConversionSvcs (one for each storage technology) and Converters (one for each storable
class and storage technology) work together hand in hand. The Converters are triggered via
their createObj()- or createRep()-methods. The former creates a transient representation by
interpreting external data while the latter persistifies an object. The argument list of these meth-
ods contains all information necessary. Communication between converters and their conversion
services can be manifold and is left to the code designer. In one case described below (conditions

12

Algorithm1

Algorithm2

Algorithm3

Algorithm4

o
rd

e
r o

f e
xe

c
ut

io
n

StoreGate

reading:

writing:

DataA

DataB

DataC

DataD

DataE

Figure 2.2: Illustration of a possible data flow within a chain of Athena Algorithms.

database), the ConversionSvc provides filestream objects for either reading or writing to its
converters.

2.3 StoreGate: Communication between Components

Athena jobs can be composed from many dozens of Algorithms or even more. This gives
rise to the question of communication between different Algorithms. Athena developers have
chosen a blackboard technology, named StoreGate. The idea is as follows: components (such
as Algorithms) of an Athena job have access to a store and are able to write and read to and
from that store, but are unable to modify objects once they are inserted in that store. The
objects stored in StoreGate are only identified by their type4 and (optionally) a std::string

key.
Figure 2.2 shows a possible data flow for a chain of Algorithms. The execute()-method

of each Algorithm is called in a defined order. In that method, data is read and/or produced.
With the introduction of StoreGate, a crucial aspect of C++ is addressed: the problem

of ownership. In C++, unlike languages as e. g. Java, objects survive (and consume memory)
until they are deleted explicitly. StoreGate takes over ownership of an object once it has been
placed in StoreGate. At the end of processing one event, StoreGate (also referred to as event
store) deletes all its contents.

Of course, there are classes of data which shall not be deleted after an event has been
processed. For these types, e. g. detector description data, Athena offers further stores which
differ from StoreGate only in their lifetime policy. The DetectorStore for example contains
the geometry description of an experiment and survives throughout a complete Athena job.

2.4 Special Athena Packages

This section describes Athena packages of certain interest to the MCT project. They are not
framework specific and could (theoretically) be easily exchanged, even though they make heavy
use of the facilities described above.

4Identification by type is implemented via a unique number identifying each storable class.

13

Chamber
PV MDT

Multilayer
PV MDT

DriftWallPV

Tag
GeoIdentifier

Transform
GeoAlignable

Transform
GeoAlignable

Transform
GeoAlignable

Structure
MDT SupportPV

Transform
GeoAlignable

Transform
GeoAlignable

Tag
GeoIdentifier

. . .

. . .

. . .

Tag
GeoIdentifier . . .

(PV=GeoFulPhysVol or
 GeoPhyVol)

TeststandNode
PV MuonCosmic

WorldPV

Figure 2.3: Cutout of the MCT GeoModel description. The grouping (green box) is realized
only by the fact that the tree is interpreted sequence-sensitively. A detailed explanation is given
in the text.

2.4.1 Geometry Model

Most of the jobs that can be processed with Athena need information about the detector ge-
ometry including information about used materials and where they are placed. This includes
’sensitive materials’ like detectors as well as ’dead materials’ such as absorbers.

GeoModel is the name of a concept currently used in the Athena framework for transient
storage of geometry information. GeoModel neither defines how this information is collected nor
how it is stored persistently. It is just an in-memory representation of the full detector setup. [4]
gives a more detailed description on how the GeoModel is to be used.

The main design goal of GeoModel was to provide a slim representation of the detector
setup. It basically consists of an ordered tree with GeoGraphNodes at each node. In class
GeoGraphNode, only the basic properties are defined that are necessary to integrate an object
into the GeoModel tree.

Figure 2.3 gives a sketch view of how a GeoModel tree is designed considering the MCT Ge-
oModel tree as an example. Each box seen represents an object derived from GeoGraphNode.
Concrete implementations of this class are in this example: GeoPhysVol or GeoFulPhysVol
(abbreviated with PV in the figure), GeoAlignableTransform and GeoIdentifierTag.

GeoPhysVols or GeoFulPhysVols represent the shape and the material of a given object,
such as a MDT Multilayer. (The shape- and material-representation is actually realized by a
pointer to an object of class GeoLogVol, which contains this information. This will become
a crucial point when it comes to translation between different types of geometry descriptions
as seen later.) The two classes differ in their ability to cache position information: the Ge-
oFulPhysVol holds a copy of its global position while GeoPhysVol does not. The position
information is likely to change in an alignable geometry and has to be updated continuously by
certain mechanisms.

GeoAlignableTransforms5 or GeoTransforms are objects which represent the local po-
sition of a physical volume (i. e. a GeoPhysVol or GeoFullPhysVol) inside another, given
the concrete translation and rotation. It is important to note that only the local position is

5Later, IOVGeoAlignableTransform will be introduced as a transformation that is automatically aligned
by the IOVSvc.

14

given. In order to determine the absolute position of an object (e. g. a DriftWall in figure 2.3),
it is necessary to traverse the whole tree from the regarding node up to the root node and to
concatenate all transformations seen on that path.

Since some volumes need a unique identification, GeoModel provides a GeoIdentifierTag.
It serves information about an Identifier associated to a certain geometry object. Identifiers
are tuples of numbers following a certain convention that contain identification of subsystem
type and readout channel. In the figure, only a GeoFulPhysVol representing a MDT chamber
has such a tag.

In figure 2.3, one sees that certain objects are grouped, such as the GeoFullPhysVol MDT
chamber together with its transformation and an identifier tag. This is done only by the order
in which these objects are bound to their parent node, which in this case is a GeoFullPhysVol
named ’MuonCosmicTeststandNode’. When building a GeoModel tree, every GeoGraphNode
inserted into a tree has to be interpreted as being associated with the next GeoPhysVol or
GeoFullPhysVol being inserted. This makes the GeoModel tree an ordered tree.

GeoModel trees are not intended for fast readout. Due to its structure, it is time expensive
to access certain parts of the detector. The recommended way to perform several actions that
need to traverse through the geometry is via so-called GeoNodeActions. An instance of Geo-
NodeAction can be regarded as a small object, that is handed from node to node automatically
(either upwards or downwards the tree “from where it is inserted”) and travels through the tree.
In doing so, it can perform several tasks, such as collecting information about the geometry or
invalidating cached position information of GeoFulPhysVols.

Therefore, the MCT project has implemented a MuonCTDetDescrMgr, a detector de-
scription manager. Its duty is to traverse through the whole GeoModel tree and collect all
information needed and offer it to the user (i. e. Algorithms) for easy access.6

The transient representation of the GeoModel is stored in the detector store.

2.4.2 Interval of Validity Service

Since the measurements performed by the ATLAS subdetectors are extremely precise, they
are sensitive to minimal fluctuations to outer conditions such as temperature. These can, for
example, lead to small changes in the detector geometry on the micrometer scale or variations
of the spectra of drift tubes.

In the case of the Munich Cosmic Ray Measurement Facility, realignment becomes necessary
due to an additional reason: in the series test, the muon chambers are exchanged weekly and
need to be realigned individually. Since events from different test chambers carry different run
numbers, this can be fully handled by the IOVSvc (interval of validity service).

The mechanism described below allows users to access time varying data from the transient
store without being aware of the data being updated automatically. The process is completely
transparent to the user except for the fact that the user has to register data with the IOVSvc
explicitly.7

Conditions data can be assumed to be constant during the time an event takes. The IOVSvc
defines intervals of validity for user-defined types of conditions data in terms of run and event
numbers (represented by two pairs of run and event number, a from- and a till-pair). The

6This will become a point of interest later, when the GeoModel is aligned automatically by the IOVSvc: the
MuonCTDetDescrMgr need to be informed about all changes in geometry.

7It is currently being discussed to extend the IOV mechanism such that registering is no longer necessary.

15

MyAlg::initialize(){

}
 m_iovSvc−>regHandle(m_myHandle, key);

MyAlg::execute() {
 m_myHandle−>doSomething();
}

ConditionsStore

Proxy

accesses

ConversionSvc ConditionsStore
reads

creates instances

IOVSvc

resets if
necessary

reads in

IOVDB

registers

user code (Athena Algorithm)

Figure 2.4: How IOVSvc-based access works: slanted words indicate verbs. The procedure
seen in this figure is described in the text. Important: the two white stores (IOV-database and
conditions store) are external stores and therefore easily exchangeable in the Athena sense.

IOVSvc allows the user to register DataHandles8 for being updated when an event has run
out of an interval of validity.

When a DataHandle named myDataHandle is registered with the IOVSvc via a

m iovSvc->regHandle(myDataHandle, key);

call, the IOVSvc stores a so-called proxy in StoreGate. Let’s assume, myDataHandle acts as
a pointer to objects of type myData. The proxy contains no data but a reference to the real
data. This reference is interpreted by converters. When the user dereferences myDataHandle,
StoreGate is involved and notices that the proxy is empty and hands over all the information
that is stored in the proxy to the converter, which itself creates an instance of the desired
object by evaluating external data stores. From now, this instance remains in memory and is
dereferenced directly via myDataHandle.

Since there can be more than one object of type myData, these objects are uniquely iden-
tified by a std::string named key in this example. (E. g. multiple instances of chamber
positioning information, one for each chamber, have a key that uniquely identifies their cham-
ber.)

Once an object that is accessed via a registered DataHandle, becomes invalid (e. g. the po-
sition of a drift chamber because the chamber has moved), the IOVSvc resets the DataHandle
and fills the proxy with a new reference to the valid data object (valid means appropriate con-
sidering the current (run, event)-pair). As a result, the next dereferencing of the DataHandle
again lets the converter read the conditions database and create an instance of the corresponding
object. Figure 2.4 gives an impression of how this procedure works.

The IOVSvc retrieves information about references to valid conditions database entries
by interpreting the IOV database. It was already mentioned that Athena is designed to be

8DataHandles are dereferenced like pointers and the difference between C++-pointers and DataHandles is
negligible in this context.

16

independent of future technology changes. Therefore, the IOVSvc does not access the IOVDB
(IOV database) directly. Instead, a layer of abstraction, namely the IIOVDBSvc, is inserted
in between.

In principle, it is possible to avoid the conditions database completely. Instead of interpreting
the tag provided by the IOVDB as a reference to an entry in the conditions database, the
converter could interpret the tag (a std::string) as the data itself. This is done by streaming
arbitrary complex data in a sequential “blob”.

The two-database-design explained above has several advantages. It allows normal users
to create several, even overlapping sets of calibration data and to store them in the conditions
database. Later, a “group of experts” is able to inspect this data and store references to approved
data in the IOV database. The latter might even be possible through an intuitive web interface.

In addition to that, since IIOVDBSvcs and converters are easily exchangeable via jobop-
tions, the end user might override these authoritative decisions in his private development area
and play with alternative calibrations.

Updating data objects does not exhaust the power of the IOVSvc. Later, in chapter 4.4,
we will see that it becomes necessary to take certain actions once an object changes in memory.
For this reason, the IOVSvc allows to register callback functions with data objects. They are
called at the beginning of an event when an object is updated because an interval of validity
becomes invalid. Even more, it is possible to register callback functions with other, already
registered, callback functions. Whenever the first function is invoked by the IOVSvc, the other
one is triggered, too.

A more detailed description of the IOV service can be found on the author’s web page [5].

17

Chapter 3

Simulation and Reconstruction of

Muons with the MCT Software

Package

The MCT or MuonCosmicTeststand project consists of several logical units (such as Simula-
tion, Reconstruction, Calibration) which themselves consist of several implementations of Athena
components (Algorithms, Services, etc.). For example, MuonCTGeoModel contains the com-
plete geometry description of the Munich Cosmic Ray Measurement Facility. MuonCTG4Sim
implements the simulation of the detector based on the Geant4 simulation toolkit, which is used
inside Athena. MuonCTReco and MuonCTRecoUtils contain algorithms which evaluate test
stand data and reconstruct muon trajectories. Other packages implement the Athena convert-
ers necessary to store or read test stand specific data. MuonCTCalibAlgs holds Algorithms
that determine calibration parameters of the test stand in an Athena job.

Instead of explaining each of these sub packages step by step, I will give an example of a
simulation and a reconstruction job that can be processed by composing parts of them via a
joboptions file. A short discussion of all Athena components and data classes in MCT can be
found in appendix B.

3.1 Detailed Description of a Simulation Job

Simulation is an important part of physical unterstanding. In a high energy experiment, the
measurement is influenced by many parameters, such as the amount of dead material, its ge-
ometry as well as the interaction of physical processes such as avalanche formation in gaseous
detectors. In many cases, simulation, rather then analytic calculation, is the only way to gain
predictions for an experiment.

A typical simulation job ends up with a data file containing digits, representing signals as
they could have come from the experiment itself. Each of the following subsections represent
Algorithms coming from certain sub packages of the MCT project. They are executed in the
order that these subsections appear. When all execute() methods are processed as described
below, the event store contains several collections of digits for all different types of detectors in
the cosmic test stand. From that point, it is possible to have a number of subsequent algorithms
that further process the data, such as a reconstruction or calibration job. Saving of digits is
realized by means of converters as discussed above. At the end of an event, the content of the

18

event store is purged, but before this is done, converters may create persistent representations
of the data.

3.1.1 SingleParticleGun: Generation of Muons

Generation of particles for the Munich Cosmic Ray Measurement Facility is a rather simple task
compared to complex experiments such as ATLAS. The trigger system of the real test stand
provides that only one cosmic event at the same time is recorded. Therefore, in its execute()-
method the particle generator simply dices energy and momentum within given bounds (defined
in joboptions) and produces an object representing a muon with these properties and stores it
in the event store (StoreGate) in the common HepMC-format [6]. SingleParticleGun is not
part of the MCT package, it resides in an Athena package, GeneratorModules, together with
other, more complex, particle generators.1

3.1.2 MuonCTG4Sim: Tracking of the Particle

The next Algorithm in the chain differs from other Algorithms since it does nothing in its
execute() method.

Athena uses Geant4 (also referred to as G4) as a simulation engine. Geant4 provides its
own framework for stand-alone applications. Using one framework inside another leads to a
number of unwanted effects and has to be avoided somehow. In Athena, the only access to
Geant4 from within the Athena framework is by means of the G4Svc (Geant4 service), which
is a service in the Athena sense as discussed above. The only task for MuonCTG4Sim is
to define the simulation boundary conditions (such as geometry and type of physics desired
within the simulation) in its initialize() method by interacting with the G4Svc. Everything
else (namely the tracking of particles through the detector) is left to G4Svc and the Geant4
framework. The starting point for tracking is the HepMC object that is found in the event store.

The MuonCTG4Sim sub package itself contains more than just oneAlgorithm. It also holds
algorithms that translate the GeoModel geometry description into a Geant4 framework specific
geometry description. G4 sensitive detectors (G4VSensitiveDetectors), also implemented
in this sub package, are algorithms attached to certain volumes of the detector. Whenever
the tracking engine tracks a particle into a volume that has a sensitive detector attached, this
algorithm is able to calculate hits and store them in the event store. In case of the sensitive
detectors assigned to drift tubes, the hit objects stored mainly consist of the drift radii seen by
single tubes.

Geometry conversion and the matter of sensitive detectors in the Athena framework are
addressed in subsequent chapters.

3.1.3 ScintiPreDigitizer, TriggerSim: Trigger Simulation

In the real test stand, the scintillator hodoscope acts as a trigger for the whole setup. Events
are only stored if they conform a certain signature, one of which is the demand of a restricted
range of the angle of incidence.

ScintiPreDigitizer evaluates a small fraction of the hits stored in the event store and
calculates corresponding digits as seen by the scintillator system of the test stand. The next
algorithm in the chain, TriggerSim, again picks up the information from ScintiPreDigitizer

1The SingleParticleGun is obsolete now and has been replaced by a more flexible generator.

19

and examines if it fulfills the conditions. If not, a flag is set and the sequence of algorithms is
stopped.2

3.1.4 ScintiDigitizer, MDTDigitizer, StreamerDigitizer: Digit Production

Now that the we assume that the simulated event would have been accepted by the trigger
mechanisms, hits can be fetched from StoreGate and used to create digits.

