Ergebnisse vom LHC

Fortsetzung BSM und Perspektiven

PD Dr. Jeanette Lorenz (Fraunhofer IKS & LMU München)

Maria-Laach Herbstschule 2021, 03.08.2021

Ein Blick in die Zukunft: einfach noch mehr BSM-Suchen?

Recap: Das SM hat offensichtliche Probleme:

- Dunkle Materie,
- Materie-Antimaterie-Symmetry,
- Stabilisierung der Higgs-Masse,
- Hinweise auf Anomalien: g_{μ} -2, Anomalien im Flavoursektor.

Bislang bestätigen jedoch alle Messungen und Suchen das SM sehr präzise.

Wo also schauen?

→ Der LHC ist eine sehr leistungsstarke
 Maschine – möglich nach sehr seltenen
 oder schwierigen Signaturen zu schauen.
 → Andere Experimente?

[https://www.symmetrymagazine.org/ article/the-status-of-supersymmetry]

Langlebige Teilchen

Warum nach langlebigen Teilchen suchen?

[J. Phys. G: Nucl. Part. Phys. 47 (2020) 090501]

Bislang noch keine BSM-Physik entdeckt, aber wohlmotiviert

→ Vielleicht am falschen Platz geschaut? Viele BSM-Theorien sagen langlebige Teilchen (LLP) voraus.

Z.B. wegen:

- (angenäherte) Symmetrien, die LLP stabilisieren,
- Kleine Kopplungen zwischen LLP und SM-Teilchen.
- Unterdrückter Phasenraum für Zerfall, z.B. weil Zustände annähernd Masse-entartet.

Jedoch: Standard-Rekonstruktionsmethoden nehmen meistens prompte Teilchen an.

Auch das SM ist voll von langlebigen Teilchen!

Wie nach LLP suchen?

[J. Phys. G: Nucl. Part. Phys. 47 (2020) 090501]

LLP resultieren häufig in keinen Standardsignaturen.

→ Eher SM-Untergrund-frei, aber auch spezielle Rekonstruktionstechniken oder gar Experimente erforderlich.

Z.B.

- Spuren mit ungewöhnlicher Ionization,
- Lokalisierte Energieablagerungen in Kalorimetern ohne Spuren,
- Gestoppte Teilchen mit verzögerten Zerfall,
- verschwindene/auftauchende Spuren, oder mit Ecke

Häufig unterschiedliche Suchstrategien möglich, da die echte Lebenszeit zu einem exponentiell abfallenden Zerfall führt.

Reinterpretation von prompten Suchen

Teilweise dennoch möglich prompte Suchen für langlebige Teilchen zu reinterpretieren – hier eine Suche nach Squarks und Gluinos in Multi-Jet-Signaturen.

Außerdem spezifische Suchen nach langlebigen Teilchen sensitiv zu verschiedenen Lebenszeiten.

Reinterpretation von mono-Jet

Mono-Jet Analyse auch sensitiv zu Modellen mit langlebigen Teilchen:

Dark Photon Modell: Zusätzlicher Dark Sector, der z.B. an ein Higgs-Boson koppelt. Entstehung von Dark Fermions mit Zerfällen in Dark Photons. Mischt mit SM Photon \rightarrow displaced Vertices.

Higgs-Zerfälle in langlebige Skalare mit Zerfällen in SM-Teilchen \rightarrow displaced Vertices. Bei ISR gegebenenfalls mono-Jet Signatur.

Mono-Jet Analyse kann reinterpretiert werden.

Z.B. sensitiv zu Dark Photon-Modellen bei unterschiedlichen Eigenlebenszeiten – komplementär zu speziellen Dark-Photon-Suchen.

Mehr Infos zu Reinterpretationstechniken im Backup.

Displaced Jets

In vielen Modellen zerfallen langlebige Teilchen weiter in Jets \rightarrow 'displaced Jet'

Z.B. Mediator-Teilchen Z^{*} zerfällt in langlebige Teilchen X; oder split SUSY mit langlebigen Gluino wegen entkoppelten sehr schweren Squarks.

