Ergebnisse vom LHC - BSM-Suchen: Dunkle Materie und Supersymmetrie

> PD Dr. Jeanette Lorenz (Fraunhofer IKS & LMU München)

Maria-Laach Herbstschule 2021, 03.08.2021

Das SM ist sehr erfolgreich – warum also nach Erweiterungen des SM suchen?

Lösungen?

Viele Lösungen vorgeschlagen → Supersymmetrie, Compositeness, Extradimensionen, ...

Diskussion diese Vorlesung:

- Suchen nach Dunkler Materie
- Supersymmetrie

Folgende Vorlesung:

- (Suche nach Resonanzen),
- Suche nach Leptoquarks,
- Suche nach langlebigen Teilchen,
- Erweiterungen des Higgs-Sektors.

Allgemein geht die Tendenz zu Signatur-basierten Suchen, weniger modell-spezifische Suchen. Wichtig: Die meisten Suchen sensitiv auf mehr als nur ein Szenario!

Allgemeine Suchen nach Dunkler Materie

ē Clowe et al. Astrophys. J. 648, L109 (2006)

Dunkle Materie

Die Existenz Dunkler Materie ist in vielen kosmologischen und astrophysikalischen Experimenten bestätigt, z.B.:

- Rotationskurven von Galaxien,
- Mittels Gravitationslinsen,
- Messungen der Anisotropien im kosmischen Mikrowellenhintergrund.

Aber sehr wenig über die Eigenschaften von Dunkler Materie bekannt:

- Wechselwirkt gravitativ.
- Reliktdichte (relic density).
- Möglicherweise schwach wechselwirkend.
- Nicht stark oder elektromagnetisch wechselwirkend.

Kandidaten für Dunkle Materie

[https://www.nature.com/articles/nphys4049/figures/1 from Nature Physics volume 13, pages 224–231 (2017)]

Unterschiedliche Kandidaten für Dunkle Materie vorgeschlagen.

Beispielsweise auf Teilchenlevel:

- Weakly-interacting massive particles (WIMPS) wie das leichteste supersymmetrische Teilchen,
- Axions und Axion-artige Teilchen (ALPs)

Suchen am LHC konzentrieren sich vorwiegend auf WIMP-artige Teilchen, wie auch auf der schwach wechselwirkende Teilchen (feeblyinteracting particles), manchmal auch ALPs. Gelegentlich sehr allgemeine Suchen.

Dunkle-Materie-Modelle am LHC

Dunkle-Materie-Modelle mit Mediatoren

Suchstrategien für BSM-Mediatormodelle

Ausschließliche Produktion von DM-Teilchen unsichtbar, daher werden weitere SM-Teilchen benötigt um Prozess zu taggen.

Zwei Möglichkeiten:

- Abstrahlung im Anfangszustand.
- Abstrahlung eines SM-Teilchens vom Mediator.

Separierung Signal vom Untergrund

Nutze kinematische Variablen um Untergrund vom Signal zu separieren.

Z.B.
$$m_{eff} = \sum p_T^{jets} + \sum p_T^{leptons} + E_T^{miss}$$

→ Besonders häufig in Suchen nach SUSY-Teilchen verwendet, da korreliert mit der Masse der ursprünglichen paar-produzierten Teilchen.

Analysestrategie:

→ Einige Analysen verwenden eine einfache
 Kombination aus kinematischen Variablen
 → 'cut-and-count',

aber die meisten Analysen verwenden mittlerweile vorgeschrittene Techniken: kinematische Fits (Multi-bin Fit) oder Machine Learning.

Untergrundabschätzung

- **Reduzierbare Untergründe:** Untergründe mit einem anderen Endzustand im Vergleich zum Signal.
- Nichtreduzierbare Untergründe: Untergründe mit dem gleichen Endzustand wie das Signal.

W

Suche nach Mono-Jets

Simple, aber sehr sensitive Analyse zu einer Vielzahl von Modellen:

- Dunkle Materie
- SUSY
- Extra Dimensionen
- Dunkle Energie Modelle
- ALPS
- Unsichtbare Zerfälle des Higgs-Bosons

Selektion: Ereignisse mit >= 1 Jet, hoher E_T^{miss} , und keine weiteren Objekte.