The fundamental difference between hits and digits in a real experiment is, that hits have
no representation in the data processing chain. In general, hits contain more information than
digits. In the case of MDT chambers (MDTDigitizer), hits contain the information of where
a particle passes a drift tube, including its radius as well as its distance to the tubes readout.
Using this information, a time delay is calculated which leads to timing information at which the
channel is read out. Mapping between radii at which charged particle pass by the anode wire
and the time it takes until the signal reaches the wire, as well as an error estimation involves
the so-called drift time relation. In addition to that, the MDTDigitizer takes into account the
distance of the hit to the readout of its tube, for this leads to a signal run time delay that has
to be considered. This relative time information is given in units of TDC counts, which for the
current setup is 32

25
ns

count . The digit itself is smeared by a Gaussian distribution.
The digitization of streamer- and scintillator hits is more simple, since the only information

kept is which channel saw a signal and which did not.
One speciality of the digitization of streamer digits is connected to the fact that a hit in one

streamer volume is much likely to affect neighbor volumes. To accomodate this in MCT, the
channel identification scheme allows easy acces to the identification of neighbor volumes. The
pulse height seen by the neighbor volumes is calculated according to a simple electrostatic model
and is introduced in appendix A together with a description of the physical processes leading to
streamer hits.

At the end of the execute()-methods, all digits are stored in the event store. From here, as
described above, they can be made persistent and/or be further processed.

3.2 Detailed Description of a Reconstruction Job

To a certain extend, the work done by the reconstruction job described below reverses the work
of the simulation. It ties seamlessly to the simulation job, i. e. its algorithms could follow
imediately. The goal of this reconstruction job is to create track parameters from mdt chamber,
scintillator and streamer digits for each event in terms of three3 local tracks, one for each
chamber, and a global track, ideally through all three chambers. The track parameters with its
fit information as well as digit information is stored in an n-tuple.

Of course, once again, having subsequent Algorithms that pick up the track information
from StoreGate and perform further calculations is conceivable. As an example, the Algo-
rithm ChamberPosition uses track information to calculate the positions of the chambers.4

2This requires the Algorithms to be organized in so-called sequences.
3In certain cases only two, as we will see later.
4The precision at which the chambers are aligned when they are installed is limited. The procedure that

determines the exact positions is described later.

20

3.2.1 TDCDelayAdjust: Calculation of Run Time Corrections

A MDT chamber digit is a time equivalent given in TDC counts (32
25

ns
count). It holds information

about the difference between the global time a channel (tube) has been read out and a reference
time given by the lower scintillator system. It can be shown that the reference time given by the
lower hodoscope equals the global time at which the cosmic particle hits the scintillator system
plus an unknown, but fixed constant.

In order to gain information about the “real” drift time, i. e. the difference between the time,
the particle enters a gas volume and the time at which the ionized gas cloud reaches the wire,
several corrections have to be done.

TDCDelayAdjust picks up MDTDigits from StoreGate and performs corrections due to
two effects in the setup: the first and overbearing effect is the signal run time along the wire.
Depending on the x-position (refer to figure 1.3 on page 8 for the coordinate system definition)
of the hit, the read out electronic sees a signal that is delayed by the time it takes to travel along
the wire. TDCDelayAdjust determines the x-coordinate of the impact and estimates the time
delay. Second, the fact is accommodated that, even though the Muons travel nearly at the speed
of light, the time at which single drift tubes are hit depends on their z-position. Furthermore,
a very rough track fit is performed to estimate the inclination of the Muon trajectory, which
affects the time of flight of the muon.

The time-of-flight correction is surmounted by the signal-run-time correction. Nevertheless,
it is nearly about the order of magnitude of the design precision of the setup.

The result of this calculation is put into the event store in terms of DriftTimes, which
simply hold a time for each channel. (This ’time’ still is not the assumed drift time of the
channel.)

As said above, TDCDelayAdjust simply picks up digits from StoreGate. This is even
possible in the case that no preceding Algorithm stored them, provided that converters are
involved. Depending on the converters defined in joboptions, the calculation can be done with
real test stand data or with Monte Carlo data.

3.2.2 MDTTimeToRadTransform: Translation between Drift Times and Drift

Radii

In addition to the run time effects addressed byTDCDelayAdjust,MDTTimeToRadTrans-
form performs corrections that are necessary due to different cable length and electronic read
out effects. In contrary to the corrections calculated by TDCDelayAdjust, these corrections
do not vary with time or event (at least within one run). The drift time spectra for single
tubes look alike, except for a additive constant given by cable lengths and electronics internals.
MDTTimeToRadTransform takes into account this constant to calculate a “real drift time”.

Figure 3.1 shows a drift time spectrum for a single tube. The offset is already corrected to
be zero (the MCT Algorithms that determines the edges of drift time spectra is introduced
later).

The offset for each single tube is determined by an Algorithm in the MCT sub package
MCTCalibAlgs, the T0Fitter. The results are organized and made available via the interval of
validity-mechanism described later.

With the “real drift time”, MDTTimeToRadTransform calculates an estimate for the
drift radius and its error. The result, called a DriftCircle also contains information of x-, y-
and z-positions and is stored in the event store.

21

drift time spectrum #36

Entries 109556
Mean 223.4
RMS 180.8

drift time [ns]
0 100 200 300 400 500 600 700

o
cc

u
re

n
ce

0

50

100

150

200

250

300

350

400

drift time spectrum #36

Entries 109556
Mean 223.4
RMS 180.8

drift time spectrum #36

Figure 3.1: Drift time spectrum: the length of this spectrum corresponds to the maximum radius
seen by a drift tube. The starting point (here corrected to be zero) depends on cable lengths
and electronics internals.

3.2.3 MDTPatternFinder: Definition of Subsets of Drift Circles that might

form a Muon Trajectory

A pattern is a subset of all drift-circles whose centers have a distance from a given straight line
less than a certain road width. MDTPatternFinder catches collections of DriftCircles and
examines them to establish if they might belong to a pattern.

As result, MDTPatternFinder stores several local patterns (subsets of drift-circles of one
chamber) as well as global patterns (overall subsets of all three chambers) in the event store.
Global patterns are always built of local patterns in each chamber.

3.2.4 MDTTrackFitter: Fitting of Tracks

MDTTrackFitter’s purpose is to evaluate patterns by performing fits.
First, all global patterns are evaluated. By means of certain criteria, the “best” global

pattern is determined. Accordingly, the (usually three) local patterns that build this global
pattern are taken for the local fits. In the end, four tracks (one global and three local) in terms
of slope and intercept are written to StoreGate, including fit information.

The selected parametrization of muon tracks reflects the fact that MDT chamber measure-
ments are insensitive against the x coordinate (having in mind the coordinate system definition
given in figure 1.3): four parameters, mx, bx, my and by describe two projections of a track,

x(z) = mx · z + bx and

y(z) = my · z + by.

(mx, bx) is determined by a rather simple, not further discussed fit that evaluates scintillator
information while (my, by) are determined by the method just described.

MDTTrackFitter is very flexible when it comes to choosing strategies for the fit by ex-
ploiting the Athena tool mechanism (see above). Figure (3.2) gives an idea of which decisions
have to be made when fitting tracks.

22

choice of "strategy tool":

choice of concrete fit algorithm:

MDTTrackFitter

m_trackFitter−>fit()

StraightLineDCFitter

m_dcFitter−>lineFit()

StraightLineTPFitter

m_tpFitter−>lineFit()

MinuitDCLineFitter

SemiAnalyticDCLineFitter

LinearDCLineFitter

LazyDCLineFitter

NumRecLineFitter

RootLineFitter

Figure 3.2: MDTTrackFitter strategy design: two decisions need to be defined. Via the
joboptions mechanism, the end-user defines which strategy MDTTrackFitter uses. The next
decision concerns the concrete algorithm used for fitting. The list of fit algorithm alternatives
can easily be expanded.

In the first stage, the joboptions define which Strategy-Tool to use. At the moment, two
strategies are implemented: One minimizes a straight line by minimizing residua in terms of
distances of a straight line to drift circles. The other determines a set of points from a set of
drift circles (one for each) and performs a linear regression with these points.

In the next stage, the concrete fitting algorithm for the selected strategy is defined. The list
of concrete fit algorithms can be easily expanded. Examples of the already implemented fitters
are MinuitDCLineFitter (uses MINUIT as minimization engine) and NumRecLineFitter
(uses a linear regression algorithm found at [7]).

These definitions made in joboptions files affect the data member m trackFitter of Muon-
CTTrackFitter or m dcFitter (m tpFitter) of StraightLineDCFitter (StraightLineTP-
Fitter)5.

3.2.5 MuonCTNTuple: N-Tuple Production

When the fitting is done, MuonCTNTuple catches a broad variety of the event information
from StoreGate and interacts with the NTupleSvc to produce n-tuples. MuonCTNTuple
is not aware of the concrete technology used by the NTupleSvc to actually write n-tuples on
disk. This is defined via joboptions. An explanation of the concrete n-tuple produced is given
in appendix D.

5’tp’ means track point, ’dc’ means drift circle.

23

Figure 3.3: Atlantis event display: on the left hand side one sees the two vertical cuts through
the detector (top: front view along x, bottom: side view along y). The right hand side shows
three zoomed views (one for each chamber) of the track along x. Drift circles are shown as well
as the reconstructed track.

3.2.6 AtlantisXMLTrackConverter: Visualization of Tracks

Atlantis (see [8]) is a java based event display with a graphical user interface. It reads in XML-
files from disk. The purpose of AtlantisXMLTrackConverter is to collect fit information
from StoreGate and produce XML output, that is later interpreted by a separate program, the
Atlantis Event Display. Figure 3.3 shows the output of Atlantis for an example event.

24

Chapter 4

Geometry and Calibration Aspects

in MCT

The previous chapter illustrated two of the main tasks that are fulfilled by the MCT pack-
age. Additional tasks, such as the determination of calibration parameters, can be realized by
composing joboptions of the components residing in MCT sub packages.

The following sections elaborate single aspects in more detail. For every section, a problem
is deduced followed by a solution given in a design- and implementation part. The former
describes the solution in an abstract way, while the latter tries to give explanations on the
concrete implementation. Readers who intend to work with the MCT package should have a
look into the source code, available from [9], too, when reading the implementation part.

4.1 Geometry Model Conversion

As already mentioned in 3.1.2, Geant4 (see [10]) is currently the simulation engine of choice
utilized inside Athena. Geant4 is designed to be a toolkit from which stand-alone simulation
applications can be developed. Therefore, it provides its own geometry description classes, which
are mandatory for a simulation run. Hit production inside Geant4 is implemented by means
of so-called sensitive detector objects which are attached to certain volumes inside the Geant4
geometry tree. Sensitive detector objects contain algorithms capable of evaluating tracking
information (such as energy and momentum of a particle, momentum direction and energy
deposition in material) that is used for hit production. Whenever the tracking engine tracks
a particle inside the boundaries of such a volume, the ProcessHits() method of the attached
sensitive detector is invoked. Athena on the other hand currently uses GeoModel as the geometry
description model, which is designed to fulfill requirements which are different from the Geant4
geometry model, such as minimized memory consumption. At the moment, in a simulation job
both geometry descriptions reside in the transient store. For reasons of consistency it is inevitable
to have one description being derived from the other. Since Geant4 can be regarded as a utilized
helper toolkit, the Geant4 geometry needs to be derived from the GeoModel description. At the
time this thesis was developed, no Athena-wide solution existed for this problem.1 Therefore,
the MCT software package implements its own class for geometry conversion. It is held very
general so it can be used not only by the Munich test stand.

1If the Athena developers community decides to adhere to the two-framework-solution, an Athena-wide con-
version mechanism is necessary and might be influenced by the already existing MCT conversion implementation.

25

4.1.1 Problem Definition: Derivation of Geant4 Boundary Conditions

Starting from an already in memory existing GeoModel geometry description, the conversion
mechanism has to accommodate two tasks:

• One-to-one translation of GeoModel geometry description into a corresponding Geant4
description and

• incorporation of Geant4 sensitive detector objects.

Following 3.1.2, the Geant4 geometry representation needs to be registered with the G4Svc in
the initialize() method of MuonCTG4Sim. At this stage of job execution, the geometry
conversion has to be finished. Geometry conversion is subjected to to three principles, which
turn out to be non trivial (the following three points are referred to as the design principles
throughout this chapter).

1. When designing the GeoModel representation of a geometry setup, one should not have
to care about later conversion processes.

The GeoModel tree for the ATLAS detector is very complex and is designed by many people.
If GeoModel tree designers have to follow certain rules that are dictated by a later conversion
process, violations of these rules are hard to detect. If a violation of a rule prevents parts of
the geometry in Geant4 from being alignable, the effect is rather small, since e. g. chamber
alignment in MCT has consequences on the micrometer scale.

2. Every volume that is alignable in GeoModel (by means of so-called GeoAlignableTrans-
forms, see 2.4.1) needs to be alignable in Geant4, too.

In ATLAS, one aims to be able to simulate an ideal geometry as well as a misaligned geometry.
The geometry of the chambers in MCT is misaligned due to limitations of the insertion of cham-
bers into the test stand. Alignability of volumes in the GeoModel view of the setup is realized by
GeoAlignableTransforms, which hold pointers to two transformations, one representing the
nominal position of the volume, the other representing a small deviation. When constructing
the Geant4 geometry tree, one has to accomodate the fact that Geant4 volumes only hold one
transformation, which consequently needs to correspond to the nominal position concateneted
with its small deviation.

3. The Geant4 representation needs to be lightweight and fast.

This is not a problem for the MCT project, since the geometry is rather simple. This is different
for ATLAS, where the complexity is enormous. This makes it impossible to rebuild every real
volume by an instance of a GeoModel- or Geant4-object. Identical volumes therefore need to
be shared, i. e., multiple occurrences of identical volumes need to be realized via pointers and
not via additional objects. Sharing of volumes is realized in GeoModel and ideally needs to be
translated into its Geant4 correspondence.

Alignability in Geant4 is important for simulation studies of effects of misaligned geometries.
Considering incompatibilities between GeoModel and Geant4 geometry description, the 2nd
design principle turns out to be in opposition to a lightweight and fast Geant4 description.
Furthermore, freeing the GeoModel tree designer from all rules might collide with alignability.
This is explained later in the implementation section.

Integration of Geant4 sensitive detectors in the Athena concept is non-trivial, too. While
the pure Geant4 geometry description has an analogy on the Athena side (which is GeoModel
itself), Geant4 sensitive detectors have not.

26

4.1.2 Concept and Design

Geometry Conversion

A naive approach would be to catch the GeoModel tree from the detector store in the initial-
ize()-method of MuonCTG4Sim, perform the conversion explicitly and register the result
with theG4Svc. Instead, an Athena service is established that provides a more general solution.
The MuonCTGeoToG4Svc is a service in the Athena sense and performs the calculation
through an intuitive interface:

G4VUserDetectorConstruction* build(GeoModelExperiment* world)

(This interface definition reads as follows: the build()-method of the MuonCTGeoToG4Svc
service takes as argument a pointer to a GeoModel root node (GeoModelExperiment*) and
returns a pointer to the corresponding Geant4 setup (the geometry tree with all Geant4 sensitive
detectors attached, G4VUserDetectorConstruction*)) This service is available from everywhere
inside the framework and can be used to convert arbitrary GeoModel geometries.

Even though MuonCTGeoToG4Svc is a very general approach, the name2 of the service
has been chosen MCT-specific. In a larger Athena context, MuonCTGeoToG4Svc does not
aim to be the general future solution for geometry conversion itself, but a source of inspiration
for an Athena-wide solution. The name should state this clearly and furthermore avoid conflicts
with possible future, general implementations.

Only a few lines are left for the initialize()-method of MuonCTG4Sim to establish a
Geant4 simulation environment: Catch the GeoModel setup from the detector store,

status = m dtStr->retrieve(world);

(m dtStr is a pointer to the detector store) perform the conversion using the MuonCT-
GeoToG4Svc

G4VUserDetectorConstruction* teststand = m GeoToG4Svc->build(world);

and finally register the result with the G4Svc

m G4Svc->SetUserInitialization(teststand);.

This is the way the geometry conversion is performed in MuonCTG4Sim.

Sensitive Detector Integration

As stated above, there is no equivalent inside Athena for Geant4 sensitive detectors (G4V-
SensitiveDetectors). They are optional for Geant4 in the following sense: a Geant4 geometry
description without a sensitive detector makes sense and can be used for tracking etc., while
a sensitive detector that is not attached to a certain volume of a Geant4 geometry description
is completely useless. Geant4 sensitive detectors itself are pure algorithms without any prior
knowledge of the underlying geometry.

