

Construction of a Precision Four-Layer Floating Strip Micromegas Chamber

J. Bortfeldt¹, O. Biebel¹, B. Flierl¹, F. Klitzner¹, Ph. Lösel¹, R. Müller¹, A. Zibell², R. Hertenberger¹ ¹ LS Schaile - LMU Munich, ² University Würzburg

FLOATING STRIP MICROMEGAS DETECTOR

Micromegas principle

- charged particles \rightarrow ionization
- gas amplification 10³
- charge signal on strips
 - single strip readout
- \rightarrow spatial resolution O(50µm)
- \rightarrow timing O(ns)
- thin amplification region & fine segmentation
- \rightarrow fast drain of positive ions
- \rightarrow high-rate capable

challenge: discharges

charge density $\geq 2.10^{6} \text{ e/0.01 mm}^{2}$ (Raether limit)

MOTIVATION & DESIGN

motivation

• investigate suitability and performance of large-area floating strip Micromegas detectors

• construction of 2m² resistive strip Micromegas quadruplet for ATLAS Muon New Small Wheel ongoing

 \rightarrow develop, test and qualify construction and alignment procedures

chamber concept

- 414x755x75mm³
- active area 534x338mm² per layer
- 768 strips per layer, 440µm pitch
- two outer drift panels, cathode and mesh on one side
- one inner drift panel, cathode and mesh on both

HV

650µm

- \rightarrow streamer development
- conductive channel between mesh & anode \rightarrow potentials equalize
- non-destructive, but dead time
- \rightarrow efficiency drop, especially at high particle rates or in high-rate background

$22M\Omega$ resistors

readout electronics coupled via pF capacitors

• strips individually connected to HV via

- \rightarrow strips can "float" in a discharge
- \rightarrow fast streamer quenching
- \rightarrow only one to three strips affected
- \rightarrow fast recovery

- sides
- two double-sided readout panels, consisting of two separate readout boards per layer
- glue panels (=FR4 + aluminum honeycomb) on precise (<30µm) table
- drilling and milling of holes after gluing
- vertical assembly

FLOATING STRIP READOUT ANODE telecentric camera mesh & drift bars coverlay floating anode strip **STEP 1:** mechanical alignment of readout boards via precision washer, round precision washer precision washer, straight manipulator orecision pin FR4 board readout strip screen-printed resistor polyester resin frontend connector comb for single strip connector footprint for high-voltage connection readout electronics readout board vacuum port circular coverlay for precision marker interconnect insert precision marker floating ΗV mesh supporting pillar strips alignment frame precision surface, V-shaped • glue two precision washers onto **precision markers** on readout boards • aluminum frame with two **precision cylinders**, mounted on table

ASSEMBLY OF THE READOUT PANEL

\rightarrow suck boards to table & take off frame

STEP 2: gluing of precision surfaces, inner bars and aluminum honeycomb alignment cylinder

• alignment frame (<50µm) with four pins & two precision surfaces

 \rightarrow alignment of boards wrt each other & the precision cylinders

- STEP 3: alignment of boards for second layer
- repeat the procedure, described in step 1 for two additional readout boards

STEP 4: alignment of both readout layers and final gluing of the panel

- suck semi-panel against precise (<10µm) and lightweight stiffback
- apply 300µm layer of Araldite glue, structured
- place stiffback + panel onto the table
- align stiffback + panel wrt the second layer readout boards by using the precision surfaces on the first layer readout boards
- parallelism and thickness ensured by precise distance pieces with contact monitor

STEP 5: drilling & milling of mounting and alignment holes into the panel

STEP 6: cleaning of the panel with solvent & high-pressure deionized water

- glue two precision surfaces on readout boards, fixation by aluminum fingers
- apply 300µm thick layer of Araldite glue, structure with notched trowel
- 40mm distance pieces (~100µm) for alignment of bars
- place bars & honeycomb
- fingers for fixation of bars
- exert little force while curing: load with 20kg plate
- position of holes floating strips coverlav frame

ASSEMBLY OF THE DRIFT PANEL

- **STEP 1: alignment of copper clad FR4** board/cathode
- alignment wrt aluminum frame on table using 35mm distance pieces
- suck boards to table

STEP 3: alignment of copper clad FR4 board/cathode for second layer • repeat step 1 for an additional FR4 board

STEP 5: drilling & milling

- drilling of mounting holes
- milling of threads and alignment holes
- milling of the cathode structure
- STEP 6: screwing of mesh bars and gluing of the mesh

STEP 2: gluing of inner bars and aluminum honeycomb • equal to step 2 for the readout panel

STEP 4: alignment of both layers and final gluing of the panel

• equal to step 4 for the readout panel, only difference: align stiffback + panel wrt the second layer FR4 board by using 40mm alignment cylinders between bars and aluminum frame on table

MEASURED ACCURACY OF A DRIFT PANEL topology side 1 parallelism of both sides topology side 2 <u></u> -1050 -1050 -190 <u>–</u> 6 ^{SX}-1100 ·<mark>%</mark> -1100 ^{SIXA}-1100 -200 ठॅ -1150 -1150 -1150 -210^Ĕ -1200 -1200 -1200 -220 -230 -1250 -1250 -1250 -240 -1300 -1300 -1300 -250 -1350 -1350 -1350 -260 -1400 -1400 -1400 -270 1500 1600 1700 1800 1900 2000 1500 1600 1700 1800 1900 2000 1500 1600 1700 1800 1900 2000 X-Axis [mm] X-Axis [mm] X-Axis [mm] RMS: 7.4µm RMS: 12.5µm absolute maximum deviation: 50µm \rightarrow well within specification

• measured with a laser distance sensor on a coordinate measurement machine, accuracy O(15µm)

- screwing & gluing of the mesh bars onto the panel
- gluing of the interconnect insert
- gluing of the pre-stretched mesh onto the bars and the insert

STEP 7: cleaning of the panel with solvent & high-pressure deionized water

SUMMARY

- a precision four-layer floating strip Micromegas chamber is developed and constructed • serves as procedure **study** for construction of resistive strip Micromegas quadruplets for the **ATLAS Muon New Small Wheel**
- panel assembly procedures have been developed and are defined
- all facilities such as clean room, precise table, stiffback, alignment tools & cleaning cabin are ready
- two drift panels have been assembled and investigated with a coordinate measurement machine, drilling and milling yet to be done
- precision washer alignment on precision marker works
- \rightarrow assembly methods work up to now
- → desired accuracy is reached

Particle Physics, LS Schaile, Fakultät für Physik, Ludwig-Maximilians-Universität Munich

www.etp.physik.uni-muenchen.de