Analysestrategie

Fordere:

- E_{T}^{miss} Trigger
- >= 1 Jet, Führender Jet p_T > 150 GeV, bis zu drei weitere Jets.
- Veto auf Leptonen einschließlich Taus und Photonen.
- Multi-Jet Untergrund-Reduktion durch Δφ(jet, p_T^{miss}) > 0.4

Simultaner Fit in verschiedenen E_{T}^{miss} Bins.

Untergründe: Z+Jets, W+Jets, tt̄, Single-top, abgeschätzt durch Kontrollregionen.

Ergebnisse in Dunkle-Materie-Modellen

[Phys. Rev. D 103 (2021) 112006]

Ergebnisse in Dunkle-Materie-Modellen

[Phys. Rev. D 103 (2021) 112006]

Ergebnisse in Dunkle-Materie-Modellen

[Phys. Rev. D 103 (2021) 112006]

Wie vergleicht sich das Ergebnis zu andern DM-Experimenten?

[Phys. Rev. D 103 (2021) 112006]

Um einen Vergleich zu andern Experimenten durchführen zu können, müssen die Ausschlussgrenzen auf 90% CL umgerechnet werden.

03.08.2021

Suche nach mono-Z Ereignissen

Alternativ Suche nach Abstrahlung eines Vektorbosons – sowohl in einfachen Mediatormodellen vom Anfangszustand, und in erweiterten 2HDM-Modellen vom Mediator möglich.

→ Besonders einfach zu selektieren: *Abstrahlung eines Z-Bosons*, mit Zerfällen in ein Lepton-Paar mit gegensätzlicher Ladung.

Selektion:

- Leptonpaar konsistent mit Z-Boson,
- <= 1 Jet,
- Veto von B-Tagged Jets um den tt-Untergrund zu unterdrücken.
- Hohe E_T^{miss}
- Für das 2HDM-Modell auch hohe $m_{_{\rm T}}$, da Peak

nahe der Higgs-Masse

Ergebnisse

- Keine signifikante Abweichung vom Untergrunderwartungen gefunden.
- Ausschlussgrenzen schwächer als für Mono-Jet, aber komplementäre Information.

Mono-h

Suche nach DM produziert in Assoziation mit einem Higgs-Boson, welches nach bb zerfällt.

 \rightarrow Testet den Interaktionsvertex zwischen dem Higgs-Sektor und dem DM-Sektor, Higgs-Strahlung vom Anfangszustand Yukawaunterdrückt.

• Signalregion für aufgelöste (resolved) Jets (2 Jets mit kleinem R) und fusionierte Jets (ein Jet mit großen R)

- Signalregion ohne Leptonen, Hauptuntergründe: W+Jets, tt. 7+Jets.
- Gebinned in E₁^{miss} um die Sensitivtät zu erhöhen und in der Anzahl der B-Tagged Jets, dann simultaner Fit in der Masse des Higgs-Bosons-Kandidaten.

Innovationen

Die objekt.-basierte E_{T}^{miss} Signifikanz gibt eine Information wie wahrscheinlich die gemessene E_{T}^{miss} aus Fluktuationen stammt, d.h. nicht real ist.

→ Dadurch Unterdrückung des Di-Jet-Untergrundes.

Verbesserte Identifikation der B-Jets von geboosteten Higgs-Boson-Zerfällen durch Verwendung von Track-Jets mit variabler Kegelgröße.

Beispiel kinematische Verteilungen

[ATLAS-CONF-2021-006]

Der klare Signalpeak hilft nicht-resonante Untergründe zu unterdrücken. → Nicht-resonante Untergründe können durch die Seitenbänder abgeschätzt werden.

Ausschlussgrenzen

[ATLAS-CONF-2021-006]

Ausschlussgrenzen sowohl auf die Mediatormasse (Z') wie auch die vom A-Boson gesetzt. Andere Parameter müssen wieder fixiert werden, einschließlich DM-Masse.

Eine der wenigen DM-Analysen, die auch auf den erweiterten Higgs-Sektor sensitiv ist.