For MuonCTGeoToG4Svc an approach has been made that exploits an Athena feature
that deals with optional algorithms: Athena tools. Tools (described in section 2.2.2) are objects,
that are instantiated and made available via the ToolSvc on demand. The marriage between
Athena Tools and Geant4G4VSensitiveDetectors results in IG4VSensitiveDetectorTool,

2Within Athena, a service is made available via its name.

27

using C++multiple inheritance feature and is described below. IG4VSensitiveDetectorTools
can serve both interfaces, either of Geant4 sensitive detectors or Athena tools.

Since Tools are made available via their name, MuonCTGeoToG4Svc receives a list of
std::string in the joboptions file, e. g.

MuonCTGeoToG4Svc.SensitiveDetectors =

{ "MDTSD", "ScintillatorSD", "StreamerSD" };

(MDTSD is the sensitive detector producing drift tube hits, ScintillatorSD for scintillator
hits and StreamerSD for the streamer tube hits.3) These are the names of the sensitive
detector tools that shall be used in the simulation job described by that joboptions file. The
IG4VSensitiveDetectorTools themselves receive a std::string in the joboptions, too, which
is the name of the volume they are attached to, e. g.:

ToolSvc.MDTSD.ActiveLogVolName = "DriftGasLog";

This means that MDTSD should be attached to a volume with name DriftGasLog, which, as
one might guess, is the name of the gas volumes inside drift tubes. MuonCTGeoToG4Svc
accounts for these names when performing the conversion. The design chosen allows the user
to define different sensitive detector configurations (i. e. which ones are instantiated and which
volumes they are bound to) in the joboptions without any need to recompile the code.

4.1.3 Implementation

This section will give implementation details. This information is not necessary for somebody
only using the MuonCTGeoToG4Svc. A rather deep level of detail in this illustration of the
underlying algorithms has been chosen since it reveals deeper lying incompatibilities between
the two geometry descriptions. All code described here can be found in the MuonCTG4Sim sub
package of MCT.4

Geometry Conversion

For performing the conversion of the geometry, a helper class is utilized: GeoToG4Conversion.
The following methods are provided by this class:

• G4VPhysicalVolume* Construct();

• G4VSolid* GeoShapeToG4 (const GeoShape*);

• G4Material* GeoMatToG4 (const GeoMaterial*);

• G4Element* GeoEleToG4 (const GeoElement*);

• G4LogicalVolume* GeoPhysToG4Log (PVConstLink);

• void setVisOpts (G4LogicalVolume*);

• void setSensDet (G4LogicalVolume*);

3Note:MDTSD, ScintillatorSD and StreamerSD are not only Tools but also G4VSensitiveDetectors!
4A hint lightens the reading of the following lines: every class from within the Geant4-context starts with

“G4...”, while GeoModel classes start with “Geo...”

28

It follows a recursive approach: the Construct()-method, which is accessed from insideMuon-
CTGeoToG4Svc, mainly consists of the following statement:

return new G4PVPlacement(0, G4ThreeVector(),"experimentalHall",

GeoPhysToG4Log(m theExpt),0, false, 0);

where m theExpt is the pointer to the root node of the GeoModel tree to be converted. Geo-

PhysToG4Log() plays a central role in this recursive approach. First, it converts all geometrical
properties of the GeoModel volume in the corresponding Geant4 description. Second, it looks
for child volumes and converts them recursively. In a third step, properties that are independent
of the GeoModel (such as Geant4 coloring and attaching sensitive detectors) are added to the
volume:

1. GeoPhysToG4Log() decomposes the physical volume (which is represented by a Geo-
Model object) it retrieved as argument into its properties, represented by means of in-
stances of classes defined in GeoModel: GeoShape, GeoMaterial. Pointers to these
property-objects are handled over to GeoMatToG4() (which itself utilizes GeoEleToG4())
or GeoShapeToG4(). They return pointers to objects representing the same properties in
terms of Geant4 (G4Solid and G4Material).

2. In the next step, GeoPhysToG4Log() examines the GeoModel physical volume it initially
received as argument for possible child-volumes (e. g. as indicated in figure 2.3, the volume
“Chamber” has two volumes named “Multilayer” as direct children). Pointers to these
children are taken as argument for a recursive call of GeoPhysToG4Log() itself. The
output of this recursive function call (a pointer to a G4VPhysicalVolume) is attached
to the logical volume currently processed as its child volume.

3. In its constructor, GeoToG4Conversion gets two tables: one contains visualization de-
tails for the Geant4 visualization engine. The other maps logical volume names to pointers
of sensitive detectors. These maps are utilized in setVisOpts() and setSensDet(), which
simply set the visualization- and sensitive detector-properties of Geant4 logical volumes
and are called from GeoPhysToG4Log(), too.

The outcome of all function calls from within GeoPhysToG4Log(), namely GeoShapeToG4(),
GeoMatToG4(), setVisOpts(), setSensDet() and the recursive GeoPhysToG4Log() function
call(s) is taken to build a new instance of a Geant4 logical volume. The pointer to this “fully
configured” object is returned from GeoPhysToG4Log().

Incompatibility of Geometry Models

At this stage, a fundamental incompatibility between Geant4 and GeoModel geometry descrip-
tion comes up that is shown in figure 4.1. The different approaches of geometry description are
presented in a simplified way. In Geant4, substructure is represented by means of pointers to
the daughter logical volumes, held by the mother logical volume. GeoModel in contrast intro-
duces an object called physical volume (that can be identified with the GeoPhysVol discussed
in 2.4.1) that holds pointers to either the properties of the volume it represents (in terms of
a logical volume, just as in Geant4) as well as the pointers to its substructure - pointers to
daughter physical volumes. The big difference between the two approaches is clear: given, a
logical volume appears several thousand times in a detector setup, as for drift tubes in the AT-
LAS detector. Drift tubes are considered as “daughter volumes” of their drift chamber. Lets

29

volume
Geo phys.

(shape, material)
Geo log. volume

volume
Geo phys.

(shape, material)
Geo log. volume

volume
Geo phys.

(shape, material)
Geo log. volume

volume
Geo phys.

(shape, material)
Geo log. volume

volume
Geo phys.

(shape, material)
Geo log. volume

volume
Geo phys.

(shape, material)
Geo log. volume

volume
Geo phys.

(shape, material)
Geo log. volume

G4 logical volume
(shape, material)

G4 logical volume
(shape, material)

G4 logical volume
(shape, material)

G4 logical volume
(shape, material)

G4 logical volume
(shape, material)

G4 logical volume
(shape, material)

G4 logical volume
(shape, material)

Geant4:

GeoModel:

Figure 4.1: Incompatibility between Geant4 and GeoModel geometry description: in Geant4,
substructure is associated with a logical volume while in GeoModel, substructure is associated
to a so-called physical volume. Filled boxes represent memory-consuming objects. On the
GeoModel-side, logical volumes need not to be instantiated multiple time. Physical volumes,
that have the same geometrical properties, simply point to one single instance representing this
property. (The latter is not shown in the picture and left to the reader’s imagination.)

30

assume all drift tubes are slightly misaligned in their chambers, such that no chamber resembles
another. With GeoModel, the tree designer defines the properties of chambers only once. He
instantiates exactly one copy of a logical volume object describing the shape/material properties
of a drift chamber. Every physical volume representing a drift chamber gets a pointer to this
single instance associated, as well as pointers to the physical volumes representing the drift tubes
below.5

With Geant4, this approach is impossible: when sharing a logical volume (including shape
and material information), all substructure is shared, too. But this is not wanted in the con-
sidered example, since all chambers carry slightly (different) misaligned configurations of tubes,
and thus the substructure is not the same. In consequence, it is not possible to share the
properties of drift chambers in Geant4. Every drift chamber has to be represented by its own
instance of a logical volume, including all shape and material information. This can be rather
memory-consuming and contradicts the third point given in the design principle list above.

If the chambers follow an ideal geometry, sharing of logical volumes in Geant4 makes perfectly
sense as the reader can imagine, and it would be even better in terms of memory saving then
GeoModel. But, even if the chambers considered in the example above are all the same, a
problem arises. Sensitive detectors attached to a shared volume have no chance gathering
information about which volume they are attached to. But, a hit object produced by a sensitive
detector, needs to be assigned to a channel, e. g. an identifier of a drift tube. Otherwise it is
not possible to determine the coordinates at which this hit occurred.

Of course, identification of volumes is not impossible in Geant4 stand alone applications,
but it contradicts the Athena way. Identification in Geant4 is subdued to the geometry layout,
namely the mother-daughter relationship. For example, if a drift tube is the 25th daughter
of an MDT chamber, which itself is the second daughter of the teststand setup, the Geant4
identification for this drift tube would be “2/25” (of course, this example is very simple, and
more complex mother-daughter relationships would lead to more complex tuples).

In Athena, identification is carried out via grouping logical units (which, in the current layout,
in a simplified way is a tuple representing subsystem/detector element/readout channel). This
logical grouping is completely independent of mother-daughter relationships in GeoModel, even
though it is possible for the GeoModel tree designer to resemble this logical grouping in the way
the geometry model is designed, but this would contradict the first point of the three design
priciples above.

Several approaches have been thought of that could solve this problem. One was to decide
on the GeoModel side, which volume has to be shared in Geant4 and which not. Unfortunately,
this contradicts the first principle given above.

For the Munich Test Facility, the situation is quite different compared to the ATLAS exper-
iment. The experiments complexity is orders of magnitude below the ATLAS one. Therefore,
GeoToG4Conversion simply never shares logical volumes on the Geant4 side. Instead, it
builds individual instances of logical volumes for every volume found in the GeoModel, if it
could be shared or not. This is not passable for the ATLAS detector since it would exhaust the
machines memory it is run on. But, for MCT, this approach does work.

At the time this thesis is being written, the problem described above is clearly recognized by
the Athena community, but no solution exists so far. It will be interesting to follow the devel-

5Readers used to Geant4 might argue that even Geant4 offers a class G4VPhysicalVolume. This is true,
but its name is misleading. In the internal representation, substructure is still associated to logical volumes, even
if it has explicitly been assigned to G4VPhysicalVolumes. The name GeoPhysToG4Log has been chosen to
make this point clear: physical volumes of GeoModel are converted to logical volumes of Geant4.

31

G4VSensitiveDetectorIAlgTool

AlgTool IG4VSensitiveDetectorTool

virtual inheritance

non−virtual inheritance

ConcreteSD

Figure 4.2: Inheritance diagram for IG4VSensitiveDetectorTool.

opment on this topic, since a possible solution might require changes in the Geant4 geometry,
even though Geant4 is not maintained by the Athena developers.

Sensitive Detector Integration

The last section already introduced the method setSensDet(), where sensitive detectors are at-
tached to logical volumes following directives of a std::map6 received ofGeoToG4Conversion
in its constructor. The map itself is build from MuonCTGeoToG4Svc according to its jobop-
tions. MuonCTGeoToG4Svc requests the tools from the tool service and inserts pointers to
them in that map.

setSensDet() is rather straightforward, it simply matches the name of logical volumes to
the map and possibly attached sensitive detectors.

Figure 4.2 shows an inheritance diagram for IG4VSensitiveDetectorTool. Instances of
IG4VSensitiveDetectorTool have all properties of eitherTools orG4VSensitiveDetectors.
Concrete sensitive detectors inherit from both, AlgTool and IG4VSensitiveDetectorTool.

4.2 Obtaining Calibration Data

With the IOVSvc, Athena offers a comfortable scheme for calibration data handling. Calibra-
tion “constants” of different type vary in time and need to be easily accessible. The following
sections describe the data types that are already integrated in the IOVSvc mechanism as well
as how they are obtained.

Additional time varying data can be integrated in the future, such as cable plugging infor-
mation, drift time relations and RasNiK [1] information about dynamic chamber movement and
transformation.

6A std::map is a container that is comparable to an array. An extension of C++, the so-called Standard
Template Library (STL), provides several array-like containers. An overview of STL extensions can be found
in [11]

32

4.2.1 Problem Definition: Time Varying Data

Drift Time Spectra

Muons passing through the gas mixture of an MDT tube cause atoms to ionize. The positively
charged nuclei drift towards the tube wall, while the negatively charged electrons drift towards
the anode wire. Close to the wire, the electric field is strong enough to impart the electrons an
energy high enough to ionize further atoms. A charge cloud arises in the neighborhood of the
wire. The burst influenced on the anode wire is measured together with a global time information
of its incidence. The scintillator trigger of the test stand measures the global time of the muons
passing through the lower two scintillator layers (plus a non-varying constant). The difference
between these two global times is the raw drift time. After applying some corrections on these
raw drift times, which have been described in section 3.2.1 (description of the Algorithm
TDCDelayAdjust), one yields a drift time τ that (ideally) only varies with the radius at
which a muon passes by an anode wire.

A spectrum of these drift times for individual tubes not necessarily starts at τ = 0. The
start- and endpoints (t0 and tm) of the spectrum depend on cable lenght and electronic internals.
However, the length of the spectrum, tm−t0, should be nearly the same for all tubes. Deviations
in the lenght of a drift time spectrum may indicate problems with the gas tightness of a tube.

Figure 3.1 on page 22 shows a typical drift time spectrum. The rising edge has already been
corrected to be zero.

With a perfect tube resolution, the rising and falling edges of the spectrum would be step-like
functions. Due to a limited resolution, the transition on the edges becomes continous and is
described rather good by two fermi-like functions,

G(τ) := z0 +
A0

1 + e
−

τ−t0
τ0

for the left and

H(τ) := zm +
Am − αmτ

1 + e
τ−tm
TM

for the right edge. Both are restricted on a limited interval around their edge. z0 and zm describe
the permanent background of the drift time distributions. τ0 and TM indicate the slope, at which
the edges rise respectively fall. τ0 or TM being close to zero indicates a step-like rise respectively
fall of the edges. Fermi functions are flat, except for the transit interval. This applies for the
left edge, while it does not for the right edge. Here, the spectrum is described by a negatively
inclined linear function for τ being left with respect to the transition interval. The term αmτ
accomodates this observation.

Chamber Positions

Chambers can be statically or dynamically misaligned. Statical misalignment is unavoidable
and due to imperfect adjustment when inserted into the test facility. Dynamical misalignment
is due to fluctuations in the outer conditions and should be monitored by the RasNiK system.

In both cases, a chamber is considered as a stiff body, whose misalignment can be expressed
with a transformation consisting of a translation and a rotation.

33

4.2.2 Concept and Design

Drift Time Spectra

A dedicated Algorithm situated in the sub package MuonCTCalibAlgs, T0Fitter, is used to
determine the drift time spectra information. A joboptions file for a calibration job is con-
figured such that T0Fitters execute()-method is invoked after TDCDelayAdjusts one. In
this method, it collects run time corrected drift times from StoreGate. At the end of a job,
T0Fitter tries to fit modified Fermi functions to each edge of the spectrum in its finalize()-
method. Further information about this fit can be found in [12].

In a calibration run, this fit can performed automatically for every single tube. If the statistic
is very low, it might be a good choice not to fit single tubes but to fit the sums of histograms of
groups of tubes. The number of tubes that are taken for a fit can be selected via joboptions. The
transient data structure of drift spectrum information needs to flexible enough to accomodate
every choice of spectrum gouping.

The result is written to the calibration database, which is done by converters.

Chamber Alignment

The procedure of determining static misalignment using reconstructed muon tracks results in two
sets of five parameters describing translation and rotation of the reference chambers relative to
their ideal position. The sixth parameter, a translation along the x-axis, is not considered since
the chambers are not sensitive to this direction (the coordinate system was defined in figure 1.3).
The calculation described below is performed by a dedicated Algorithm, ChamberPosition.

The procedure gathers information from StoreGate of locally reconstructed muon tracks
event by event in the execute()-method of the Algorithm (mainly slope and intercept of the
track following the parametrization defined in section 3.2.4 on page 22) and determines the
true position of the chamber later in the finalize()-method by minimizing certain residua.
The test chamber is assumed to be perfectly aligned in the origin of the setup while relative
displacements of the reference chambers are determined individually.

ChamberPosition performs a sequence of the following calculations iteratively within a
loop in its finalize()-method. Once a transformation as a first candidate for the displacement
of a chamber is determined, all track parameters (of all events) undergo this transformation.
This leads to new local track parameters, with which a new candidate for the transformation is
calculated and so on.

