International Conference on High Energy Physics 2018

Performance and Calibration of 2 m<sup>2</sup>-size 4-layered Micromegas Detectors for the ATLAS Upgrade

#### Maximilian Herrmann, on behalf of the ATLAS muon collaboration

Ludwig-Maximilians-Universität München - Lehrstuhl Schaile

#### 05.07.2018, Seoul





#### LHC Upgrade Status



#### LHC Upgrade Status



#### Upgrade of the Muon Small Wheels

replacement of the current end caps of the muon spectrometer by small-strip Thin Gap Chambers (sTGC) and Micromegas quadruplets



#### Upgrade of the Muon Small Wheels

replacement of the current end caps of the muon spectrometer by small-strip Thin Gap Chambers (sTGC) and Micromegas quadruplets



Micromegas Quadruplets for track reconstruction in the NSW





M. Herrmann (LMU Munich

#### Design of Readout Anodes



- eta planes for precision reconstruction in pseudorapidity direction perpendicular to anode strips
- stereo planes for additional coarse position information along the anode strips



technical limitations micropattern readout anode: width  $\leq 50\,{\rm cm}$ 

- $\Rightarrow$  3(/5) printed circuit boards (PCB) per active layer
- ⇒ reconstruction and calibration of alignment errors (during production) required

# SM2 Prototype - M0

Measurement Campaign

- Cosmic Ray Facility in Munich
- testbeam at H8 beamline at the SPS

## Cosmic Ray Facility LMU Munich





 $2 \times Monitored Drift Tube chambers (MDTs)$ scintillator hodoscope  $2.2 \text{ m} \times 4 \text{ m}$  $\pm 30^{\circ}$ 12288 channels  $\rightarrow$  96 APVs (frontend electronics)  $\rightarrow$  6 FECs (scalable readout system) 130 Hz (full muon rate) 17.10, - 06.12, 2017

measurement period

## M0 : Full Area Pulse Height



• 
$$U_{amp} = 600 V$$
  
 $U_{drift} = -300 V$   
Ar:CO<sub>2</sub> 93:7 vol%

- for each bin (54.4 mm×100 mm): cluster charge distribution fitted with Landau  $\Rightarrow$  Most Probable Value (MPV)
- differences between

readout boards clearly visible

- $\Rightarrow$  higher amplification for central board
- $\Rightarrow$  homogeneity spoiled by prototype PCB quality
- smaller features due to trigger acceptance
- exponential rise as function of the amplification voltage (Townsend)
- differences between readout layers due to variation in PCB quality

### M0 : Full Area Efficiency



- $U_{amp} = 600 V$  $U_{drift} = -300 V$ Ar:CO<sub>2</sub> 93:7 vol%
- 5 mm efficiency:

number of cluster found within  $\pm~5\,\text{mm}$  to reference track

divided by

number all tracks going through partition  $\Rightarrow$  calculated for each bin separately

- higher amplification of central board leads to higher efficiency
- efficiency at boarders spoiled due to tapered edges (rectangular partitions)
- efficiency turn on curve reaches more than 90% at 590 V for all layer
- differences between layer due to problematic prototype PCB material

## Alignment using Reference Tracks



#### Reconstruction of the Gravitational Sag of M0



 $\Rightarrow$  irrelevant for ATLAS, as detectors will be used vertically in NSW

#### M0 : Board Alignment and Reconstructed Pitch Deviation





#### H8 Testbeam for SM2 M0 in August 2017





/ 17

| tracking telescope    | $3 \times 2D$ GEM                           |                          |    |
|-----------------------|---------------------------------------------|--------------------------|----|
|                       | $2 \times 2D$ TMM                           |                          |    |
| track accuracy        | 65 µm                                       | (extrapolated at module) |    |
| channels              | $4 \times 1024$                             | module                   |    |
|                       | 2976                                        | telescope                |    |
| readout               | 32 APVs $\rightarrow$ 2 FECs                | module                   |    |
|                       | 24 APVs $\rightarrow$ 2 FECs                | telescope                |    |
| trigger rate          | $\sim 1 m kHz$ (muons)                      | for 9 cm $	imes$ 9 cm    |    |
| readout rate          | 220 Hz                                      | (limited by bandwidth)   |    |
| Herrmann (LMU Munich) | 2 m <sup>2</sup> & 4-layered Micromegas for | ATLAS 05.07.2018         | 13 |

#### M0 : Behavior of Pulse Height and Efficiency

• pulse height:

exponential rise as function of the amplification voltage (Townsend)

- differences between layers due to variation in prototype PCB quality
- efficiency plateau starting at 590 V
- lower efficiency due to unconnected strips in measurement region (e.g. eta out plane)



#### M0 : Results for Charge Weighted Position Reconstruction



 residual distribution (difference of measured position and track prediction) fitted with double Gaussian

 $\Rightarrow \text{ weighted sigma:} \\ \sigma_{\rm w} = \frac{I_{\rm narrow} \cdot \sigma_{\rm narrow} + I_{\rm broad} \cdot \sigma_{\rm broad}}{I_{\rm narrow} + I_{\rm broad}}$ 