Suche nach supersymmetrischen Teilchen

Hierarchieproblem

Die Masse des Higgs-Bosons erfährt Korrekturen durch höhere Terme - hier z.B. die 1-Loop-Korrekturen:

$$\delta m^2 = \frac{3m_H^2}{16\pi^2 \upsilon^2} [2m_t^2 + 2m_W^2 + m_H^2 - m_Z^2] \ln \frac{\Lambda^2}{m_H^2} + \dots$$

Fall SM gültig bis zur Planckskala (10¹⁹ GeV), *Fine-tuning* in 34 Größenordnungen nötig. → unnatürlich

Verschiedene BSM-Erweiterungen schlagen Lösungen vor:

- Compositness-Modelle (wo Higgs zusammen gesetztes Teilchen),
- Supersymmetrie (SUSY).

Eine Lösung: Supersymmetrie (SUSY)

- Symmetrie zwischen Fermionen und Bosonen.
- Supersymmetrische Partnerteilchen zu jedem SM-Teilchen.
- → Näherungsweise Verdopplung der Teilchenanzahl im Vergleich zum SM im Minimal Supersymmetric Standard Model (MSSM).

Um Massen für Up- und Down-Teilchen zu generieren ist hierbei ein erweiterter Higgs-Sektor notwendig.

Das leichteste supersymmetrische Teilchen (LSP) ist stabil in R-Paritäts-erhaltenden Theorien → daher guter DM-Kandidat.

Exakte Supersymmetrie stabilisiert die Higgs-Boson-Masse, da zu jedem Schleifenterm eine entgegengesetzte Korrektur existiert. Dies würde aber Massen der SUSY-Teilchen gleich ihrer SM-Partner voraussetzen \rightarrow SUSY keine exakte Symmetrie.

Im MSSM koppeln **Stop Quarks auf 1-Loop-Level** an das Higgs-Boson, **Gluinos auf 2-Loop-Level** und **Higgsinos** (Massenparameter μ) auf Tree-Level.

→ Viele Suchen konzentrieren sich daher auf sog. *natural* SUSY Modellen. Diese haben relativ leichte Stops, Gluinos und Higgsinos (auch linkshändig-gelabelte Sbottoms). Andere SUSY-Teilchen wesentlich schwerer.

Wirkungsquerschnitte

[https://twiki.cern.ch/twiki/bin/view/LHCPhysics/SUSYCrossSections]

Wirkungsquerschnitte

[https://twiki.cern.ch/twiki/bin/view/LHCPhysics/SUSYCrossSections]

Wirkungsquerschnitte

[https://twiki.cern.ch/twiki/bin/view/LHCPhysics/SUSYCrossSections]

Supersymmetrische Modelle

03.08.2021

Vereinfachtes

Modell

 W^{\pm}

 $\tilde{\chi}_1^0$

 W^{\mp}

Viele unterschiedliche vereinfachten Modelle

=> Viele unterschiedlichen experimentellen Signaturen!* π/ν_{τ}

* Durch die Kombination unterschiedlicher Analysen und Signaturen können auch Aussagen über vollständigere SUSY-Modelle gemacht werden.

z.B. starke Produktion von Gluinos:

Suche nach Squarks und Gluinos in Endzuständen mit Jets

[JHEP 02 (2021) 143]

Ziel: Kaskadenzerfalls von Squarks und Gluinos in Jets + LSPs $\rightarrow E_{\tau}^{miss}$

Squark Paarproduktion, direkt $\rightarrow \ge 2$ jets

Gluino Paarproduktion, direkt $\rightarrow \ge 4$ jets

Squark Paarproduktion, via Chargino → ≥ 2 - 6 jets

Gluino Paarproduktion, via Chargino $\rightarrow \ge 4 - 8$ jets

Signalregionen

[JHEP 02 (2021) 143]

Drei komplementäre Kategorien von Signalregionen:

• Multi-Bin:

- → Unterschiedline SRs, alle verlangen ≥ 2 Jets um eine große Anzahl von möglichen Kaskadenzerfällen abzudecken.
- → In der Jetmultiplizität, m_{eff} und $E_{T}^{miss}/\sqrt{H_{T}}$ gebinnt.

$$(H_T = \sum p_T^{jets})$$

• Boosted Decision Trees:

- → Bessere Ausnutzung von korrelierten Variablen für einstufige Gluinozerfälle.
- \rightarrow 8 Regionen, individuell trainiert.
- → Vorselektion auf der Jetmultiplizität, E_{τ}^{miss}/m_{eff} and m_{eff} vor dem Training.
- Model-unabhängig \rightarrow nur ein Bin.

