

Large-Area Floating Strip Micromegas Detectors

J. Bortfeldt, O. Biebel, R. Hertenberger, P. Lösel, S. Moll, A. Zibell LS Schaile

FLOATING STRIP PRINCIPLE

motivation: discharges in Micromegas between mesh and strips cannot be avoided • are non-destructive • create dead time due to recharge time **goal:** suppress discharges quickly to avoid complete voltage drop

novel "floating strip" concept:

- "floating" copper anode strips:
- individually attached to HV via $\sim 20M\Omega$
- capacitively coupled to electronics with ~50pF capacitors
- \rightarrow potential discharge affects only 1-2 strips
- \rightarrow fast recovery, no charge up, no aging expected

impact of discharges on efficiency and spatial resolution can be significantly

see also: A. Bay, I. Giomataris et al.,

FLOATING STRIP MICROMEGAS REALIZATION

"discrete" solution

idea:

- copper anode strips on +HV via exchangeable SMD resistors
- decouple signal via exchangeable SMD capacitors

several prototypes:

• 6.4 x 6.4 cm² active area, 128 copper strips, 500µm pitch, 300µm width • amplification gap: 128µm • drift region: 6mm

"integrated" solution

idea:

- copper anode strips on +HV via resistor paste
- below these, capacitively coupled copper readout strips to collect signal

prototype:

• 50 x 48 cm² active area, 1920 copper strips, $250\mu m$ pitch, $150\mu m$ width

Nucl.Instrum.Meth. A488:162-174, 2002

- gas: Ar:CO₂ 93:7 @ 1013mbar
- amplification gap: 128µm
- drift region: 6mm
- gas: Ar:CO₂ 93:7 @ 1013mbar

lso see: Bortfeldt et al., High-resolution Micromegas telescope for pion- and muon-tracking, NIM A, http://dx.doi.org/10.1016/i.nima.2012.08.07

- test beam October-December 2012: • pions: 10 – 160GeV • hit rates: 0.1 – 75kHz/cm² adjustable • muons
- floating strip Micromegas: $50 \times 48 \text{ cm}^2$ active area x-y-scan, angular scan, readout: Scalable Readout System with APV25
- tracking telescope:
- six non resistive Micromegas, active area 10 x 9cm², 360 strips, Gassiplex readout (VME)
- two resistive Micromegas, active area 9 x 9cm², 2d-readout, 2x358 anode strips, Scalable Readout System
- two scintillator layers, active area $10 \times 10 \text{ cm}^2$, 3 scintillators per layer, VME readout (TDC)

SPATIAL RESOLUTION FOR 120 GEV PIONS AT PERPENDICULAR INCIDENCE

calibration of single detector spatial resolution

floating strip

 decreasing electron transparency of mesh

- E_{amp} = 37.5kV/cm

E_{amp} = 36.7kV/cm

___ E_{amp} = 35.9kV/cm

E_{drift} [kV/cm]

- efficiency vs. E_{drift}
- between 95% and 97% for 0.4kV/cm < E_{drift} < 1kV/cm for 120GeV pions
- mesh supporting pillars create most of the inefficiency

VOLTAGE DROP AFTER DISCHARGE – SIMULATION & MEASUREMENT

• create discharges in small

PION TEST BEAM SETUP @ H6 SPS / CERN

σ_{SR} , in the reference detectors:

calibration of the i-th detector:

- $\sigma_{ex,i}$: reference detector under study not included in track fit
- \rightarrow residual too large
- $\sigma_{in,i}$: all reference detectors included in track fit
- \rightarrow residual too small
- NIM A 538, 372: $\sigma_{SR,i} = \sqrt{\sigma_{in,i} \times \sigma_{ex,i}}$ for i = 1, ..., 8

result: track resolution $\sigma_{track} = (18\pm3)\mu m$ at position of floating strip Micromegas

the dots refer to a single event, error bars are given by spatial and track resolution respectively

application: investigate spatial resolution σ_{SR} of floating strip Micromegas for varying operational parameters:

- interpolate track prediction from reference detectors with known resolution into the floating strip detector
- measure residual σ_{ex} (floating strip Micromegas not in fit) under different operational conditions
- \rightarrow spatial resolution of floating strip Micromegas $\sigma_{sr} = \sqrt{\sigma_{ex}^2 - \sigma_{track}^2}$

optimum: $\sigma_{sr} = (46\pm3)\mu m$

MICRO-TPC MODE OR **SINGLE PLANE ANGULAR RESOLUTION**

non-perpendicular tracks: TPC-like track fit, floating strip Micromegas, 30°

reconstructed track inclination for 10°, 20°, 30° & 40° incidence

SUMMARY

novel floating strip Micromegas with an active area of 50 x 48cm² and 6.4 x 6.4cm² have been developed

- anode strips are coupled individually to HV
- signals are extracted by capacitively coupled readout strips

measurements with **pion beams** at H6/CERN:

- **setup**: tracking telescope with six 10 x 9cm² non-resistive and two 9 x 9cm² resistive Micromegas + floating strip Micromegas
- combined readout of Gassiplex system (reference detectors) and Scalable Readout System (resistive and floating strip Micromegas) with reliable offline synchronization
- pulse height spectra, gas gain and mesh electron transparency behave as expected
- homogeneous gas amplification, variation ~ 15%
- **efficiency** for 120GeV pions ~97%
- **spatial resolution** at perpendicular incidence $\sigma_{sR} = (46\pm3)\mu m$
- single plane **angular resolution** O(5°)

discharge measurements with **5MeV alpha particles** in a 6.4 x 6.4cm² floating strip detector • **setup**: measure global voltage drop on whole detector and signal on single strips • standard Micromegas configuration: voltage drop 300V, recharge time 60ms • floating strip configuration: voltage drop 0.5V, recharge time 2ms

 \rightarrow impact of discharges on performance is massively reduced

Fakultät für Physik, Ludwig-Maximilians-Universität Munich **Particle Physics, LS Schaile**

www.etp.physik.uni-muenchen.de/detektor/detektor_en.html

Origin and Structure of the Universe The Cluster of Excellence for Fundamental Physics