Suche nach zwei displaced Jets:

- Spezielle Trigger für displaced Jets,
- Hohes H_τ für Dijet-Kanidaten,
- Displaced Sekundärvertex aus assoziierten Spuren.
- Gradient Boosted Decision Tree basierend auf diversen geometrischen Variablen

 $\kappa = \sum_{i=1}^{6} \operatorname{Sig}[\operatorname{IP}_{2D}(\operatorname{track}_{i})]$

Displaced Jets

Wichtige Untergründe:

• Nukleare Wechselwirkungen zwischen Teilchen und Detektormaterial,

→ Erstellen einer Veto-Map für SV basierend auf Material im Inner Tracker.

- Fehlidentifizierte displaced Vertices durch zufälliges Treffen von Spuren.
- Langlebige SM-Hadronen.

Ein Ereignis in SR beobachet, konsistent mit Untergrunderwartung. → vermutlich von Materialinteraktion mit Silicon Strip Detektor.

Diverse Ausschlussgrenzen, z.B. in einem Modell mit exotischen Higgs-Zerfällen in LLP mit Zerfällen in Bottom-Quarks: BR > 10% für Zerfallslängen von 2 bis 530mm für m(S) > 40 GeV.

Disappearing tracks

Ein langlebiges Chargino zerfällt in ein unsichtbareres Neutralinos und ein Pion → Verschwindene Spur.

Einbau der Insertable B-Leyer (IBL) im Long-Shutdown zwischen Run-1 und Run-2 erlaubt die Rekonstruktion kleinerer minimaler Spurlängen beginnend bei 12cm.

 \rightarrow Pixel-only Tracklets

[ATLAS-CONF-2021-015, ATL-PHYS-PUB-2021-019]

Run: 308084 Event: 2658892674 2016-09-10 04:14:14 CEST

Neue Experimente

Aktuelle LHC-Experimente (ATLAS,CMS, LHCb) haben keine Sensitivität zu extrem leichten, extrem langlebigen Teilchen, oder solchen ungewöhnlicher Ladung.

→ Serie von weiteren Experimenten/Detektoren vorgeschlagen, die evtl zeitnah installiert werden könnten.

Z.B. Hodoscope for Ultra-Stable neutraL pArticles (MATHUSLA)

- außerhalb von ATLAS oder CMS
- \rightarrow LLP mit Lebenszeiten ct > 100 m
- \rightarrow Relativ simples Trackersystem mit 5 Ebenen.

The forward search experiment (FASER)

- in der extremen Forwardregion von ATLAS oder CMS
- \rightarrow sensitiv zu leichten (Mev oder GeV) sehr schwach gekoppelten LLPs.
- \rightarrow Teilchen mit sehr geringen p₁.

FASER

am collision axis

IP TAS

RI12

TI12

Lepton-Flavour-Universalität und Leptoquarks

Anomalien in der B-Physik – B⁺ - Zerfälle

 B^+

Im SM sind FCNC auf Tree-Level verboten, in BSM-Erweiterungen jedoch möglich – BSM-Erweiterungen könnten Produktionsrate erhöhen oder verringern, oder Winkelvariablen verändern.

 \rightarrow z.B. in Theorien mit Leptoquarks

BSM-Erweiterungen könnten Lepton-Universalität verletzen.

→ Test auf Leptonzahlverletzung mittels Verhältnis:

$$R_{K} = \frac{\mathcal{B}(B^{+} \to K^{+} \mu^{+} \mu^{-})}{\mathcal{B}(B^{+} \to J/\psi \, (\to \mu^{+} \mu^{-}) K^{+})} \bigg/ \frac{\mathcal{B}(B^{+} \to K^{+} e^{+} e^{-})}{\mathcal{B}(B^{+} \to J/\psi \, (\to e^{+} e^{-}) K^{+})}$$

Vorteil: hadronische Unsicherheiten in theoretischen Vorhersagen kürzen sich.