Ergebnisse

Keine signifikante Abweichung der Daten von den Standardmodell-Erwarungen.

Hier beispielsweise die Multi-Bin Signalregion für direkte Gluinozerfälle.

Exclusion limits

Suche nach Stops in Endzuständen mit einem Lepton

[arXiv:2012.03799]

Die Suche zielt auf Stop-Zerfälle in Endzustände mit einem isolierten Elektron oder Myon ab.

Highlights!

- 2-Body mit speziellen Signalregionen für Δm = m(top), unter Verwendung spezieller Variablen, z.B. hadronisches Top Tagging.
- 3-Body mit einer Sequenz von neuronalen Netzwerken.
- 4-Body mit Signalregionen, die niederenergetische Objekte erfordern einschließlich Soft B-Tagging.

J. Lorenz, Ergebnisse vom LHC

2-Body

Vier Signalregionen:

• Hohes ∆m(stop,LSP) >> m(top):

 \rightarrow Zwei Signalregionen basierend auf einen Multi-Bin-Fit mit $E_{\tau}^{\rm miss}$ und

 $m_T = \sqrt{2 p_T^l E_T^{miss} (1 - \cos([\Delta \varphi(\vec{p}_T^l, \vec{p}_T^{miss})]))}$ \rightarrow Weitere Kriterien z.B. auf Topness -Unterdrückung von dileptonischen t \overline{t} mittels Test wie kompatibel ein Ereignis mit diesen Prozess ist unter Verwendung einer Likelihood-Methode.

- Δm(stop,LSP) ~ m(top):
 - \rightarrow Signal ähnlich zu to t \overline{t} Produktion.

→ Zwei Signalregionen basierend auf einer Selektion eines ISR-Jets, welcher das System boostet.

[arXiv:2012.03799]

[arXiv:2012.03799]

Ereignisselektion basiert auf einer Sequenz von hintereinander geschalteten Neuronalen Netzen:

- **Recurrent Neuronales Netz** um die Inputs von Jets mit unterschiedlicher Variablenlänge zu handhaben.
- Output des Recurrent Neuronalen Netzwerkes + High- $(E_{\tau}^{miss}, m_{\tau})$ und Low-Level Variablen (z.B. Impuls und Winkel des Leptons) als Input in ein Shallow Neuronales Netz.

Multi-Bin Fit im Output der Neuronalen Netze.

Untergrundabschätzung mittel Kontrollregionen bei niedrigeren Werten der Output Score des Neuronalen Netzes.

Sensitivität nicht nur zur 3-Body Region, sondern auch zu den benachbarten Bereichen in den 2-Body und 4-Body-Regionen.

4-Body

[arXiv:2012.03799]

>40 GeV, <m(W)

≤ 40 GeV

- Standard B-Tagging.
- Forderung nach einem niederenergetischen Lepton + hochenergetischen p_{τ} ISR jet um die Teilchen im Endzustand zu boosten.
- Multi-Bin Fit im $p_T(Lepton)/E_T^{miss} + \Delta \varphi(p_T^{b-Jet}, p_T^{miss})$.

- Für sehr niederenergetische Jets sind die Standard b-Tagging-Algorithmen nicht sensitiv.
- **Soft B-Tagging Algorithmus** unter Verwendung der Sekundärvertices.
- Multi-Bin Fit im p_r(Lepton)/E_r^{miss}

Ergebnisse

Keine

[arXiv:2012.03799]

Status der Stop-Suchen

Suchen nach Higgsinos

Naturalness Argumente verlangen leichte Higgsinos.

[B. Hooberman, SUSY17]

Suche nach sehr nahe beianderliegenden Electroweakinos und Sleptonen

[Phys. Rev. D 101 (2020) 052005]

Suche nach Higgsinos und Winos/Binos mit kleiner Massendifferenz und Sleptonen.

Rekonstruktion von sehr niederenergetischen Leptonen ist hierfür essentiell.

- → Elektronen mit p_{τ} > 4.5 GeV, Myonen mit p_{τ} > 3 GeV, Invariante Leptonmasse m_{μ} > 1 GeV
- → Ermöglicht durch einen erheblichen Fortschritt in der Lepton Rekonstruktion und Identifikation.

