Science Week 2014 Dec 1-4

RESEARCH AREA: B

Ludwig-Maximilians-Universität München, Fakultät für Physik, LS Schaile, Am Coulombwall 1, 85748 Garching Jona Bortfeldt, jonathan.bortfeldt@physik.uni-muenchen.de, 089-289-14142 Johannes Elmsheuser, johannes.elmsheuser@physik.uni-muenchen.de, 089-289-14124

Three-Dimensional Particle Tracking with Micromegas at Highest Rates

FLOATING STRIP MICROMEGAS DETECTOR

functional principle

- charged particles \rightarrow ionization
- gas amplification 10³
- charge signal on strips single strip readout
 - \rightarrow spatial resolution O(50µm)
 - \rightarrow timing O(ns)
- thin amplification region & fine segmentation
 - \rightarrow fast drain of positive ions
 - \rightarrow high rate capable

challenge: discharges

- charge density $\geq 2 \cdot 10^6 \text{ e}/0.01 \text{ mm}^2$ \rightarrow streamer development
- conductive channel between mesh & anode \rightarrow potentials equalize
- non-destructive, but dead time \rightarrow efficiency drop, especially at high particle rates

solution: floating strip Micromegas

- strip individually connected to HV via $22M\Omega$ resistors
- readout electronics coupled via pF
- capacitors
- \rightarrow strips can "float" in a discharge \rightarrow only one to three strips affected
- \rightarrow fast recovery

µTPC RECONSTRUCTION METHOD

method

IMPROVING HIGH-RATE CAPABILITY

shorter signals

- signal duration: maximum electron drift time (cathode to mesh) + maximum ion drift time (anode to mesh)
- \rightarrow light base gas: Ne instead of Ar
- \rightarrow fast admixture gas: CF₄ instead of CO₂

finer segmentation

- pixels
- \rightarrow intermediate: two-dimensional readout plane with crossed x- and y-strips

faster readout electronics

- fast shaping
- online data filtering
- high-readout speed

up to now: complete particle separation at 7MHz/cm², single particle tracking up to 60MHz/cm²

- measure signal timing
- \rightarrow arrival time of charge cluster on strip
- linear fit to time-strip data points:
- $t(s) = a s + t_0$
- \rightarrow track inclination:
- $\vartheta = \tan^{-1}\left(\frac{p_s}{a v_d 25 ns}\right)$ with $p_s = \text{strip pitch}$
- \rightarrow alternative hit position

systematics

- reconstructed track inclination too large
- capacitive coupling of signals onto neighboring strips
- simulation with parameter-free LTSpice detector model
 - \rightarrow calibration possible

- single plane track inclination reconstruction possible with fast Ne:CF₄ mixtures
- angular resolution $\binom{+5^{\circ}}{-4^{\circ}}$ for $E_{drift} \le 0.6 kV/cm$

ACKNOWLEDGMENTS

This research was supported as a seed project by the DFG cluster of excellence "Origin and Structure of the Universe"

- fast Ne:CF₄ gas
- efficiency and pulse height behavior as desired
- electron drift time 150ns \rightarrow 60ns ion drift time 260ns \rightarrow 85ns \rightarrow factor 3 in signal duration

ultra-thin floating strip Micromegas

- two-dimensional strip readout
- 3 x 35µm Cu + 2 x 25µm Kapton
- readout PCBs available next week
- allows for 3d track reconstruction in a single detector

floating pixel Micromegas

- if two-dimensional FSM works
- estimated: full particle separation at >30MHz/cm²

Excellence Cluster Universe | Boltzmannstraße 2 | 85748 Garching | Germany | www.universe-cluster.de