[LHCb-PAPER-2021-004 & Nature Physics]

J. Lorenz, Ergebnisse vom LHC

- Aktualisierte Analyse von LHCb unter Verwendung des Run1 + Run2 Datensatzes.
- Systematische Unsicherheiten reduziert insbesonder Bremsstrahlung von Elektronen relevant, sowie das unterschiedliche Detektorsysteme für Elektronen und Myonen verwendet werden.
- In der Formulierung von R_κ kürzen sich jedoch wichtige systematische Unsicherheiten heraus – die Prozessraten von Zuständen mit K⁺ müssen nur relativ zu denen mit J/ψ verstanden werden.

R_K

$$R_K = 0.846^{+0.044}_{-0.041}$$

- \rightarrow Abweichung zur SM-Erwartung von 3.1 σ
- → evidence für Lepton-Universalitäts-Verletzung

Leptoquarks

- Leptoquarks in vielen BSM-Erweiterungen vorhergesagt, insbesondere GUT und Modellen mit Quark-Leptonen-Unterstruktur.
- Hypothetische Teilchen, die Quark-Lepton-Übergänge meditieren, d.h. tragen Leptonen- und Baryonenzahl.
- Tragen Farbladung und drittelzahlige elekt. Ladung, Spin 0 oder 1, links- und rechts-händig koppelnd.
- Zerfälle nach Quark und Lepton, innerhalb einer Familie dominant.
- Anomalien bevorzugen Leptoquarks der dritten Generation und Kopplung über Generationen.

Suchstrategien:

- Vorwiegend Suche nach Paarproduktion,
- Dijet + Leptonpaar, oder Lepton + Neutrino, hohes p_{T} .

b

(Aktuell von ATLAS und CMS berücksichtigte Endzustände)

Suche nach Leptoquarks in dritter Generation

[Phys. Lett. B 819 (2021) 136446]

Suche für skalare und Vektor-Leptoquarks, einzeln oder paarweise produziert ($LQ_s \rightarrow t\tau/bv$ oder $LQ_v \rightarrow tv/b\tau$).

Signaturen: ttv (LQ) oder tbtv (LQLQ)

Ereignisselektion via Top- oder W-Tagging mit finaler diskriminierender Variable

$$S_T = p_{\mathsf{T}}(t) + p_{\mathsf{T}}(\tau) + E_{\mathsf{T}}^{\mathsf{miss}}$$

 \rightarrow Fit in dieser Variablen.

LQ

LQ

000

q

Irreduzible Untergründe mit echten Taus, oder Tops, mittels Simulation und Normierung in Kontrollregionen bestimmt.

Untergründe mit Fake Taus via der 'Fake-Factor-Methode'.

Keine signifikante Abweichung von SM-Erwartungen beobachtet.

→ Ausschlußgrenzen: Z.B. in λ (LQ-Kopplung zu Quark und Lepton) versus Leptoquarkmasse – grau schattierte Fläche von speziellen Modellen, die B-Anomalien erklären könnten, bevorzugt.

[[]Phys. Lett. B 819 (2021) 136446]

Weitere Higgs-Bosonen, BSM-Zerfälle, und Higgs-Selbstwechselwirkung

Kombination Verzweigungsverhältnis und Wirkungsquerschnitt

[ATLAS-CONF-2020-027]