In fact, not every parameter (shift in y, z or rotation around x, y, z) is considered in each
iteration step. The algorithm turned out to be more robust, especially in the case of low
statistics, if translations are corrected in every iteration step, while the rotations are not. In the
present configuration, translations are considered in every step, while rotations around x, y and
z are considered only every 2nd, 4th and 8th step, respectively.

Once the final transformation for both reference chambers is found, it is merged in the
IOV/conditions database (currently manually) and it is recommended to do even a second run of
ChamberPosition, since the result of ChamberPosition, once integrated in the IOV service,
transforms chambers, while the internal iteration loop of ChamberPosition transforms track
parameters. The results might differ slightly since a transformation of chambers, even at such
a small scale, might affect track fitting and pattern recognition algorithms.

34

Figure 4.3: How chamber misalignment is measured: the x-axis shows the slope measured in
the test chamber, while the y-axis shows the differences in intercept seen by test respectively
reference chamber.

Chamber Alignment: Translations along y and z

Translations along y and z of each of the reference chambers are determined in a rather straight-
forward fashion. For each event, the difference of the intercepts by seen by the test chamber or
reference chamber, ∆by, as well as the slope seen by the test chamber, my,testchamber, are collected.
They are fitted later assuming a linear relationship between ∆by and my,testchamber. Figure 4.3
shows a plot of these two variables. The slope and intercept of this linear regression correspond
to z-shift and y-shift of the reference chamber relative to the test chamber .

∆by(my,testchamber = 0) reflects the misalignment along y, which corresponds to the intercept
of the considered linear regression. A z-shift is measured as a ∆by, that depends linear on
the measured slope, my,testchamber. In case of no y-shift, ∆by would be directly proportional to
my,testchamber.

Chamber Alignment: Rotations around y and z

The rotation angle determination is based on a small angle approximation. Therefore, it is
allowed to calculate three rotation angles independently of each other. Rotations around y
and z are calculated utilizing the method used for y- and z-shift calculation described above.
However, the y- respectively z-shift is not calculated globally for a whole chamber, but locally
for tracks passing through the chamber in two well defined regions along x (a rough but sufficient
track fit in the xz-projection is done using scintillator information).

By getting different results for the y- and z-shifts for different regions of a reference chamber,
one in the front and one in the back, the rotation angles around y and z can easily be determined.

Chamber Alignment: Rotations around x

Rotations around x are determined by averaging the differences in slope my of the test, and
reference, chamber.

35

4.2.3 Implementation

The implementation is derived straight forward from the concepts discussed above: collecting
information in the execute()-method and performing numerical fits in the finalize()-method.
In both cases, the minimization engine MINUIT (refer to [13]) is used, interfaced by Root (refer
to [14]). It is not further discussed here.

The data structure of the drift spectrum information is introduced in 4.4, where the access
to time varying data is discussed. It allows to group an arbitrary number of adjacent drift tube
in one spectrum.

4.3 IOV and Conditions Databases

4.3.1 Problem Definition: Two Database Design of the IOV Service

Figure 2.4 on page 16 illustrates the interaction between the IOV and conditions database.
The IOV database maps (run, event)-pairs on std::strings, so-called tags. The conditions
database maps this tag on data that is interpreted by a converter and used to build the transient
representation of a requested object.

Athena avoids dependencies on external technologies and makes them exchangeable via
joboptions. In the case of IOV and conditions databases, the concrete IIOVDBSvc that reads
the IOV database and a converter that reads conditions data need to be defined.

At the time this thesis is being written, some implementations of IIOVDBSvc and condi-
tions data converters exist in the Athena repository. For the IIOVDBSvc, a MySQL imple-
mentation has been developed. Using it turned out to be inapplicable for the MCT project,
since it presupposes a patched version of the MySQL server. Servers running this version of
MySQL are situated at CERN and are in principle accessible from Munich, but utilizing them
would mean storing data far away from the cosmic ray facility.

For the conditions database, an Athena wide solution might be NOVA. NOVA accommodates
the fact that the ATLAS data output will exhaust present storage capabilities by far. It is an
approach to store data decentrally, such that the user does not need to know where his data is
stored physically. NOVA is being developed in the context of a world wide grid computing.

At the moment, very simple solutions for IOV and conditions databases are implemented
(respectively deployed) for MCT. Considering the low complexity of the experiment and the low
amount of data involved, they seem completely appropriate. In addition to that, they are easy
to maintain.

For the IOV database, an alternative to the MySQL approach actually exists in the Athena
repository. It was designed to be a test- and debugging database but turned out to be sufficient
for MCT and therefore is used. Although it is just used and was not developed in the context
of this diploma thesis, it is still described here in more detail, since the implementation of the
conditions database was inspired from this.

It should be noted once again, that Athena’s dependency on external technology is extremely
loose, and therefore the simple ASCII solutions described below could easily be exchanged for
more sophisticated alternatives.7

7A problem still, although not unsolvable, would be to move existing data itself to the new technology.

36

4.3.2 Concept and Design

Both databases exploit the capabilities of file systems to organize data in folders, so-called
subdirectories.

Interval of Validity Database

The IOV database maps (run, event)-pairs to tags. A request is accompanied by the following
information,

• a (run, event)-pair,

• a unique identification of the data objects class (CLID) and

• a unique identification of the data object itself (key).

The CLID is given mainly by an integer while the key is given by a std::string. In the IOV-
ASCIIDbSvc, the CLID information marks a subdirectory that holds files named according to
certain keys. Their location is chosen to be

IOVDB
︸ ︷︷ ︸

root dir

/ CLID
︸ ︷︷ ︸

e. g. 4144

/ key
︸︷︷︸

e. g. 1 0 0 0 0

(In this example, 4144 is the class identification number of a transformations that is computed
as described in section 4.2.1 and 1 0 0 0 0 is the std::string-representation of the unique iden-
tifier of the test stand upper chamber.) These files contain, line by line, the interval of validity
information: four numbers marking beginning and end of the interval and the corresponding
tag.

Conditions Database

The conditions database utilized in MCT uses the Unix file system, too. The design is analogous
to the IOV database above, except for some details. When creating a transient representation
of an object, the converters interpret contents of one file. (The IOVASCIIDbSvc interprets
one line of a file only.) The location of this file needs to be uniquely defined by the following set
of information:

• a unique identification of the data object class (CLID),

• a unique tag (provided by the IOVSvc) and

• a unique identification of the data object itself (key).

This information is delivered by the IOVSvc that triggers the converter call. As the reader
can see, the key- and CLID-information is redundant, since it is evaluated by each conditions
database and IOV database. This, on the other hand, might lighten switching to an alternative
conditions database due to compatibility reasons.

The designated file, as defined by the information above, is found via the following Unix file
path:

CondDB
︸ ︷︷ ︸

root dir

/ CLID
︸ ︷︷ ︸

e. g. DeltaTransform

/ tag
︸︷︷︸

e. g. ChamberAlignment/my alignment

/ key
︸︷︷︸

e. g. 1 0 0 0 0

37

The difference to the IOV database described above is that the CLID information is not in-
terpreted as a pure number, but as the class name that lies underneath: DeltaTransform has
assigned CLID 4144.8

4.3.3 Implementation

This section contains implementation details for the databases. As the utilized IOV database
is not part of the MCT project, it is not described here. The terminology introduced in section
2.4.2, where the interval of validity service was introduced, is used here.

Conditions Database

Once a converter is triggered in the IOV context, its

createObj(IOpaqueAddress* pA, DataObject*& pO)

method is invoked. pA essentially is the information that is stored in the proxy of an object (the
term proxy was introduced in 2.4.2). It is decoded by the converters to achieve the tag and key,

std::string key = *(pA->par());

std::string tag = *(pA->par()+1);

The CLID need not to be retrieved explicitly. It is known by the converter itself, via its own
classID()-method. (A converter only serves for one data class.)

Via interaction with its conversion service, the converter retrieves a pointer to a filestream
object by invoking its

std::istream& file = m cnvSvc->inFile(tag, this, key);

(m cnvSvc holds a pointer to the conversion service.) In this method, the conversion service
locates the file that contains the information necessary for the converter to create the transient
representation of an object uniquely defined by tag and key, just as described in the design
section of this chapter. The conversion service retrieves the CLID by calling the classID()-
method of the converter itself. (The C++ keyword this indicates a pointer to the object itself.
This way, the conversion service knows which converter triggers the inFile()-call.)

Finally, the converter can evaluate the data coming from the filestream and create a new
instance of the desired object. This is done via stream interpretation, as in the case of chamber
alignments,

file >> x >> y >> z >> phi >> theta >> psi;.

In this example, file holds the reference to the filestream object. One line in the file contains
six parameters, namely three translation- and three rotation parameters (Euler angles). These
are streamed into their variables x, y, z, phi, theta and psi.

Once the desired object is created, p0 is assigned to point to this object and is registered
with StoreGate by

pO = SG::asStorable(pointerToNewObject);

With this, the conversion process ends.

8It is helpful if the tag contains more, human-readable information of the underlying event sam-
ple, such as run number, date of calibration and raw data file name. A more realistic tag would be
ChamberAlignment/1042457993 run BOS 4C 16 full setup sc stable 0.MT Rawdata.

38

4.4 Accessing Calibration Data from inside MCT

In this chapter, access to the two types of calibration data, drift spectra information and cham-
ber alignment, is described. Both types differs in many ways, such that two different approaches
needed to be implemented. Chamber alignment information is integrated in the GeoModel tree,
while spectra information is made available via an additional instance, the MuonCTCond-
Manager (the conditions data manager).

4.4.1 Problem Definition: Different Views of Time Varying Data

Accessing calibration data from inside MCT is a crucial part. The main goal of calibration data
access is to keep it as transparent to the programmer9 as possible. Whoever needs to access time
varying data should not be aware of it changing behind the scenes. This approach benefits from
the assumption that time varying data does not vary during one event. By this, it is sufficient
to update data only at the beginning of an event.

The integration of time varying data with a special emphasis on the alternative views of the
data is subject of the following sections.

Access to Drift Spectra Information

There are many ways on accessing drift spectra information in the MCT context. Of course,
one wants to prevent the programmer from interacting with the IOVSvc directly, since this
would imply unnecessary overhead. Instead, the idea is to provide a dedicated instance, the
MuonCTCondManager, that manages drift time spectra information (and possibly further
data in the future). The user simply retrieves a pointer to the manager and asks for drift
spectrum information of a certain tube.

Access to Geometry Information

The programmer does not access the GeoModel directly, even though it would be possible. As the
GeoModel is designed to be lightweight with respect to memory consumption, it is complicated
to access and rather slow. E. g., as discussed in previous sections, one has to traverse the whole
tree from top to bottom, in order to get the absolute transformation of a leaf node. This task
should not be left to the programmer. In addition to that, the GeoModel offers a huge variety of
information that is uninteresting to the programmer in usual cases, such as the precise position
information of support structures.

Instead, MCT introduces a new object, the DetDescrManager. This manager provides
the programmer with a new view of the setup, so-called detector elements (MuonCTDetec-
torElement). In the current implementation, scintillator layers, drift chambers and streamer
tube layers each correspond to oneMuonCTDetectorElement (or rather the complete imple-
mentation of this base class, namely ScintiDetectorElement, MDTDetectorElement and
StreamerDetectorElement). Instances of these objects have a one-to-one correspondence
to the real world detector elements. They can answer manifold, subsystem-specific requests,
such as the individual positions of individual readout channels (e. g. tubes in the case of MDT
detector elements). Figure 4.4 gives an idea of the programmers view of the setup geometry.
Changes in the geometry have to be made available within this view of the detector.

9A programmer, in this case, is somebody who develops software that uses the concepts described here, not
the developer of these concepts.

39

Scintillator Layer 1

Scintillator Layer 2

Streamer Layer 1

Streamer Layer 2

Scintillator Layer 0

MDT Chamber 0

MDT Chamber 1

MDT Chamber 2 DetDescrManager Programmer

Figure 4.4: The programmers view of the detectors geometry: in this simplified view, only a
couple of instances, each corresponding to one detector element, exist. They endue further
methods that allow achieving further information, such as individual read out channel positions.
Access to detector elements is mediated by the detector description manager.

4.4.2 Concept and Design

Drift Spectra Information

The programmer requests a pointer to an object that can answer questions on drift spectra.
The MuonCTCondManager could be made an Athena tool or service. Or it could be a
simple C++-object, that is stored in the detector store (which is a derivative of StoreGate
with a different life time policy). The latter has been chosen for MCT, since it is consistent
with the way that other manager objects, e. g. the identifier helpers, are made available to the
programmer.

The way drift time spectrum information is held needs to be flexible: when gathering in-
formation about drift time spectra, one could in principle fill a histogram for every single tube
and perform individual fits. But, due to statistical limitations, T0Fitter could be advised to
group tubes and add up their histograms.10 The data structure needs to accommodate this.
The solution is rather simple and involves the lower bound()-method of the standard template
library container std::map. Details are given in the implementation section.

Another design choice that has to be made concerns the organization of time-dependent
information. Given, the drift spectrum data for one single tube has changed. Should the IOV
service only replace information for one single tube in memory, or for a set of tubes (multilayer,
chamber, ...)? Using the data structure described in the implementation section, it turns
out to be convenient to organize the data according to their chambers. This means that once
the information for one single tube changes, a whole set of information corresponding to one
chamber is replaced.

Although the IOV service mechanism would allow to access drift spectrum data in terms
of single tubes, the approch made is justified. First, the calibration of drift spectra is usually
performed in a single, dedicated job, leading to a set of drift spectrum information for a whole
test stand setup. This way, it is excluded that drift spectrum information changes in between.
Second, it is much more convenient for the manager of the IOV database to refer to subsets of

10Usually, this is not necessary when evaluating data of one chamber of the series test - the statistic is high
enough to fit individual tubes.

40

drift spectrum information than to individual tubes.

Geometry Information

No canonical solution exists on how time varying data should be integrated in the geome-
try description of the test facility. With GeoModel and DetDescManager respectively its
MuonCTDetectorElements (from now referred to as the DetDescr), already two instances
exist that provide information of the geometry. They have different purposes:

• GeoModel is supposed to be the single authorized source of geometry information, for dead
material as iron absorbers as well as for sensitive detector components as MDT chambers.

• In DetDescr, the DetDescrManager usually interprets the GeoModel in the beginning
of a job in order to gain information about the detector elements. Afterwards, clients can
request pointers to MuonCTDetectorElements, which contain further information of
the specific read out systems.

Introduction of the IOV mechanism should take place on the GeoModel side in order to have
consistent descriptions of the geometry. The DetDescr side on the other hand needs to be
informed immediately of geometry changes in order to be able to update the MuonCTDetec-
torElements.

Fortunately, the IOV service already foresees such a constellation and offers the concept of
call-back functions. The IOV service allows registering functions with an object that is updated
via the IOV mechanism. Whenever such an object changes in memory, registered call-back
functions are invoked. In addition to that, the IOV service allows registering call-back functions
with already registered call-back functions. This later turns out to be the connecting interface
between the GeoModel- and the DetDesc-side: a function on the GeoModel side, triggered by
the IOV service, triggers a function on the DetDescr side.

The concept of IOV integration on the two geometry description sides is as follows in MCT.
On the GeoModel side, a IOVGeoAlignableTransform replaces the GeoAlignableTrans-
form of chambers (as in figure 2.3). This newly introduced class holds pointers to two trans-
formations (instead of only one), one reflecting the nominal position of a volume. The other
transformation is a small correction on the nominal position. (This correction might in fact be
the result of the calculations described in section 4.2.1, the static chamber misalignment.) The
latter is registered with the IOV service in IOVGeoAlignableTransforms constructor11. For
that, the position of the volume is held up-to-date automatically. On the DetDescr side, the
idea is to register call back functions whenever a IOVGeoAlignableTransform is seen in the
GeoModel, once it is interpreted at the beginning of a job. The calculation of the positions of
leaf nodes needs then to be re-performed whenever the local position information of a volume,
that lies in the path from the root node to the leaf node, changes.

4.4.3 Implementation

Drift Spectra Information: Data Structure

The information belonging to one single tube is described by a TDCSpectCond object. It has
several methods comparable to t0() or t0Err() which deliver information about t0-value and
its error.

11A constructor of a class is a method that is called automatically whenever a new instance of this class is
created.

41

TDCSpectCond A Identifier 5

TDCSpectCond B

TDCSpectCond C

TDCSpectCond D

Identifier 11

Identifier 12

Identifier 44

Figure 4.5: Example of a DataIdMap filled with four different sets of spectrum information,
A-D. The interpretation of this constellation is given in the text.