 $\Rightarrow$  consider track uncertainty:  $\sigma_{\rm res} = \sqrt{\sigma_{\rm w}^2 - \sigma_{\rm Track}^2}$ 

- resolution for perpendicular incident for both eta layers similar
   ⇒ 80 μm
- resolution independent of amplification and drift voltage

#### M0 : Drift Time Measurement for Track Reconstruction



- drift time measurement enables reconstruction of inclined tracks: time-projection-chamber like
- inhomogeneous ionization leads to a timing dependence of the residual
- improvement of the position reconstruction using the charge weighted timing
- degrading resolution for inclined incident using charge weighted reconstruction only
  - ⇒ similar behavior as small size chambers
- charge weighted timing correction improves resolution considerably
  - $\Rightarrow$  almost constant for angles  $\leq$  30°
- resolution limited by signal to noise ratio of APV readout

#### M0 : Drift Time Measurement for Track Reconstruction



- drift time measurement enables reconstruction of inclined tracks: time-projection-chamber like
- inhomogeneous ionization leads to a timing dependence of the residual
- improvement of the position reconstruction using the charge weighted timing
- degrading resolution for inclined incident using charge weighted reconstruction only
  - ⇒ similar behavior as small size chambers
- charge weighted timing correction improves resolution considerably
  - $\Rightarrow$  almost constant for angles  $\leq$  30°
- resolution limited by signal to noise ratio of APV readout

05.07.2018 16 / 17

#### M0 : Drift Time Measurement for Track Reconstruction



- drift time measurement enables reconstruction of inclined tracks: time-projection-chamber like
- inhomogeneous ionization leads to a timing dependence of the residual
- improvement of the position reconstruction using the charge weighted timing
- degrading resolution for inclined incident using charge weighted reconstruction only
  - $\Rightarrow$  similar behavior as small size chambers
- charge weighted timing correction improves resolution considerably
  - $\Rightarrow$  almost constant for angles  $\leq$  30°
- resolution limited by signal to noise ratio of APV readout

#### Summary

- upgrade of the ATLAS muon spectrometer inner end cap
  - sTGC and Micromegas quadruplets (16 active layers in total)
  - threepart (/fivepart) readout structure
    - $\Rightarrow$  reconstruction and calibration is required after construction
- Investigation of the SM2 Prototype (M0) at the Cosmic Ray Facility in Munich
  - full active area responsive, despite problematic prototype PCB quality
  - calibration of the full active area of SM2 demonstrated
- Measurement at H8 Beamline of the SPS with the SM2 M0
  - reasonable pulse height and efficiency behavior
  - charge weighted position reconstruction for perpendicular tracks
    - $\Rightarrow$  80  $\mu m$  resolution
    - $\Rightarrow$  same for both eta layers
    - $\Rightarrow$  independent of drift and amplification voltage
  - $\bullet\,$  drift time measurement for tracks with  $\leq$  30° inclination
    - $\Rightarrow \mathsf{similar} \ \mathsf{resolution}$
    - $\Rightarrow$  limitation by signal to noise ratio of APV electronics (final electronics currently under test)

## Backup

#### Time Evolution of the Signal on a Single Strip

beginning of the signal : fit by an inverse Fermi function



$$\mathrm{f}_{\mathrm{Fermi}} = \frac{p_0}{1 + \exp[(p_1 - x)/p_2]} + p_3$$

- $p_0$  : maximal pulse height  $\Rightarrow$  charge of signal
- *p*<sub>1</sub> : time of 50%
   maximal pulse height
- $p_2$  :  $\propto$  rise time
- p<sub>3</sub> : pedestal

 $\Rightarrow$  3 values of  $f_{Fermi}$  at 10% , 50% and 90% define start time of signal by extrapolation

#### Position and Track Reconstruction



centroid method

 $\Rightarrow$  charge average over strips



drift time measurement



TPC-like method

angle reconstruction by drift time measurement

$$\alpha = \arctan\left(\frac{\text{pitch}}{\text{slope}_{\text{fit}} \cdot v_{\text{drift}}}\right)$$

05.07.2018 3 / 4

#### Position Reconstruction Using Charge Weighted Clustertime



- charge weighted timing:  $t_{q} = \frac{\sum t_{strip} q_{strip}}{\sum q_{strip}}$   $\Rightarrow \text{ vertical position in drift gap}$
- for inclined incident: centroid residual
   VS charge weighted timing
  - $\Rightarrow$  linear dependence

 slope given by drift time and incident angle
 ⇒ drift time is given by gas mixture, cathode voltage and drift gap

⇒ for NSW Micromegas incident angle is almost fixed
(direction to interaction point)

(direction to interaction point)

• new position is given by:  $x = x_{cen} + \triangle t \cdot v_{drift} \cdot \tan \theta$ 

#### with:

A

- x<sub>cen</sub> centroid position
- $\triangle t = t_q t_{mean}$
- $v_{\rm drift}$  drift velocity
  - incident angle