Analysestrategie

Vier Suchen:

 Direkte Produktion von Elektroweakinos unter Ausnutzen der Anwesenheit von einem ISR-Jet

 \rightarrow 2 Leptonen, oder 1-Lepton + isolierte Spur,

- Produktion der Elektroweakinos mittels Vektor-Boson-Fusion mit Anwesenheit zweier zusätzlicher Jets.
- Direkte Produktion von Sleptonen mittels m_{T2} =

 $\min_{\mathbf{q}_{\mathrm{T}}} \left[\max \left(m_{\mathrm{T}}(\mathbf{p}_{\mathrm{T}}^{\ell 1}, \mathbf{q}_{\mathrm{T}}), m_{\mathrm{T}}(\mathbf{p}_{\mathrm{T}}^{\ell 2}, \mathbf{p}_{\mathrm{T}}^{\mathrm{miss}} - \mathbf{q}_{\mathrm{T}}) \right) \right]$

→ Wesentlich ist die Abschätzung des Fake Untergrundes!

[Phys. Rev. D 101 (2020) 052005]

GeV

Events / 4

Data / SM

Ergebnisse

Keine signifikante Abweichung von der SM-Erwartung gesehen.

Ausschlussgrenzen z.B. für Higgsinos bis zu 193 GeV für eine Massendifferenz von 9.3 GeV.

Starke Ausschlussgrenzen durch Binnen der Signalregionen in m_{II} und simultaner Fit der Regionen.

[Phys. Rev. D 101 (2020) 052005]

- Das Standardmodell weist viele Defitzite auf, z.B. bietet es keinen Kandidaten für die Dunkle Materie.
- Viele Erweiterungen vorgeschlagen z.B. Supersymmetrie.
- Breite Suche nach BSM-Szenarien am LHC zunehmend eher Signatur-basiert.
- Bislang noch keine signifikante Diskrepanz in diesen Suche zum Standardmodell festgestellt.

Im Folgenden:

- Neue Richtungen in der Suche nach BSM-Physik.
- Ausblick auf Experimente und Techniken für den HL-LHC.

Suche nach Charginos und Neutralinos in Multi-Lepton Endzuständen

Suche in unterschiedlichen Szenarien:

- Mittels Sleptonen, falls Sleptonen leichter sind,
- Mittels Emission von Higgs, W, Z Bosonen, falls Sleptonen schwerer sind.

Unterschiedliche Suchstrategien, z.B.:

- In Signaturen mit zwei gleich geladenen Leptonen, falls das dritte Lepton z.b. zu niederenergetisch
- Falls **drei Leptonen** anwesend, von denen zwei ein Paar mit entgegengesetzter Ladung formen: Verwendung von mehreren parametrischen Neuronalen Netzen um die hohen SM-Untergründe zu unterdrücken.

Ergebnisse

Keine signifikante Abweichung von SM-Erwartungen.

Signalregionen mit zwei gleich geladenen Leptonen zusammen mit den Signalregionen mit drei Leptonen gefittet.

Die Strategie mit den neuronalen Netzwerken ist deutlich besser als eine alternative Strategie basierend auf ,cut-and-count'.