TDCSpectCond are organized in an extension of a std::map, a DataIdMap. A DataId-

Map<TDCSpectCond> is in principle a std::map instantiated with anIdentifier (an object that
uniquely identifies units, as e. g. single tubes, in the test stand setup) and a TDCSpectCond
as its template arguments,

std::map< Identifier, TDCSpectCond >.

In addition to the STL (standard template library) container, the DataIdMap accommodates
several StoreGate-specific issues that deal with ownership. As mentioned, StoreGate takes
over ownership for objects placed in it. DataIdMap resides in the MCT sub package MuonCT-
Conditions and is inspired by the DataVector, which was introduced by Athena developers.

The data structure above is sufficient even for the case that spectrum information was
gathered for groups of tubes instead of single tubes. Grouping of tube spectra is inevitable
in case of low statistics, as stated above. This depends on how the data organized in the map is
interpreted. Figure 4.5 illustrates the interpretation. Here, the DataIdMap is filled with four
different sets of spectrum data, A-D, that corresponds to Identifiers 5, 11, 12 and 44.12 Instead
of requesting objects from this map by using the find()-method of a std::map, one uses the
lower bound()-method! find() would only return a result if the argument is either 5, 11, 12
or 44. On the contrary, lower bound() returns a TDCSpectCond for every argument that is
smaller or equal 44. The definition of lower bound() is as follows: lower bound() returns the
value of the biggest index, that is smaller or equal the one given as its argument. With this, the
example given in the figure is interpreted as in the following table,

Identifier TDCSpectCond

0..5 A
6..11 B

12 C
13..44 D

The described approach benefits from the fact, that Identifiers have a defined order, and
insertions within a std::map are automatically ordered.

Drift Spectra Information: Data Organization in the IOV Context

As described in the design section, the goal is to have one set of data corresponding to one
chamber. In order to achieve this, MDTTDCSpectCollection is introduced. MDTTDC-
SpectCollection is an extension of DataIdMap in the sense, that it also derives from an

12An Identifier is slightly more than just a number, but for the purpose of this example, it can be considered
as one.

42

Athena class Identifiable, which makes it, as the name suggests, identifiable. With this,MDT-
TDCSpectCollection can answer to identification requests in its identify() method. For
the TDC spectrum informations of the test stand, three MDTTDCSpectCollections, one for
each chamber, reside in memory. They are identified by their corresponding chamber’s id.

Drift Spectra Information: MuonCTCondManager and IOV Service

In its constructor, MuonCTCondManager registers in a loop DataHandles toMDTTDC-
SpectCollections,

m IOVSvc->regHandle(m tdcSpectCollectionMap[chamberID], chamberIdString);.

(m IOVSvc points to the IOV service, chamberID is the variable that is looped over and chamber-

IdString is the key of the drift spectrum information of one chamber. m tdcSpectCollection-

Map[chamberID] is a reference to an object of type MDTTDCSpectCollection). After that,
the IOV service ensures that all MDTTDCSpectCollections are held up-to-date.

The MuonCTCondManager has a single method that allows clients to gain access to
spectrum information,

TDCSpectCond* tdcSpectCond(Identifier id);

The client only needs to know the Identifier of a single tube in order to get a pointer to the
TDCSpectCond object.

Geometry Information: GeoModel side

The newly introduced IOVGeoAlignableTransform, residing in MuonCTGeoModel, has three
essential member functions in its interface,

• HepTransform3D getTransform() returns the correct local position information of the
regarding volume,

• const HepTransform3D* getDelta() returns the correction of the position with respect
to the nominal position and

• virtual StatusCode clearDelta() performs operations necessary when the small cor-
rection is updated.

A HepTransform3D is the common CLHEP (see [15]) representation of an arbitrary transfor-
mation consisting of a translation and a rotation. DeltaTransform is a HepTransform3D
and has, in addition to that, a unique class identification, CLID, which is necessary for any
StoreGate operation.

In its constructor, IOVGeoAlignableTransform not only registers a DataHandle to a
DeltaTransform with the IOV service. With the line

m iovSvc->regFcn(&IOVGeoAlignableTransform::clearDelta, this, m delta, key);

two things are achieved. First, the class member m delta, which is essentially a pointer to a
DeltaTransform, is registered for automatic update with the IOV service (which m iovSvc

points to). Second, a member function of the class IOVGeoAlignableTransform, namely

43

clearDelta(), is registered with the IOV service for automatic call-back. (The C++ key-
word this indicates, that it is the method clearDelta() belonging to the instance of IOV-
GeoAlignableTransform performing the registration with the IOV service.)

With the registration with the IOV service already arranged in the constructor, subsequent
calls of getTransform() will return the correctHepTransform3D, representing the local trans-
formation of the regarding volume.13

With this, the automatic update of geometry information in principle is accomplished on the
GeoModel side. One problem remains, though. It was mentioned in the GeoModel introduction
(section 2.4.1), thatGeoFulPhysVols (unlikeGeoPhysVols) keep cached copies of their global
positions. For that, clearDelta() provides a way to inform nodes below. The mechanism
involves a GeoClearAbsPosAction (which is a GeoNodeAction) in clearDelta(), that
traverses through the tree and invalidates all affected GeoFulPhysVol position caches.

Geometry Information: Detector Description Side

In the initialize phase of a job, the MuonCTDetDescrManager sends a GeoNodeAction
through the GeoModel tree that looks for physical volumes corresponding to an MDT chamber,
a scintillator or a streamer layer. The results of this GeoNodeAction, which are pointers
to GeoFulPhysVols, are used as arguments for the constructors of MDTDetectorElement,
ScintiDetectorElement or StreamerDetectorElement, respectively. For each GeoFul-
PhysVols a MuonCTDetectorElement is created which leads to a constellation as shown in
figure 4.4.

Given the pointer to the GeoModel physical volume counterparts in their constructor,MDT-
DetectorElement, ScintiDetectorElement or StreamerDetectorElement now can send
GetGeoTransformActions (which are implementations of GeoNodeActions) through the
GeoModel tree and collect GeoTransforms that lie on the path in between the root node and
their according physical volume. The transformations then can be connected in order to retrieve
the global position of the detector element (or its representing physical volume). This global
transformation is cached. In fact, this calculation does not take place in MDTDetectorEle-
ment, ScintiDetectorElement or StreamerDetectorElement, but in their common base
class, MuonCTDetectorElement. (To be precise, this is done in MuonCTDetectorEle-
ments constructor.)

Once a GetGeoTransformAction is applied on a node of a tree, it returns pointers to all
GeoTransforms that lie in between the node where it is applied and the root node of the tree.
Since IOVGeoAlignableTransforms are derived from GeoTransforms, GetGeoTrans-
formAction does not see a difference between them and GeoTransforms. In MuonCTDe-
tectorElement, where all found transformations are multiplied, a test is performed to decide
whether a transformation is a GeoTransforms or a IOVGeoAlignableTransforms,14

const IOVGeoAlignableTransform* ciovgt =

dynamic cast< const IOVGeoAlignableTransform* >(gt);

if(ciovgt!=0) { ...

13While small corrections of the nominal positions are read from a database, namely the conditions database in
interaction with the IOV database, it should be noted that the nominal positions themselves are still hardcoded
in MCT. In the future, the whole geometry should be dynamically built from a database.

14Usually, a dynamic cast should be avoided in clean C++ programming. In order to do so, small
changes need to be applied to the GeoNodeAction base class. This might happten, in case the presented
IOVGeoAlignableTransform-concept is accepted by the Athena developers.

44

(gt is meant to be one of the GeoTransforms found by the GetGeoTransformAction.)
Once this test turned out to be positive, MuonCTDetectorElement can register its own
update()-method with the clearDelta()-method of the IOVGeoAlignableTransform,

m iovSvc->regFcn(&IOVGeoAlignableTransform::clearDelta, iovgt,

&MuonCTDetectorElement::update, this);

(This registers the update()-method with the already registered clearDelta()-method, while
iovgt is the pointer to the IOVGeoAlignableTransform.) In update(), the global position
cache of the MuonCTDetectorElement is invalidated and a new calculation triggered.

This way, the global position cache of the MuonCTDetectorElement (and, deriving
from this base class, MDTDetectorElement, ScintiDetectorElement and StreamerDe-
tectorElement, too) always hold global position information that is up-to-date with respect
to the GeoModel information. In addition, the position information of single read out channels
that is made available from MDTDetectorElement via two methods,

HepTransform3D globalTubeTransform(const Identifier& id) const;

or

HepTransform3D localTubeTransform(const Identifier& id) const;,

which return the global or local position information of individually identified tube transforma-
tions, is updated correctly.

45

Chapter 5

Wire Position Measurements

One of the design goals of the Munich ATLAS Cosmic Test Facility is the determination of
individual wire positions. MTOffline, the offline reconstruction package developed by Oliver
Kortner and Felix Rauscher, accomplishes this goal within a precision of 8.3µm for the measured
displacement of wires in y- and 27µm in z-direction (see [16]). Comparison of MCT, MTOffline
and tomograph measurements is a touchstone for the MCT project and is the subject of this
chapter. The procedure of determining individual wire positions is closely related to the chamber
position determination discussed in 4.2.1.

The analysis is based on an n-tuple produced by an MCT Athena reconstruction job that
evaluates raw data and performs track fits. The data file containing the results of [16] was made
available for comparison purposes by Felix Rauscher.

5.1 Data Sample and Event Selection

The sample of muon events used for this measurement is a set of 6.9 million events, recorded
by the Munich Cosmic Ray Measurement Facility in January 2003. During the data-taking
period, evaluation of RasNiK data shows no significant changes in the geometry parameters
(the RasNiK calibration data is not yet considered in MCT). The same set of data is the basis
for the results of MTOffline, presented in [16]. This allows a comparison of the two software
packages, MTOffline and MCT, later in this chapter.

The test chamber has been scanned with an X-ray tomograph at CERN. As a result, the
wire positions are known at a position of 30 cm distance to the two ends of the chamber (i. e.,
near the readout side of individual tubes and its opposite). The precision of this measurement
is 2µm.

Cuts on Events

The MCT n-tuple contains track parameters for 75% of all recorded events. Most of the loss
of 25% is due to ambigous scintillator information. An event is dropped, if the number of
signal carrying clusters in the scintillator layers is not equal to one. In such a case, no fit for
the xz-projection is performed and therefore no signal run time (see 3.2.1) corrections can be
applied.

Further cuts are applied on the n-tuple, which conform to the cuts of the analysis presented
in [16].

46

• The local track parameters measured by the reference chambers must match roughly. The
slope difference, |mref, up − mref, low|, needs to be less then 15mrad while the intercept
difference, |bref, up − bref, low|, needs to be less than 4mm.

• The wire position is determined for two sections along the wire, each of 1m length. Only
muons that pass the test chamber in one of these two sections are accepted for the position
measurement. Due to an asymmetric trigger setup, the fractions of muons passing through
each of these intervals is not identical.

The efficiency of these cuts is given in the following table.

cut number of events after cut efficiency

all events 5.1 · 106 100%
track match 4.7 · 106 92%

wire section (back/front) 1.7 · 106/1.3 · 106 32%/25%

Cuts on Hits in the Test Chamber

With the track parameters of the global fit of the two reference chambers, a radius prediction
for hits in the test chamber is calculated. Among all hits in the test chamber, a maximum of 6
is selected, one hit per layer.

• A hit in the test chamber is required to have a deviation between the measured radius and
the predicted radius, |rdrift − rref|, of less then 1.5mm.

• The radius prediction for tubes near the edge of the setup can, due to the geometry of
the setup, be performed only with tracks that have a limited range of angle of incidence
in the yz plane. This limits the resolution. Therefore, the 16 outer tubes of each layer of
the test chamber are not considered for the analysis.

• Four tubes of the test chamber show less than 20% of the hits of their direct neighbour
tubes. These tubes are omitted.

No local fit is performed for the test chamber. A cut that compares hits in the reference chamber
with its local trackfit, is applied in MTOffline but not in MCT.

5.2 Wire Displacements

For each selected tube, the measured radius rdrift in the test chamber is compared to the predicted
radius rref from the reference chambers based on a global fit. This leads to a slope-dependent
offset ∆y in y direction, as illustrated in figure 5.1. ∆y corresponds to the y shift estimated
with the help of one single muon reference track. In case there is no z shift δz at all, ∆y would
reflect the real y shift δy, independently of the slope of the reference muon track. If δz is not
equal to zero, ∆y varies with the slope, and ∆y = δy is only true for m = 0. Therefore, the
values δy and δz are obtained by a linear regression performed on all (m,∆y)-pairs,

∆y(m) = δz + δy ·m.

Due to the limited range of the angle of incidence, the resolution for the y-shift measurement is
expected to be better than for the z-shift measurement.

47

z

y

δ z

δ y

m
uo

n
tra

je
ct

or
y

−
pr

ed
ic

te
d

by
 th

e
re

fe
re

nc
e

ch
am

be
rs

true
position

nominal
position

∆

rref

rdrift

y

∆ r

Figure 5.1: For each selected hit, the slope m of the muon track predicted by the reference
chambers and the measured offset in y, ∆y, is saved. A linear regression performed on the
selected (m,∆y)-pairs leads to the real displacements of the wire, δy and δz.

5.2.1 Displacements in Y Direction

The result of the determination of wire displacements in the y-direction is presented in figure 5.2.
It is compared to the X-ray tomograph results, which have a precision of 2µm. The distributions
of the difference of the MCT result and the tomograph result have widths of 10.5µm and 12.5µm,
respectively.

5.2.2 Displacements in Z Direction

Figure 5.3 shows the results for measurements in the z-direction. The resolution is significantly
lower than for the y shifts. The distributions of the difference of the MCT result and the
tomograph result have widths of 24.0µm and 26.0µm, respectively. The two wires which are
known to deviate from their nominal position by more then 300µm are clearly recognized.

5.3 Comparison with MTOffline

5.3.1 Comparison of the Results

Figures 5.4 and 5.5 show the results for the measurements of MTOffline. The distributions of
the difference between the MTOffline result and the tomograph scan for the front and the back
side have a maximum width of 25.5µm for the z direction and 8.5µm for the y direction.
The corresponding widths achieved with MCT are larger by 4.0µm in y and 0.5µm in z. Both

48

 [mm]Tomograph yδ
-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08

 [
m

m
]

M
C

T
 yδ

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

FRONT y comparison: MCT vs. TomographFRONT y comparison: MCT vs. Tomograph

 [mm]MCT yδ - Tomograph yδ
-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08

n
u

m
b

er
 o

f
tu

b
es

0

2

4

6

8

10

12

14

(resolution) (resolution)

Entries 236

Mean -0.001094

RMS 0.01028

(resolution)

 [mm]Tomograph yδ
-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08

 [
m

m
]

M
C

T
 yδ

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

BACK y comparison: MCT vs. TomographBACK y comparison: MCT vs. Tomograph

 [mm]MCT yδ - Tomograph yδ
-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08

n
u

m
b

er
 o

f
tu

b
es

0

2

4

6

8

10

12

14

(resolution) (resolution)

Entries 236

Mean 0.003081

RMS 0.01249

(resolution)

Figure 5.2: Comparison of the y displacements, determined for two sections of one meter length
near the ends of the test chamber. The left side shows the displacements measured by MCT on
the y-axis, and the tomograph measuerements on the x-axis for each side. The right side shows
the distribution of the difference of the measurements. The maximum of the precision widths is
12.5µm.

49

 [mm]Tomograph zδ
-0.5 -0.4 -0.3 -0.2 -0.1 -0 0.1 0.2

 [
m

m
]

M
C

T
 zδ

-0.5

-0.4

-0.3

-0.2

-0.1

-0

0.1

0.2

FRONT z comparison: MCT vs. TomographFRONT z comparison: MCT vs. Tomograph

 [mm]MCT zδ - Tomograph zδ
-0.2 -0.15 -0.1 -0.05 -0 0.05 0.1 0.15 0.2

n
u

m
b

er
 o

f
tu

b
es

0

2

4

6

8

10

12

14

16

18

(resolution) (resolution)

Entries 236

Mean 0.01693

RMS 0.02399

(resolution)

 [mm]Tomograph zδ
-0.2 -0.15 -0.1 -0.05 -0 0.05 0.1 0.15 0.2

 [
m

m
]

M
C

T
 zδ

-0.2

-0.15

-0.1

-0.05

-0

0.05

0.1

0.15

0.2

BACK z comparison: MCT vs. TomographBACK z comparison: MCT vs. Tomograph

 [mm]MCT zδ - Tomograph zδ
-0.2 -0.15 -0.1 -0.05 -0 0.05 0.1 0.15 0.2

n
u

m
b

er
 o

f
tu

b
es

0

2

4

6

8

10

12

14

16

(resolution) (resolution)

Entries 236

Mean 0.01782

RMS 0.02606

(resolution)

Figure 5.3: Comparison of the z displacements, determined for two sections of one meter length
near the ends of the test chamber. The left side shows the displacements measured by MCT on
the y-axis and the tomograph measuerements on the x-axis for each side. The right side shows
the distribution of the difference of the measurements. The maximum of the precision widths is
26.0µm.