ATLAS Preliminary			
$\sqrt{s} = 13 \text{ TeV}, 24.5 - 139 \text{ fb}^{-1}$	ai <u> </u>	Oyst.	
$m_H = 125.09 \text{ GeV}, y_H < 2.5$			
p _{SM} = 87%		Total Stat.	Syst.
ggFγγ 🖕	1.03	$\pm 0.11 (\pm 0.08$,	+0.08 -0.07)
ggF ZZ	0.94	$^{+0.11}_{-0.10}$ (± 0.10 ,	± 0.04)
ggF WW 📥	1.08	$^{+0.19}_{-0.18}$ (± 0.11 ,	±0.15)
ggF ττ μ	1.02	$^{+0.60}_{-0.55}$ ($^{+0.39}_{-0.38}$,	+0.47 -0.39)
ggF comb.	1.00	$\pm 0.07 (\pm 0.05 ,$	±0.05)
VBF γγ 🛏	1.31	+0.26 (+0.19 -0.18 ,	+0.18 -0.15)
VBF ZZ	1.25	$^{+0.50}_{-0.41}$ ($^{+0.48}_{-0.40}$,	+0.12)
VBF WW	0.60	$^{+0.36}_{-0.34}$ ($^{+0.29}_{-0.27}$,	±0.21)
VBF ττ μ	1.15	$^{+0.57}_{-0.53}$ ($^{+0.42}_{-0.40}$,	+0.40 -0.35)
VBF bb	3.03	+1.67 -1.62 (+1.63 -1.60 ,	+0.38 -0.24)
VBF comb.	1.15	$^{+0.18}_{-0.17}$ (± 0.13 ,	+0.12 -0.10)
VH γγ 📴	1.32	$^{+0.33}_{-0.30}$ ($^{+0.31}_{-0.29}$,	+0.11 -0.09)
VH ZZ	1.53	$^{+1.13}_{-0.92}$ ($^{+1.10}_{-0.90}$,	+0.28 -0.21)
VH bb 🖷	1.02	$^{+0.18}_{-0.17}$ (± 0.11 ,	+0.14 -0.12)
VH comb. 🖷	1.10	$^{+0.16}_{-0.15}$ (± 0.11 ,	+0.12 -0.10)
ttH+tH γγ 📫	0.90	$^{+0.27}_{-0.24}$ ($^{+0.25}_{-0.23}$,	+0.09 -0.06)
ttH+tH VV	1.72	$^{+0.56}_{-0.53}$ ($^{+0.42}_{-0.40}$,	+0.38 -0.34)
ttH+tH ττ F	1.20	$^{+1.07}_{-0.93}$ ($^{+0.81}_{-0.74}$,	+0.70 -0.57)
ttH+tH bb	0.79	$^{+0.60}_{-0.59}$ (± 0.29 ,	+0.52 -0.51)
<i>ttH</i> + <i>tH</i> comb. ₩	1.10	$^{+0.21}_{-0.20} \left(\begin{array}{c} ^{+0.16}_{-0.15} \right)$	+0.14 -0.13)
2 0 2	4	6	8
$\sigma imes$ B normalized to SM			

Statistische Kombination von Produktions- und Zerfallmodi:

- Mehrere Produktionsmodi für H \rightarrow yy, H \rightarrow ZZ^{*} \rightarrow 4l, H \rightarrow WW^{*}, H \rightarrow π ,
- $H \rightarrow b\overline{b}$ in VH, VBF und ttH Produktion,
- ttH in multi-Lepton Signaturen,
- $(H \rightarrow \mu \mu,)$
- $(H \rightarrow invisible (siehe morgen)).$

Für die Kategorien mit ausreichender Statistik Berechnung einer Produktions- + Zerfallskanal-abhängigen Signalstärke durch einen Fit aller Kanäle:

$$u_{if} = \frac{\sigma_i}{\sigma_i^{\rm SM}} \times \frac{B_f}{B_f^{\rm SM}}$$

Gute Übereinstimmung mit Standardmodell-Vorhersagen.

Messungen der Kopplungsstärken

 \rightarrow Im sogenannten κ -Framework.

Reparametrisiere:

$$\sigma_{i} \times B_{f} = \frac{\sigma_{i}(\boldsymbol{\kappa}) \times \Gamma_{f}(\boldsymbol{\kappa})}{\Gamma_{H}}$$

Mit:
$$\kappa_j^2 = \frac{\sigma_j}{\sigma_j^{\text{SM}}}$$
 oder: $\kappa_j^2 = \frac{\Gamma_j}{\Gamma_j^{\text{SM}}}$

Daraus ergeben sich die reduzierten Kopplungsstärke-Skalierungsfaktoren:

$$y_V = \sqrt{\kappa_V \frac{g_V}{2v}} = \sqrt{\kappa_V \frac{m_V}{v}} \qquad y_F = \kappa_F \frac{g_F}{\sqrt{2}} = \kappa_F \frac{m_F}{v}$$

→ Gute Übereinstimmung mit Erwartungen vom Standardmodell.