ATLAS Preliminary $\sqrt{s} = 13$ TeV

ATLAS SUSY Searches* - 95% CL Lower Limits

June 2021

simplified models, c.f. refs. for the assumptions made

	Model	S	ignatur	e j	<i>Ldt</i> [fb ⁻	¹]	Mass limit					Reference
6	$\tilde{q}\tilde{q},\tilde{q}{ ightarrow}q\tilde{\chi}^0_1$	0 e,μ mono-jet	2-6 jets 1-3 jets	E_T^{miss} E_T^{miss}	139 36.1	 <i>q</i> [1×, 8× Degen.] <i>q</i> [8× Degen.] 		1.0 0.9		1.85	m($\tilde{\chi}_{1}^{0}$)<400 GeV m(\tilde{a})-m($\tilde{\chi}_{1}^{0}$)=5 GeV	2010.14293 2102.10874
archea	$\tilde{g}\tilde{g},\tilde{g}{\rightarrow}q\bar{q}\tilde{\chi}^0_1$	0 <i>e</i> , <i>µ</i>	2-6 jets	E_T^{miss}	139	êg êg		Forbidden	1.1	2.3 5-1.95	$m(\tilde{\chi}_{1}^{0})=0 \text{ GeV}$ $m(\tilde{\chi}_{1}^{0})=1000 \text{ GeV}$	2010.14293 2010.14293
Sei	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}W\tilde{\chi}_1^0$	1 e,µ	2-6 jets		139	ğ				2.2	$m(\tilde{\chi}_1^0)$ <600 GeV	2101.01629
Ve Ve	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}(\ell\ell)\tilde{\chi}_1^0$	ee, µµ	2 jets	E_T^{miss}	36.1	ĝ			1.2		$m(\tilde{g})-m(\tilde{\chi}_{1}^{0})=50 \text{ GeV}$	1805.11381
clusi	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ\tilde{\chi}_1^0$	0 <i>e</i> ,μ SS <i>e</i> ,μ	7-11 jets 6 jets	$E_T^{\rm miss}$	139 139	êg êg			.15	1.97	$m(\tilde{\chi}_{1}^{0}) < 600 \text{ GeV}$ $m(\tilde{g})-m(\tilde{\chi}_{1}^{0})=200 \text{ GeV}$	2008.06032 1909.08457
IJ	$\tilde{g}\tilde{g}, \; \tilde{g} \rightarrow t t \tilde{\chi}_1^0$	0-1 <i>e</i> ,μ SS <i>e</i> ,μ	3 <i>b</i> 6 jets	E_T^{miss}	79.8 139	õgo õgo			1.25	2.25	$m(\tilde{\chi}_{1}^{0}) < 200 \text{ GeV}$ $m(\tilde{g}) - m(\tilde{\chi}_{1}^{0}) = 300 \text{ GeV}$	ATLAS-CONF-2018-041 1909.08457
	$\tilde{b}_1 \tilde{b}_1$	0 <i>e</i> , <i>µ</i>	2 b	$E_T^{\rm miss}$	139	${egin{array}{c} {ar b}_1 \ {ar b}_1 \ {ar b}_1 \end{array}$		0.68	1.255		$m(\tilde{\chi}_1^0) < 400 \text{ GeV}$ 10 GeV< $\Delta m(\tilde{b}_1, \tilde{\chi}_1^0) < 20 \text{ GeV}$	2101.12527 2101.12527
arks tion	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_2^0 \rightarrow b h \tilde{\chi}_1^0$	0 e,μ 2 τ	6 <i>b</i> 2 <i>b</i>	$E_T^{ m miss}$ $E_T^{ m miss}$	139 139	<i>b</i> ₁ Forbidden <i>b</i> ₁		0.13-0.85	.23-1.35	$\Delta m(\tilde{\chi}^0_2, \tilde{\chi}^0_1)$ $\Delta m(\tilde{\chi}^0_2, \tilde{\chi}^0_2)$)=130 GeV, m($\tilde{\chi}_1^0$)=100 GeV $\tilde{\chi}_1^0$)=130 GeV, m($\tilde{\chi}_1^0$)=0 GeV	1908.03122 ATLAS-CONF-2020-031
duc	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$	0-1 <i>e</i> , <i>µ</i>	≥ 1 jet	E_T^{miss}	139	\tilde{t}_1			1.25		$m(\tilde{\chi}_1^0)=1 \text{ GeV}$	2004.14060,2012.03799
n. s	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow W b \tilde{\chi}_1^0$	1 e,µ	3 jets/1 b	E_T^{miss}	139	\tilde{t}_1	Forbidden	0.65			$m(\tilde{\chi}_1^0)=500 \text{ GeV}$	2012.03799