50

 [mm]Tomograph yδ
-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08

 [
m

m
]

M
T

O
ff

lin
e

 yδ

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

FRONT y comparison: MTOffline vs. TomographFRONT y comparison: MTOffline vs. Tomograph

 [mm]MTOffline yδ - Tomograph yδ
-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08

n
u

m
b

er
 o

f
tu

b
es

0

2

4

6

8

10

12

14

16

18

20

22

(resolution) (resolution)

Entries 236

Mean -0.002675

RMS 0.007548

(resolution)

 [mm]Tomograph yδ
-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08

 [
m

m
]

M
T

O
ff

lin
e

 yδ

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

BACK y comparison: MTOffline vs. TomographBACK y comparison: MTOffline vs. Tomograph

 [mm]MTOffline yδ - Tomograph yδ
-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08

n
u

m
b

er
 o

f
tu

b
es

0

2

4

6

8

10

12

14

16

18

(resolution) (resolution)

Entries 236

Mean -0.0001875

RMS 0.008632

(resolution)

Figure 5.4: Comparison of the y displacements for the results of MTOffline. The distributions
of the difference between MTOffline and tomograph results have a maximum width of 8.5µm.

51

 [mm]Tomograph zδ
-0.5 -0.4 -0.3 -0.2 -0.1 -0 0.1 0.2

 [
m

m
]

M
T

O
ff

lin
e

 zδ

-0.5

-0.4

-0.3

-0.2

-0.1

-0

0.1

0.2

FRONT z comparison: MTOffline vs. TomographFRONT z comparison: MTOffline vs. Tomograph

 [mm]MTOffline zδ - Tomograph zδ
-0.2 -0.15 -0.1 -0.05 -0 0.05 0.1 0.15 0.2

n
u

m
b

er
 o

f
tu

b
es

0

2

4

6

8

10

12

14

16

18

(resolution) (resolution)

Entries 236

Mean 0.004966

RMS 0.02554

(resolution)

 [mm]Tomograph zδ
-0.2 -0.15 -0.1 -0.05 -0 0.05 0.1 0.15 0.2

 [
m

m
]

M
T

O
ff

lin
e

 zδ

-0.2

-0.15

-0.1

-0.05

-0

0.05

0.1

0.15

0.2

BACK z comparison: MTOffline vs. TomographBACK z comparison: MTOffline vs. Tomograph

 [mm]MTOffline zδ - Tomograph zδ
-0.2 -0.15 -0.1 -0.05 -0 0.05 0.1 0.15 0.2

n
u

m
b

er
 o

f
tu

b
es

0

2

4

6

8

10

12

14

16

(resolution) (resolution)

Entries 236

Mean -0.003489

RMS 0.02346

(resolution)

Figure 5.5: Comparison of the z displacements for the results of MTOffline. On the upper
graph, the scale is modified with respect to the other z measurements in order to show to outlier
that are detected with MTOffline. The distributions of the difference between MTOffline and
tomograph have a maximum width of 25.5µm.

52

program packages were able to recognize outliers in the wire displacement of the front side of
the test chamber.

5.3.2 Comparison of the Methods

The development of the MCT reconstruction algorithms was inspired by the program package
MTOffline. However, three main differences exist between the two packages.

• The procedure of determining the transformations that describe the deviations of the
overall chamber positions with respect to their nominal position is identical for MCT and
MTOffline. However, there is a difference in the application of these transformations: in
MCT, as described in section 4.4, this information is inserted in the geometry description
tree, and a new trackfit is performed with the aligned geometry. In MTOffline, these
transformations are applied on the local track fit parameters. No further fit is performed
here. As a consequence, the new alignment may influence the pattern recognition in MCT
while it does not in MTOffline.

• Due to the last point, MCT has the ability to perform a global track based on the hits
of both reference chambers with the aligned geometry. This is impossible in MTOffline.
Therefore, radius prediction in MCT is based on the global track fit, while in MTOffline,
it is based on the weighted average of the two predictions of the local track fits.

• MTOffline considers deviations of the nominal positions of the wires of the reference cham-
bers, while MCT does not. Since these are distributed Gaussian with the production
accouracy of 10µm, this should not influence the result too much. Determination of in-
dividual wire displacements takes into account a large number of tracks, based on drift
circles seen by a large number of tubes of the reference chambers. The effect of misaligned
wires of the reference chambers should be negligible in the average.

Two main differences exist concerning the n-tuple based analysis

• The energy cut of 2.5MeV that is applied in MTOffline analysis is not used in MCT. This
cut decreases errors due to multiple scattering of the muons. On the other hand, it limits
the statistic. Both effects balance.

• In the analysis based on the MTOffline n-tuple, the deviation of whole wire planes from
their nominal z position is determined. This is taken into account for the determination
of the y displacement. This is not consireded in the presented analysis.

The integration of deviations of the overall positions of the chambers into the geometry tree is
made possible by the fact that Athena offers a comfortable management of time varying data.
This allows to perform global track fits based on a misaligned geometry.

By now, MCT does not implement its own determination of the drift-time relation. While
all other calibration constants are determined by MCT itself, the drift-time relation is taken
from MTOffline and is identical to the one used for the MTOffline analysis.

5.4 Conclusions

The resulting wire position measurements are in general in good agreement with the tomograph
results. A few discrepancies remain, which need further investigation. One result, the deter-
mination of the z deviation of the front side, even shows a slightly better resolution than the

53

MTOffline measurement. Considering the resolution of the X-ray tomograph, 2µm, the resulting
resolution for the wire position measurement for MCT is 26.0µm for the z and 12.5µm for the y
direction. Even though these are still in the region of the production accuracy of the chambers,
10µm, MCT has prooven to be able to recognize outliers.

54

Chapter 6

Summary

The MCT project was launched as an alternative software solution for the Munich Cosmic Ray
Test Facility in order to gain experience with the young Athena Framework, to benefit from
many of its features and to collaborate with an international community of developers by giving
feetback and sharing source code.

Within a bit more than one year1, it developed towards a broad software solution for the
Munich Cosmic Ray Measurement Facility, covering big parts of the data processing steps nec-
essary for reconstucting muon trajectorys. Among these are the interpretation of raw test stand
data, calibration of the detector (fits of single drift spectra, determination of the deviation of the
chambers from ther nominal position) and the determination of muon track parameters utilizing
numerical and analytical minimization schemes. In addition to that, MCT provides a simulation
based on Geant4, whose boundary conditions are derived consitently from one single source of
geometry information, which itself is the starting point for track reconstruction, too.

The adoption of Athena not only accelerated the development, it faciliated clear program
structures and readable code. It furthermore made MCT a comparative user-friendly, but pro-
foundly flexible program package. Considering the geometry conversion described, it also showed
that the adoption of Athena for complex experiments is limited, still.

The highly sensitive determination of the wire positions demonstrated that the muon track
parameters determined by MCT already are very precise and that the predictions are qualita-
tively in good agreement with the MTOffline program package, even though some quantitative
improvements are possible.

Parts of the work for the MCT project was the development of infrastructure that eases the
commissioning of further program parts. With the introduced IOV service and its two databases,
further calibration data, as for example the drift-time relation or RasNiK geometry data, can
implemented without much effort.

1In the context of the doctoral thesis of Philipp Schieferdecker and this diploma thesis.

55

Chapter 7

Zusammenfassung

Das MCT Projekt wurde, als eine alternative Softwarelösung für den Münchener Höhenstrahl-
messstand, begonnen, um Erfahrung mit dem noch jungen Athena Software Framework zu sam-
meln, um von den vielen Vorzügen Athenas zu profitieren und um mit der internationalen
Entwicklergemeinde durch Rückmeldung und Austausch von Quellcode zusammen zu arbeiten.

Es hat sich innerhalb eines Zeitraums von etwas mehr als einem Jahr1 zu einer umfassenden
Softwarelösung für den Münchener Höhenstrahlmesstand entwickelt, welche bereits einen Groß-
teil der zur Rekonstruktion von Myonspuren notwendigen Datenverarbeitungsschritte enthält.
Dazu zählen die Interpretation von Rohdaten aus dem Teststand, Kalibration des Detektors
(Fit von einzelne Driftzeitspektren, Bestimmung von Abweichungen der Kammerpositionen von
ihrer Nominalposition) und Durchführung der Bestimmung der Spurparameter unter Anwen-
dung analytischer beziehungsweise numerischer Minimierungsverfahren. Darüber hinaus enthält
MCT eine Simulation auf Basis von Geant4, dessen Randbedingungen sich konsistent aus einer
einzigen Quelle von Geometrieinformationen herleiten lassen, welche auch den Ausgangspunkt
für die Rekonstruktion von Spurparametern bildet.

Der Einsatz von Athena hat nicht nur die Entwicklung beschleunigt, sondern auch klare
Programmstrukturen und gut lesbaren Code gefördert. Zudem hat er ermöglicht, MCT zu einem
vergleichsweise benutzerfreundlichen und dennoch hochgradig flexiblen Programmpaket werden
zu lassen. Unter anderem am Beispiel der Geometriekonversion hat sich jedoch auch gezeigt,
dass dem Einsatz von Athena für umfangreiche Detektoren derzeit noch Grenzen gesetzt sind.

Die hochsensible Drahtpositionsbestimmung hat gezeigt, dass die Spurparameter, die von
MCT berechnet werden, bereits sehr präzise sind, und dass die Vorhersage der Drahtpositio-
nen qualitativ mit der des Programmpaketes MTOffline übereinstimmt, wenngleich quantitativ
sicher noch einige Verbesserungen möglich sind.

Ein Teil der Arbeit, die bisher an MCT geleistet wurde, ist das Bereitstellen von Infrastruk-
tur, welche das zukünftige Einbinden von Programmteilen erleichtert. Mittels des vorgestellten
Zusammenspiels des IOV service und der beiden dazugehörigen Datenbanken lassen sich mit ver-
gleichtsweise geringen Aufwand weitere Kalibrationsdaten, wie etwa die Orts-Driftzeitbeziehung
oder Geometriedaten aus dem RasNiK System, integrieren.

1Im Rahmen der Doktorarbeit von Philipp Schieferdecker sowie dieser Diplomarbeit.

56

Appendix A

Physical Streamer Digit Production

If in a simulated event a muon passes through the streamer tube layers (streamer tubes reside
beneath the iron absorber, refer to figure 1.3 on page 8), the only information essentially stored
is the unique identifier of the streamer bars readout channel. This section will describe physical
process that need to be simulated when producing streamer digits.

Gaseous Detectors in the Proportional Mode

Streamer tube cells share several properties of the MDT chambers drift tubes. One streamer
tube cell1 is, as drift tubes, a detector based on the principle of gaseous detectors.

Drift tubes are operated in the so-called proportional mode. Charged particles passing
through the gas volume cause atoms to ionize. The electric field causes the electrons to drift
towards the anode wire, while the nuclei drift towards the tube wall. The electric field is
distributed inhomogenious in the tube. Close to the wire, it is strong enough to impart the
electron an energy high enough to ionize further atoms. This leads to electron avalanches near
the wire. The burst influenced by the charge cloud is measured.

In the proportional mode, the anode signal is much higher than the energy loss of the initial
particle but still proportional (approximate gain for ATLAS MDT chambers: 104).

The time difference between the initial ionization and the measurement of the influenced
charge burst is called drift time. It changes with the radius, at which the inital particle passed
by the anode wire. The radius resolution of a single tube is about 80µm. For small radii, the
resolution decreases due to the avalanche forming near the wire.

Gaseous Detectors in the Limited Streamer Mode

For streamer tubes, the electric field is increased. This causes the electron avalanches to grow
even stronger and to form non-negligible space charge distributions, which shield the electric
field of the anode wire. As a consequence, the electron-ion pair attraction is strong enough to
recombine and thereby emit photons. The photons cause further atoms to ionize, which causes
the charge cloud to grow in the opposite direction of the anode wire. This would, if the voltage
is sufficient enough, lead to a breakdown of the gas. CO2 as a quenching agent with a high
photon absorption rate is added to the tube gas. This avoids the electric charge distribution

1The terminology might be confusing: a streamer tube groups eight streamer tube cells with a individual
anode wire each. A MDT chamber groups 432 drift tubes with individual wires.

57

> >

2 mm

>

>>>
1 mm

>

> 1 mm

2 mm

Pick Up Stripes

High Voltage

Graphit Layers

Figure A.1: Schematic view of one streamer tube with eight cells. (Thanks to Oliver Kortner
for this picture!)

over the whole volume. The geometry of the tubes and the high resistance of the kathodes avoid
a breakdown of the gas.

The streamer tubes utilized in the Munich Cosmic Facility have eight rectangular cells each,
consisting of synthetics with a thin graphite layer on three pages of the cavities acting as cathode.
Thin induction stripes stuck on the cells outside, opposite the cathodes, are used to record the
electric signal influenced by the charge distribution inside the streamer tube cells. Figure A.1
illustrates the streamer tube layout.

Once a gas ionization process occurs, not only the pick-up stripe attached to the affected
cell records a signal. A consideration based on a simple electrostatic model predicts the ratio of
the influenced neighbor strip charge to the originating cell strip charge to be

Qi+1

Qi
=

arctan

(
y+10 mm+ b

2

aq

)

+ arctan

(
y+10 mm− b

2

aq

)

arctan

(
y+ b

2

aq

)

+ arctan

(
y−

b

2

aq

) ,

where Qi and Qi+1 denote the charges influenced at position y and y + 10mm, measured by
pickup strips of with width b. 10mm is the spacial distance between two adjacent pickup
strips. aq is the distance of the initial charge causing the signal, it is assumed to reside directly
underneath the strip at position y. An elaborate discussion can be found in [12].

58

Appendix B

Athena Components and Data

Classes in MCT Sub Packages

The following sections describe all sub packages of MCT. Athena components and Data Classes
that have a CLID assigned are explained if present. Reading the following pages does not
substitute reading the source code, [9]! A, T, S and C are used to abbreviate Algorithm, Tool,
Service and Converter, respectively.

MuonCTAlgs

Short Description

Implementation of helper Algorithms for debugging or n-tuple production.

Athena Components

DigitMonitor (A) collects digit collections, eitherMDTDigitCollection (CLID 4103), Scin-
tillatorDigitCollection (CLID 4104) or StreamerDigitCollection (CLID 4105) and
utilizes the histogram service for histogram production.

DumpDigits (A) collects digit collections (MDTDigitCollection (CLID 4103), Scintilla-
torDigitCollection (CLID 4104) or StreamerDigitCollection (CLID 4105)) from Store-
Gate and dumps them on the screen.

DumpHits (A) collects hit collections (MDTHitCollection (CLID 4100), ScintillatorHit-
Collection (CLID 4101) or StreamerHitCollection (CLID 4102)) from StoreGate
and dumps them on the screen.

MuonCTNTuple (A) collects digit, pattern, driftcircle and track collections (MDTDigitCol-
lection (CLID 4103), ScintillatorDigitCollection (CLID 4104), StreamerDigitCol-
lection (CLID 4102), MDTDriftCircleCollection (CLID 4111), MDTPatternCol-
lectio (4113), TrackCollection (4115)) from StoreGate and utilizes the NTupleSvc
for n-tuple production.

TrackFitMonitor (A) was intended to collect track information for performance comparison
of different track fits but was not updated.

59

Data Classes

None.

MuonCTAthenaRoot

Short Description

Read/write converters for digits based on the Athena Root converter (AthenaRootConverter)
base class.

Athena Components

MDTDigitAthenaRootCnv (C) is a read/write converter forMDTDigitCollections (CLID
4103) using Root technology.

ScintiDigitAthenaRootCnv (C) is a read/write converter for ScintiDigitCollections (CLID
4104) using Root technology.

StreamerDigitAthenaRootCnv (C) is a read/write converter for StreamerDigitCollec-
tions (CLID 4105) using Root technology.

Data Classes

None.

MuonCTCalibAlgs

Short Description

Implementation of calibration algorithms. Calibration constants are needed for precise track
fitting.

Athena Components

ChamberPosition (A) collects track collections (TrackCollection (CLID 4115)) of all cham-
bers and uses local track fit information to determine small corrections to the nominal
position of the reference chambers relative to the test chamber. The six parameters of
the transformation are dumped to the screen and need to be inserted in the conditions
database manually.

T0Fitter (A) collects drift times (DriftTimeCollection (CLID 4117)) and performs fits on
both edges of the drift time spectra. The result is written to the conditions database
utilizing theMDTTDCSpectCollectionConv from sub package MuonCTConditionsC-
nvSvc. It is possible to group tube spectra in order to increase statistics.

Data Classes

None.

60

MuonCTConditions

Short Description

MounCTConditions contains the data classes for the transient representation of the calibration
constants. Usually, calibration constants are made available via the IOVSvc.

Athena Components

MCTCondMgrTool (T) is a tool utilized by the GeoModelSvc. Its only purpose is to
instantiate the MuonCTCondManager (CLID 4133) and store it in the detector store.

Data Classes

DeltaTransform (CLID 4144) represents a six parameter transformation and is used by IOV-
GeoAlignableTransform. A converter exists in MuonCTConditionsCnvSvc. It is
intended to be a small correction on the nominal position.

MDTTDCSpectCollection (CLID 4143) is an identifiable collection of TDCSpectConds
(no CLID) which represent drift spectrum fit information. One MDTTDCCollection
belongs to one mdt chamber. A converter is found in MuonCTConditionsCnvSvc.

MuonCTCondManager (CLID 4133) is not really an data class. It had to be assigned a
CLID in order to be able to store it in the detector store (done by MCTCondMgrTool).
MuonCTCondManager is used by clients in order to gather information about drift
spectrum fits. It implements the IOV service mechanism.

MuonCTConditionsCnvSvc

Short Description

Converter that implements the MCT conditions ASCII database. Warning: the converters
described below are template-instantiations of the general converter template class MuonCT-

ConditionsConv<T>.

Athena Components

DeltaTransformConv (C) is a read only converter for DeltaTransforms (CLID 4144). The
persistent representation of a DeltaTransform is given by its three translations and its
three Euler angles. Access to files is gained by interaction with the conversion service.

MDTTDCSpectCollectionConv (C) is the read and write converter for MDTTDCSpect-
Collections (CLID 4143). The persistent representation of one MDTTDCSpectCol-
lection is given by a file containing several lines of numbers, each line representing fit
information of one drift spectrum. Access to files is gained by interaction with the con-
version service.

MuonCTConditionsCnvSvc (S) is the conversion service for converters in this class. It opens
files and handles filestream references to its converters on demand.

61

Data Classes

None.

MuonCTDetDescr

Short Description

Implementation of the programmer view of the test stand setup. Information about the geometry
is gathered by evaluating the GeoModel and some hardcoded numbers. It contains several
GeoModel-specific classes, such as GeoNodeActions, which explore the geometry tree.

Athena Components

MuonCTDetDescrTool (T) is utilized by GeoModelService. It instanciates the MuonCT-
CondManager and stores it into the detector store at the beginning of a job.

Data Classes

MDTDescriptor (CLID 4125) is the source for primary numbers of the MDT chamber detector
elements, e. g. number of multilayers, length of tubes and speed of light along the wire. (At
present, it is instantiated from MDTDetectorElement based on hardcoded numbers.
This needs to be replaced by an external source in the future.)

MDTDetectorElement (CLID 4122) represents one MDT chamber. It provides methods that
deliver information about single read out channels.

MuonCTDetDescrManager (CLID 4121) is not a data class but has a CLID, which allows it
to be made available via the detector store. MuonCTDetDescrManager has pointers
to all detector elements. Clients can request these pointers from MuonCTDetDescr-
Manager.

ScintiDescriptor (CLID 4126) is the source for primary numbers of the scintillator detec-
tor elements, e. g. read out side or speed of light. (At present, it is instantiated from
MDTDetectorElement based on hardcoded numbers. This needs to be replaced by an
external source in the future.

ScintiDetectorElement (CLID 4123) represents one scintillator layer. It provides methods
that deliver information about single read out channels.

StreamerDescriptor (CLID 4127) is the source for primary numbers of the streamer detector
elements, e. g. width of pickup strips or number of gas volumes per bar. (At present, it is
instantiated from MDTDetectorElement based on hardcoded numbers. This needs to
be replaced by an external source in the future.

StreamerDetectorElement (CLID 4124) represents one streamer layer. It provides methods
that deliver information about single read out channels.

62

MuonCTDigitization

Short Description

Algorithms situated in MuonCTDigitization are executed in a simulation job. Their puropose
is to calculate digits from hit information provided by simulation engines as Geant4, as well as
simulation of the trigger logic.

Athena Components

MDTDigitizer (A) collects MDT chamber hits (MDTHitCollections (4100)) from Store-
Gate, calculates digits, MDTDigitCollections (CLID 4103), and stores them in Store-
Gate.

ScintiDigitizer (A) collects a std::map of Discriminators (CLID 4140) from StoreGate
and produces scintillator digits, ScintillatorDigitCollections (CLID 4104).

ScintiPreDigitizer (A) collects scintillator layer hits and stores a std::map of Discrimi-
nators in StoreGate. The Discriminators are later evaluated by TriggerSim and
ScintiDigitizer.

StreamerDigitizer (A) collects streamer layer hits (StreamerHitCollections (CLID 4102)),
calculates digits, StreamerDigitCollections (CLID 4105) and stores them in Store-
Gate.

TriggerSim (A) collects a std::map of Discriminators (CLID 4140) from StoreGate and
simulates the trigger logic of the setup. If the event is not triggered, a flag is set and the
sequence of algorithms is stopped.

Data Classes

MuonCTEvent

Short Description

Data classes for transient hit and digit representation of the setup. These data classes contain
no information of the setup itself. The only connection between transien hit/digit represen-
tation and the setup is via Identifiers: each hit/digit carries an Identifier that uniquely
corresponds to one read out channel. Warning: hit collections are instantiated template classes
of DataVector<T>.

Athena Components

None.

Data Classes

MDTDigitCollection (CLID 4103) is a collection of MDTDigits (no CLID). One collection
represents one chamber. MDTDigits have methods to deliver information about TDC
count an their identification.

63

MDTDigitContainer (CLID 4106) organizes MDTDigitCollections (three in MCT, one
for each chamber).

MDTHitCollection (CLID 4100) is a collection of MDTHits (no CLID). MDTHits have
methods to deliver information about a global time, the drift radius, the distance of the
hit from the readout and their identification.

ScintillatorDigitCollection (CLID 4104) is a collection of ScintillatorDigits (no CLID).
ScintillatorDigits have methods to deliver information about ADC and TDC count and
their identification.

ScintillatorDigitContainer (CLID 4107) organizes ScintillatorDigitCollections (three in
MCT, one for each layer).

ScintillatorHitCollection (ClID 4101) is a collection od ScintillatorHits (no CLID). Scin-
tillatorHits have methods to deliver information about a global time, the distance from
the left and right edge, an energy deposition and their identification.

StreamerDigitCollection (CLID 4105) is a collection of StreamerDigits (no CLID). Stream-
erDigitss have methods to deliver information about their identification only.

StreamerDigitContainer (CLID 4108) organizes StreamerDigitCollections (two in MCT,
one for each layer).

StreamerHitCollection (CLID 4102) is a collection of StreamerHits (no CLID). Stream-
erHits have methods to deliver information about a global time, the distance from the
read out, a pulse height and their identification.

MuonCTG4Sim

Short Description

Implementation of all simulation related issues. Physics lists to be used in the simulation of
Geant4 are implemented as well as the conversion algorithms that derives the Geant4 geometry
from the GeoModel geometry. Geant4 sensitive detectors are implemented as Athena tools,
using multiple inheritance from Geant4 sensitive detector and Athena tool base class.

Athena Components

MDTSD (T) implements the hit producing algorithm of drift tubes. MDTSD is attached
to logical volumes representing drift tubes. Produced hits, MDTHitCollections (CLID
4100), are stored in StoreGate.

MuonCTG4Sim (A) is the algorithm, in whose initialize() method the boundary condi-
tions of the simulation are established. It uses the MuonCTGeoToG4Svc to build the
Geant4 geometry from the GeoModel description.

MuonCTGeoToG4Svc (S) implements automatic conversion of GeoModel to Geant4 geom-
etry conversion, including the instantiation and activation of sensitive detectors.

64

ScintillatorSD (T) implements the hit producing algorithm of scintillator bars. Scintilla-
torSD is attached to logical volumes representing scintillator bars. tubes. Produced hits,
MDTHitCollections (CLID 4101), are stored in StoreGate.

StreamerSD (T) implements the hit producing algorithm of streamer tueb cells. StreamerSD
is attached to logical volumes representing streamer tube cells. tubes. Produced hits,
MDTHitCollections (CLID 4102), are stored in StoreGate.

Data Classes

None.

MuonCTGeoModel

Short Description

This sub package is full of classes which build the GeoModel tree. Only the top node has a CLID
assigned, which is sufficient, since all daughter nodes are owned by their parent node. Building
of the GeoModel tree involves several builder-classes which are not mentioned here.

Athena Components

MuonCosmicTeststandTool (T) is utilized by the GeoModelSvc in the beginning of a Job,
following directives in joboptions. Its only purpose is to instantiate the GeoModel tree
and store the root node in the detector store.

Data Classes

MuonCosmicTeststandNode (CLID 4120) represents the root node of the MCT GeoModel
tree.

MuonCTGraphics

Short Description

Both Algorithms residing in this sub package fetch track information from the event store and
write out either a XML or ASCII file for each event that is interpreted later by a graphical front
end.

Athena Components

AsciiTrackConverter (A) was intended to read track information from StoreGate and write
it to ASCII files but was not properly updated.

AtlantisXMLTrackConverter (A) collects track information (TrackCollection (CLID 4115))
from StoreGate and writes to disk XML-files that are to be interpreted by the Atlantis
event display (see [8]).

65

Data Classes

None.

MuonCTIdentifier

Short Description

Identifiers are objects that uniquely Identify sensitive elements (such as MDT chambers) or read-
out channels (such as drift tubes), like numbers identify individual seats in a cinema. Identifier
helpers are tools, that are capeable of performing several calculations, such as decomposing a
seat number into its row and column number, or decomposing a tube identifier into its chamber,
multilayer, layer and tube number. In addition to that, they utilize internal hash tables built
from dictionary-files in the beginning of a job that allow very fast operations.

Athena Components

MuonCTIdHelperTool (T) instantiates all MCT identifier tools and puts them into the de-
tector store. The mechanism uses the GeoModelSvc just as in the case of the Muon-
CosmicTeststandTool. (A little misuse is done here since the GeoModelSvs is not
intended just to store objects in the detector store.)

Data Classes

MDTIdHelper (CLID 4130) performs calculation on MDT chamber subsystem identifiers
(chamber, multilayer, layer and tube numbers).

ScintiIdHelper (CLID 4131) performs calculations on scintillator subsystem identifiers (layer
and bar number).

StreamerIdHelper (CLID 4132) performs calculations on streamer subsystem identifiers (layer,
bar and volume number).

MuonCTRawDataCnvSvc

Short Description

This sub package implements read converter for raw data originating of the test stand. With
these converters, MCT is able to access the same data format as the MTOffline software. Several
classes were simply adapted from the MTOffline package.

Athena Components

MuonCTRawDataCnvSvc (S) is the service for the storage technology that is used for the
real teststand.

EventInfoRawDataConverter (C) mainly converts event and run number originating from
raw test stand data into its transient representation, the EventInfo object.

[MDTRawDataConverter (C) converts MDT chamber digits.

66

ScintiRawDataConverter (C) converts scintillator digits.

StreamerRawDataConverter (C) converts streamer digits.

Data Classes

MuonCTRawDataEventSelector

Short Description

The event selector is responsible for single event selection of data sets. In case of MCT this is
not crucial, since a single muon passage is always identified with one single event.

Athena Components

MuonCTRawDataEventSelector preloads proxies at the beginning of an event. Derefer-
encing of proxies triggers the converter mechanism.

Data Classes

None.

MuonCTRawEvent

Short Description

This package contains the slightly modified raw data classes implemented by the MTOffline
project. They are utilized by the MCT raw data converter.

Athena Components

None.

Data Classes

None.

MuonCTReco

Short Description

MuonCTReco contains fitting related Algorithms. In some cases, they are not concrete imple-
mentation of fit algorithms but utilize easy exchangable Tools that perform the fit.

Athena Components

DetDescrTestAlg (A) is a test Algorithm that was intendet for validation of IOV-GeoModel
related mechanisms.

ExNTupleMaker (A) is not used anymore.

67

GlobalTrackFitter (A) is not used anymore.

MDTPatternFinder (A) fetches drift circles (MDTDriftCircleCollection (CLID 4113))
from StoreGate and discovers if subsets of drift circles build a pattern according to a set
of parameters defined in MDTPatternFinder’s joboptions. These subsets are placed in
StoreGate as MDTPatternCollections (CLID 4113).

MDTTimeToRadTransform (A) retrieves run time corrected drift times from StoreGate
(MDTDriftTimeCollection (CLID 4117)) and subtracts the the t0 value. Then, the
drift time is converted into a drift radius. At this stage, geometry information is consulted
and stored into the resulting MDTDriftCircleCollections (CLID 4111).

MDTTrackFinder (A) is not used anymore.

MDTTrackFitter (A) evaluates patterns (MDTPatternCollections (CLID 4113)) by per-
forming fits. The fit algorithms are not implemented in MDTTrackFitter. Instead,
MDTTrackFitter utilizes a tool with the concrete algorithm.

ScintiTrackFinder (A) is not used anymore.

TDCDelayAdjust (A) reads MDTDigitCollections (CLID 4103) and ScintillatorDigit-
Collection (CLID 4104) from StoreGate, performs rudimentary fits and calculates run
time corrections of the measured drift times. The result is stored in StoreGate asMDT-
DriftTimeCollecion (CLID 4117).

Data Classes

None.

MuonCTRecoEvent

Short Description

MuonCTRecoEvent defines the transient representation of reconstructed event data.

Athena Components

None.

Data Classes

MDTDriftCircleCollection (CLID 4111) is a collection of drift circles (MDTDriftCircle
(no CLID)). Drift circles already contain geometry information.

MDTDriftCircleContainer (CLID 4112) organize MDTDriftCircleCollections.

MDTDriftTimeCollection (CLID 4117) is a collection of drift times (MDTDriftTime (no
CLID)). MDTDriftTimes are run time corrected drift times, that have not yet the t0
subtrackted. They contain no geometry information.

MDTDriftTimeContainer (CLID 4118) organizes MDTDriftTimeCollections.

68

MDTPatternCollection (CLID 4113) is a collection of patterns of the MDT chambers (MDT-
Pattern (no CLID)). Patterns are sub sets of hit tubes that might form a muon trajectory.

MDTPatternContainer (CLID 4114) organizes MDTPatternCollections.

TrackCollection (CLID 4115) is a collection of tracks (Track (no CLID)), either local chamber
or global tracks.

TrackFitTimes (CLID 4119) is an object that maps track pointers to the time it took to
perform the fit. It is evaluated by MuonCTNTuple.

TrackInfo (CLID 4134) extends the information held by TrackCollection. It is supposed to
connect global tracks with its corresponding local tracks.

TrackPointCollection (CLID 4109) is a collection of TrackPoints (no CLID).

TrackPointContainer (CLID 4110) organizes TrackCollections.

MuonCTRecoUtils

Short Description

This packages hold several components, all Tools, that are used to perform small fitting related
tasks. Many of them are utilized from Algorithms of the MuonCTReco sub package. There
are several Tools that solve identical problems using different approaches. The end user is
able to switch between these alternatives easily by modifying the joboptions file. To clarify the
use-relationships of some Tools in this package: MuonCTReco uses StraightLineDCFitter
or StraightLineTPFitter, respectively (the choice is made in the joboptions). Everything
containing “DCLineFitter” in its name is utilized by StraightLineDCFitter, while everything
containing “LineFitter” (without “DC”) is used by StraightLineTPFitter.