ger ict p	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow \tilde{\tau}_1 b \nu, \tilde{\tau}_1 \rightarrow \tau \tilde{G}$	1-2 τ	2 jets/1 b	$E_T^{\rm miss}$	139	\tilde{t}_1		Forbidden	1.4		$m(\tilde{\tau}_1)=800 \text{ GeV}$	ATLAS-CONF-2021-008
3rd dire	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{\chi}_1^0 / \tilde{c} \tilde{c}, \tilde{c} \rightarrow c \tilde{\chi}_1^0$	0 e,μ 0 e,μ	2 c mono-jet	E_T^{miss} E_T^{miss}	36.1 139	$\tilde{\tilde{t}}_1$	0.55	0.85			$m(\tilde{\chi}_{j}^{0})=0 \text{ GeV}$ $m(\tilde{t}_{1},\tilde{c})-m(\tilde{\chi}_{1}^{0})=5 \text{ GeV}$	1805.01649 2102.10874
	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow t \tilde{\chi}_2^0, \tilde{\chi}_2^0 \rightarrow Z/h \tilde{\chi}_1^0$	1-2 <i>e</i> , <i>µ</i>	1-4 b	E_T^{miss}	139	\tilde{t}_1		0.067-	1.18		$m(\tilde{\chi}_2^0)=500 \text{ GeV}$	2006.05880
	$\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z$	3 e, µ	1 <i>b</i>	E_T^{miss}	139	ĩ ₂	Forbidden	0.86		$m(\tilde{\chi}_{1}^{0})=360$	GeV, $m(\tilde{t}_1)-m(\tilde{\chi}_1^0)=40$ GeV	2006.05880
	${ ilde \chi}_1^\pm { ilde \chi}_2^0$ via WZ	Multiple ℓ /jet	s ≥1 jet	E_T^{miss} E_T^{miss}	139 139	$ \begin{array}{ccc} \tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0} & & \\ \tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0} & & 0.205 \end{array} $		0.96		m($m(\tilde{\chi}_1^0)=0$, wino-bino $\tilde{\chi}_1^{\pm})-m(\tilde{\chi}_1^0)=5$ GeV, wino-bino	2106.01676, ATLAS-CONF-2021-022 1911.12606
	$\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{1}^{\mp}$ via WW	2 e, µ		E_T^{miss}	139	$\tilde{\chi}_1^{\pm}$	0.42				$m(\tilde{\chi}_1^0)=0$, wino-bino	1908.08215
	$\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{2}^{0}$ via Wh	Multiple ℓ/jet	s	E_T^{miss}	139	$\tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0}$ Forbidden		1.0	6		$m(\tilde{\chi}_1^0)=70$ GeV, wino-bino	2004.10894, ATLAS-CONF-2021-022
5	$\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{1}^{\mp}$ via $\tilde{\ell}_{L}/\tilde{\nu}$	2 e, µ		E_T^{miss}	139	$\tilde{\chi}_{1}^{\pm}$		1.0			$m(\tilde{\ell}, \tilde{\nu})=0.5(m(\tilde{\chi}_{1}^{\pm})+m(\tilde{\chi}_{1}^{0}))$	1908.08215
re V	$\tilde{\tau}\tilde{\tau}, \tilde{\tau} \rightarrow \tau \tilde{\chi}_1^0$	2τ		E_T^{miss}	139	$\tilde{\tau}$ [$\tilde{\tau}_L, \tilde{\tau}_{R,L}$] 0.	16-0.3 0.12-0.39				$m(\tilde{\chi}_1^0)=0$	1911.06660
d L	$\tilde{\ell}_{\mathrm{L,R}}\tilde{\ell}_{\mathrm{L,R}}, \tilde{\tilde{\ell}} {\rightarrow} \ell \tilde{\chi}_1^0$	2 e,μ ee,μμ	0 jets ≥ 1 jet	E_T^{miss} E_T^{miss}	139 139	$\tilde{\ell}$ $\tilde{\ell}$ 0.25	6	0.7			$m(\tilde{\ell})=0$ $m(\tilde{\ell})-m(\tilde{\chi}_1^0)=10 \text{ GeV}$	1908.08215 1911.12606
	$\tilde{H}\tilde{H}, \tilde{H} \rightarrow h\tilde{G}/Z\tilde{G}$	0 e, µ	$\geq 3 b$	$E_{T_{\rm size}}^{\rm miss}$	36.1	<i>Ĥ</i> 0.13-0.23		0.29-0.88			$BR(\tilde{\chi}^0_1 \rightarrow h\tilde{G})=1$	1806.04030
		4 <i>e</i> ,μ 0 <i>e</i> ,μ	0 jets ≥ 2 large je	E_T^{miss} ts E_T^{miss}	139 139	Й Ĥ	0.55	0.45-0.93			$BR(\tilde{\chi}^0_1 \to Z\tilde{G})=1$ $BR(\tilde{\chi}^0_1 \to Z\tilde{G})=1$	2103.11684 ATLAS-CONF-2021-022