Athena Components

IronScatterAngle (T) is used to calculate the offset between a muon trajectory and the mea-
sured streamer tube layer impact point.Therefore, it fetches TrackCollection (CLID
4115) and StreamerDigitCollections (CLID 4105) from StoreGate.

LazyDCLineFitter (T) is used by StraightLineDCFitter. It does nothing but returning
the suggestion for slope an intercept stored in a MDTPattern (no CLID) as result for
the reconstructed track parameters. It is used for debugging.

LinearDCLineFitter (T) implements a linear, analytical fit method. It is used by Straight-
LineDCFitter.

MinuitDCLineFitter (T) implements a fit algorithm, that minimizes residuas utilizing MI-
NUIT and is used by StraightLineDCFitter.

NumRecLineFitter (T) implements a linear regression based on an algorithm found in [7]
and is used bt StraightLineTPFitter.

RootLineFitter (T) is used by StraightLineTPFitter. It performs a numerical linear re-
gression based on ROOT.

69

ScintiTrackFitter (T) is aTool that can be used to perform a track fit based on the scintillator
information. It fetches ScintillatorDigitCollections (CLID 4104) from StoreGate.
The resulting fit parameters describe the muon trajectory in a plane perpendicular to the
plane fitted based on drift tube digits.

SemiAnalyticDCLineFitter (T) implements a semi-analytical method to minimize residuas.
It is not completely tested. It is used by StraightLineDCFitter.

StraightLineDCFitter (T) is used by MuonCTReco. It utilizes a helper Tool (e. g. Semi-
AnalyticDCLineFitter or NumRecDCLineFitter) that implements a fit based on
residua minimizing. The residuas are defined as the difference between the measured
radius and the radius prediction of the fitted track for single tubes.

StraightLineTPFitter (T) is used by MuonCTReco. Based on a MDTPattern, it es-
timates points which lay on the muon trajectory. These points are subject to a linear
regression, which is performed utilizing a helper Tool (e. g. RootLineFitter or Num-
RecLineFitter).

TangentsOnCirclesSvc (T) is not used anymore.

Data Classes

None.

MuonCTRelease

Short Description

MuonCTRelease contains no code at all. In its current version, Athena uses CMT [17] as its
code management tool. Sub packaging is subdued to this system, every package contains a
directory named cmt that defines its use-relationships. MuonCTRelease’s cmt directory defines
a dependence on all MCT packages. Usually, MCT-Athena jobs are executed after processing
all directives in this subdirectory.

Athena Components

None.

Data Classes

None.

MuonCTUtils

Short Description

MuonCTUtils contains code that does not really fit in any of the other categories. At the
moment, it contains neither Athena components nor data classes. In MuonCTUtils, helper
classes are found, that help calculating a drift tube’s wire sag or define a simple drift time
relation.

70

Athena Components

None.

Data Classes

None.

71

Appendix C

Detailed Example: Joboptions

In this chapter, a detailed example of a joboptions file is given. This can be starting point for
different Athena applications based on the MCT package. The language of joboptions files is
closely related to the C++ language. The job below is capeable of performing the static chamber
alignment as described in chapter 4.2.1.

//

//

// MCTFindChamberPostionOptions.txt

// --------------------------------

//

//

Mandatory for every job, except simulations...

#include "$ATHENACOMMONROOT/share/Atlas.UnixStandardJob.txt"

comments...

//--

// configure application

//--

Here, all libraries are defined that are used for the following job - their name indicates their purpose.

E. g. “IOVSvc” denotes that file “libIOVSvc.so” contains class implementations that are needed throughout this

job.

ApplicationMgr.DLLs += { "GaudiAlg",

"GeoModelSvc",

"GeoModelGraphics",

"RootSvcModules",

"RootHistCnv",

"MuonCTDetDescr",

"MuonCTGeoModel",

"MuonCTIdentifier",

"MuonCTConditionsCnvSvc",

"MuonCTAlgs",

"MuonCTCalibAlgs",

"IOVSvc",

"MuonCTReco",

"MuonCTRecoUtils",

"MuonCTGraphics"};

72

External services - they need to be implemented in the libraries above. AtRndmGenSvc generates random numbers.

ApplicationMgr.ExtSvc += { "AtRndmGenSvc",

IOVSvc is external, too.

"IOVSvc",

IOVASCIIDbSvc is the concrete choice of an IOV database.

"IOVASCIIDbSvc",

GeoModelSvc is responsible for instantiating the geometry tree in the beginning of a job.

"GeoModelSvc",

This is the concrete converter choice for drift spetrum information - it implements the ASCII conditions database.

"MuonCTConditionsCnvSvc"};

This tells the ApplicationMgr to instantiate a Sequencer with the name “TopSequence” as the top algorithm. In-

stead, arbitrary Algorithms could be instantiated here. Sequencers are a way to organize Algorithms.

ApplicationMgr.TopAlg = { "Sequencer/TopSequence" };

The following lines define how the instance named “TopSequence” of Sequencer shall be configured. All members

are Athena Algorithms. Some of them are described in the text.

TopSequence.Members = { "TDCDelayAdjust/TDCDelayAdjust",

"MDTTimeToRadTransform/MDTTimeToRadTransform",

"MDTPatternFinder/MDTPatternFinder",

"MDTTrackFitter/MDTTrackFitter",

"ChamberPosition/ChamberPosition"};

GeoModelDisplay is the Algorithm, that generated the test stand picture 2.3. It is outcommented here.

//"GeoModelDisplay/GeoModelDisplay" };//,

// "AtlantisXMLTrackConverter/AtlantisXMLTrackConverter"};

Define the level of output...

MessageSvc.OutputLevel = 3; // 2=DEBUG, 3=INFO, 4=WARNING, 5=ERROR, 6=FATAL

Number of events to be processed...

ApplicationMgr.EvtMax = 100000000;

// Pattern Finder

// --------------

Defines properties of the instance of MDTPatternFinder...

MDTPatternFinder.MinPerChamber = 5;

MDTPatternFinder.RoadWidth = 5.;

MDTPatternFinder.GlobalDeltaInter= 40.;

MDTPatternFinder.GlobalDeltaSlope= 0.2;

MDTPatternFinder.MaxResidualSum = 10.0;

MDTPatternFinder.MaxResidualAvg = 2.0;

GlobalPatternIgnoresMiddleChambers indicates whether a pattern has to be built for the middle chamber or not.

If one is interested in chamber positions, local track fits for all chambers are needed. If one wants to predict wire

positions, only the reference chambers are used.

MDTPatternFinder.GlobalPatternIgnoresMiddleChambers = false;

// Track Fitter

// ------------

Configuration of the TrackFitter. First the strategy tool is defined...

MDTTrackFitter.TrackFitter = "StraightLineDCFitter";

Next, the concrete algorithm that is used by the strategy tool is defined...

MDTTrackFitter.StraightLineDCFitter.LineDCFitter = "MinuitDCLineFitter";

MDTTrackFitter.MinGlobalProb = 0.1;

// GeoModelSvc

// -----------

The following lines define helpers of GeoModel, whose main purpose is to store objects of different type in the

detector store. To a certain extend, abuse is done here, since the helpers are used to store several things that are

not connected to GeoModel. MuonCTIdHelperTool stores the id helpers in the detector store.

73

GeoModelSvc.Detectors = { "MuonCTIdHelperTool",

MuonCosmicTeststandTool instanciates the MCT GeoModel and stores it.

"MuonCosmicTeststandTool",

MuonCTDetDescrTool instantiates and stores the MuonCTDetDescrManager.

"MuonCTDetDescrTool",

MCTCondMgrTool instantiates and stores the MuonCTCondManager

"MCTCondMgrTool"};

// Conditions

// ----------

Activate MuonCTConditionsCnvSvc as a conversion service...

EventPersistencySvc.CnvServices += { "MuonCTConditionsCnvSvc" };

Instruct IOVASCIIDbSvc to be responsible for filling proxies...

ProxyProviderSvc.ProviderNames += { "IOVASCIIDbSvc" };

Define the root directory of the IOV ASCII database. This path points to the local directory from where the job is

started, what indicates, that a local, private version of the IOV database is used here.

IOVASCIIDbSvc.DBname = "IOVDB";

Define, which CLIDs the IOVASCIIDbSvc is responsible for...

IOVASCIIDbSvc.ClassID = { 4143, 4144 };

This tells the IOVASCIIDbSvc, what to do, if no entry is found in the IOV database...

IOVASCIIDbSvc.UseDefaultRange = false;

Root directory of the conditions database...

MuonCTConditionsCnvSvc.CondDBRoot = "CondDB";

Feature of the conditions data converter - do not overwrite data that has been produced once...

MuonCTConditionsCnvSvc.overwriteConditionsData = false;

// RawData / MonteCarlo

// --------------------

If not outcommended, this would install Monte Carlo as input source...

//#include "MCTAthenaRootReadOptions.txt"

But we want to read real data here...

#include "MCTRawDataReadOptions.txt"

// AtlantisXMLTrackConverter

// -------------------------

Destination of Atlantis-XML files...

AtlantisXMLTrackConverter.Directory = "event/atlantis";

//

74

Appendix D

Description of the MCT N-Tuple

The following lines describe the entries of the n-tuple produced by the Algorithm MuonCT-
NTuple. The name, via which the entries are made available, their type and their description
is given. A type followed by a square bracket [] indicates that the type is an array with upper
bound index given by the value in brackets.

Name Type Description

event parameters
”run” long run number
”event” long event number

global fit results
”chi2” float χ2-sum
”slope” float slope
”sigSlope” float error on slope
”intercept” float intercept
”sigIntercept” float error on intercept
”covariance” float covariance of slope and intercept
”scatterOffset” float offset of streamer prediction

w. r. t. the fitted track in y-direction
”xzSlope” float slope of hodoscope fit
”xzIntercept” float intercept of hodoscope fit
”nTube” long number of tubes consulted

upper chamber local fit results
”chi2UC” float χ2-sum
”slopeUC” float slope
”sigSlopeUC” float error on slope
”interceptUC” float intercept
”sigInterceptUC” float error on intercept
”covarianceUC” float covariance of slope and intercept
”chamberUC” long identification number of upper chamber redundant
”xzSlopeUC” float slope of hodoscope fit redundant
”xzInterceptUC” float intercept of hodoscope fit redundant
”nTubeUC” long number of tubes consulted

test chamber local fit results
”chi2TC” float χ2-sum

75

”slopeTC” float slope
”sigSlopeTC” float error on slope
”interceptTC” float intercept
”sigInterceptTC” float error on intercept
”covarianceTC” float covariance of slope and intercept
”chamberTC” long identification number of test chamber redundant
”xzSlopeTC” float slope of hodoscope fit redundant
”xzInterceptTC” float intercept of hodoscope fit redundant
”nTubeTC” long number of tubes consulted redundant

lower chamber local fit results
”chi2LC” float χ2-sum
”slopeLC” float slope
”sigSlopeLC” float error on slope
”interceptLC” float intercept
”sigInterceptLC” float error on intercept
”covarianceLC” float covariance of slope and intercept
”chamberLC” long identification number of lower chamber redundant
”xzSlopeLC” float slope of hodoscope fit redundant
”xzInterceptLC” float intercept of hodoscope fit redundant
”nTubeLC” long number of tubes consulted redundant

upper chamber hits
”nHitUC” long number of drift circles that contribute redundant
”yPosUC” float[”nHitUC”] array of y-positions of drift circle centers
”zPosUC” float[”nHitUC”] array of z-positions of drift circle centers
”rUC” float[”nHitUC”] array of radii of drift circles
”tUC” float[”nHitUC”] array of drift times of corresponding to drift circles
”sigRUC” float[”nHitUC”] array of errors on radii of drift circles
”hit chamberUC” long[”nHitUC”] array chamber number of drift circles redundant
”hit multilayerUC” long[”nHitUC”] array of multilayer number of drift circles
”hit layerUC” long[”nHitUC”] array of layer number of drift circles
”hit tubeUC” long[”nHitUC”] array of tube number of drift circles

test chamber hits
in case the test chamber was excluded from the track fitting, the hit section contains
information about all hits, and not about hits that belong to a local track
”nHitTC” long number of drift circles that contribute redundant
”yPosTC” float[”nHitTC”] array of y-positions of drift circle centers
”zPosTC” float[”nHitTC”] array of z-positions of drift circle centers
”rTC” float[”nHitTC”] array of radii of drift circles
”tTC” float[”nHitTC”] array of drift times of corresponding to drift circles
”sigRTC” float[”nHitTC”] array of errors on radii of drift circles
”hit chamberTC” long[”nHitTC”] array chamber number of drift circles redundant
”hit multilayerTC” long[”nHitTC”] array of multilayer number of drift circles
”hit layerTC” long[”nHitTC”] array of layer number of drift circles
”hit tubeTC” long[”nHitTC”] array of tube number of drift circles

lower chamber hits
”nHitLC” long number of drift circles that contribute redundant

76

”yPosLC” float[”nHitLC”] array of y-positions of drift circle centers
”zPosLC” float[”nHitLC”] array of z-positions of drift circle centers
”rLC” float[”nHitLC”] array of radii of drift circles
”tLC” float[”nHitLC”] array of drift times of corresponding to drift circles
”sigRLC” float[”nHitLC”] array of errors on radii of drift circles
”hit chamberLC” long[”nHitLC”] array chamber number of drift circles redundant
”hit multilayerLC” long[”nHitLC”] array of multilayer number of drift circles
”hit layerLC” long[”nHitLC”] array of layer number of drift circles
”hit tubeLC” long[”nHitLC”] array of tube number of drift circles

77

Bibliography

[1] H. van der Graaf, H. Groenstege, F. Linde, P. Rewiersma, RasNiK, an Alignment
System for the ATLAS MDT Barrel Muon Chambers - Technikal System Description,
NIKHEF/ET38110, 2000

[2] The Gaudi Collaboration, http://proj-gaudi.web.cern.ch/

[3] E. Gamma, R. Helm, R. Johnson, Design Patterns. Elements of Reusable Object- Oriented
Software, Addison-Wesley, 1997

[4] J. Boudreau, D. Quarrie, M. Shapiro, Geometry Kernel Classes,
http://atlas.web.cern.ch/Atlas/GROUPS/DATABASE/detector description/

[5] C. Leggett, IOVSvc Documentation,
http://annwm.lbl.gov/∼leggett/Atlas/IOVSvc/main.shtml

[6] J. Beck, M. Dobbs, HepMC a C++ Event Record for Monte Carlo Generators,
http://cern.ch/mdobbs/HepMC/

[7] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C,
The Art of Scientific Computing, Camebridge University Press

[8] H. Drewermann, G. Taylor, Atlantis Event Display, http://cern.ch/atlantis/

[9] A. Brandt, G. Duckeck, P. Schieferdecker, (access to MuonCosmicTeststand sorce code via
the US ATLAS LXR-Code Browser),
http://atlassw1.phy.bnl.gov/lxr/source/atlas/MuonSpectrometer/MuonCosmicTeststand/

[10] The Geant4 Collaboration, http://cern.ch/geant4/

[11] D. R. Musser, A. Saini, STL Tutorial and Reference Guide, Addison-Wesley, 1997

[12] O. Kortner, Schauerproduktion durch hochenergetische Myonen und Aufbau eines Höhen-
strahlprüfstands für hochauflösende ATLAS Myonkammern, Doctoral Thesis, LMUMunich,
2002

[13] F. James, MINUIT, Function Minimization and Error Analysis, Reference Manual, CERN
Program Library Long Writeup D506

[14] R. Brun, F. Rademakers, ROOT System Homepage, http://root.cern.ch/

[15] CLHEP - A Class Library for High Energy Physics,
http://wwwinfo.cern.ch/asd/lhc++/clhep/

78

[16] O. Biebel et al., A Cosmic Ray Measurement Facility for ATLAS Muon Chambers,
arXiv:physics/0307147, LMU-ETP-2003-01.

[17] C. Arnault, CMT, http://www.cmtsite.org/

[18] ATLAS Detector And Physics Performance, CERN/LHCC 99-14

[19] ATLAS posters, http://atlas.web.cern.ch/Atlas/documentation/poster/HTML/

79

Erklärung

Hiermit versichere ich, dass ich die vorliegende Arbeit selbständig angefertigt und nur im
Literaturverzeichnis angegebene Quellen verwendet habe.

München, 4. November 2003

(Alexander Brandt)

80