D (0	$\operatorname{Direct} \tilde{\chi}_1^+ \tilde{\chi}_1^- \text{ prod., long-lived } \tilde{\chi}_1^\pm$	Disapp. trk	1 jet	$E_T^{\rm miss}$	139	$ \tilde{\chi}_{1}^{\pm} \\ \tilde{\chi}_{1}^{\pm} $ 0.21		0.66			Pure Wino Pure higgsino	ATLAS-CONF-2021-015 ATLAS-CONF-2021-015
Sie Sie	Stable g R-hadron		Multiple		36.1	ĝ				2.0		1902.01636.1808.04095
-diti	Metastable \tilde{g} B-hadron, $\tilde{g} \rightarrow aa \tilde{\chi}_{1}^{0}$		Multiple		36.1	$\tilde{g} = [\tau(\tilde{g}) = 10 \text{ ns}, 0.2 \text{ ns}]$				2.05 2.4	$m(\tilde{\chi}_{1}^{0})=100 \text{ GeV}$	1710.04901,1808.04095
pa	$\tilde{\ell}\tilde{\ell}, \tilde{\ell} \! \rightarrow \! \ell \tilde{G}$	Displ. lep		$E_T^{\rm miss}$	139	$\tilde{e}, \tilde{\mu}$	0.34	0.7			$\tau(\tilde{\ell}) = 0.1 \text{ ns}$ $\tau(\tilde{\ell}) = 0.1 \text{ ns}$	2011.07812
						•	0.04				1(0) = 0.1113	2011.07012
	$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp} / \tilde{\chi}_1^0$, $\tilde{\chi}_1^{\pm} \rightarrow Z \ell \rightarrow \ell \ell \ell$	3 e,µ			139	$\tilde{\chi}_1^{\mp}/\tilde{\chi}_1^0$ [BR($Z\tau$)=1, BR(Ze)=	=1] 0.	625 1.0	5		Pure Wino	2011.10543
	$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp} / \tilde{\chi}_2^0 \to W W / Z \ell \ell \ell \ell \nu \nu$	4 e,µ	0 jets	$E_T^{\rm miss}$	139	$\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0 [\lambda_{i33} \neq 0, \lambda_{12k} \neq 0]$		0.95	1.55		$m(\tilde{\chi}_1^0)=200 \text{ GeV}$	2103.11684
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow qqq$		4-5 large je	ts	36.1	$\tilde{g} = [m(\tilde{\chi}_1^0)=200 \text{ GeV}, 1100 \text{ GeV}]$	ieV]		1.3	1.9	Large \mathcal{X}''_{112}	1804.03568
>	$\tilde{t}\tilde{t}, \tilde{t} \rightarrow t\tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow tbs$		Multiple		36.1	$t [\mathcal{X}'_{323}=20-4, 10-2]$	0.55	1.0	5		$m(\tilde{\chi}_1^0)$ =200 GeV, bino-like	ATLAS-CONF-2018-003
H	$t\bar{t}, t \to b\chi_1^+, \chi_1^+ \to bbs$		$\geq 4b$		139	Ĩ	Forbidden	0.95			m(X1)=500 GeV	2010.01015
	$t_1 t_1, t_1 \rightarrow bs$	0	2 jets + 2 t	,	36.7	$\begin{bmatrix} t_1 & [qq, bs] \end{bmatrix}$	0.42 0.	.61	0.4.4.45		DD(2 -1-//-)- 000/	1710.07171
	$\iota_1\iota_1, \iota_1 \rightarrow q\iota$	$\frac{2e,\mu}{1\mu}$	DV		136.1	\tilde{t}_1 [1e-10< $\lambda'_{2\mu}$ <1e-8, 3e-	10< X' <3e-9]	1.0	0.4-1.45		$BR(t_1 \rightarrow de/d\mu) > 20\%$ $BR(t_1 \rightarrow d\mu) = 100\%, \cos\theta_i = 1$	2003.11956
	$\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0/\tilde{\chi}_1^0, \tilde{\chi}_{1,2}^0 \rightarrow tbs, \tilde{\chi}_1^+ \rightarrow bbs$	1-2 e, µ	≥6 jets		139	$\tilde{\chi}^0_1$	0.2-0.32				Pure higgsino	ATLAS-CONF-2021-007
*Only	a selection of the available ma	ass limits on	new state	s or	1	0-1			1			

Weites Feld an SUSY-Suchen – Abdeckung vieler unterschiedlicher Szenarien