03.08.2021

Weitere Higgs-Bosonen?

Bislang exzellente Übereinstimmung der Messungen mit den Erwartungen für ein SM Higgs-Boson.

Jedoch sagen viele BSM-Erweiterungen zusätzliche Higgs-Bosonen voraus, z.B. Two-Higgs-Doublet Modelle (2HDM), wie auch für SUSY benötigt wird:

- Zwei neutrale CP-gerade Higgs-Bosonen (h, H),
- Ein CP-ungerades Higgs-Boson (A),
- Zwei geladene Higgs-Bosonen (H⁺⁻).

Andere Erweiterungen sagen auch doppelt geladene Higgs-Bosonen voraus.

Zusätzlich sind BSM-Zerfälle des SM-Higgs-Bosons relevant – z.B. zu einer hypothetischen Kopplung zu DM.

Suchprogramm nach weiteren Higgs-Bosonen

Daher umfassendes Suchprogramm für zusätzliche Higgs-Bosonen bzw. Weiteren Spin-0-Teilchen.

Indirekte Suchen:

- Präsizionsmessungen der Higgs-Kopplungen, und Reinterpretation in BSM-Erweiterungen.
- Auch in Suchen für DM.

Direkte Suchen:

- Suchen nach zusätzlichen neutralen Higgs-Bosonen in allen möglichen Zerfallskanälen (ZZ, WW, Zγ, γγ, Zh, hh, ττ, tt, bb),
- Suchen nach geladenen Higgs-Bosonen,
- Suchen nach doppelt geladenen Higgs-Bosonen,
- Suchen nach unsichtbaren Zerfällen des SM-Higgs-Bosons, und in andere Higgs-Bosonen.

Suche nach A/H $\rightarrow \tau \tau$

→ Suche nach einem neuen schweren (Pseudo)Skalar.

- Zerfälle in Di-Tau Endzustände sind möglicherweise erhöht im Vergleich zu anderen Zerfallsmoden in einem Typ-II 2HDM, insbesondere bei hohen tan(β) Werten.
- Endzustände berücksichtigt mit leptonisch und hadronsich zerfallenden Tau ($\tau_{lep} \tau_{had}$) oder beide hadronisch ($\tau_{had} \tau_{had}$)

- Suchkategorien via Forderung eines B-Tags für assoziierte Produktion, und eines B-Vetoes für ggF-Produktion.
- Rekonstruktion der Di-Tau-Masse mittels:

 $m_T^{tot} = \sqrt{(p_T^{ au_1} + p_T^{ au_2} + E_T^{miss})^2 - (\mathbf{p}_T^{ au_1} + \mathbf{p}_T^{ au_2} + \mathbf{E}_T^{miss})^2}$

 Dominaten Untergründe (tt, W+jets, und Multi-jet) mittels einer datengestützten Methode bestimmt.

Ausschlussgrenzen für A/H $\rightarrow \tau \tau$

- Keine signifikante Abweichung zwischen Daten und SM-Untergrunderwatung beobachtet.
- Interpretation in unterschiedlichen 2HDM Varianten.
- Z.B. Ausschluss von $tan(\beta) > 21$ für m_A = 1.5 TeV.

Suche nach $H^{+} \rightarrow tb$

Geladende Higgs-Bosonen werden in vielen BSM-Erweiterungen vorhergesagt.

→ Im 2HDM mit cos(β - α)~0 dominiert der Zerfall H⁺ → tb für m(H⁺)>200 GeV.

→ Suche nach einem H⁺ produziert in Assoziation mit einem Top- und einem Bottom-Quark in Endzuständen mit Elektron oder einem Myon.

→ Verschiedene Ereigniskategorien mit verschiedenen Jet-Multiplizitäten und b-tagged Jets (5 Jets + 3 or \ge 4 b-Jets, \ge 6 Jets + 3 or \ge 4 b-Jets).

Neuronales Netzwerk trainiert auf Parameter bezogen auf den (transversalen) Impuls, Energien, Massen und räumliche Separierung der Jets, einschließlich unterschiedlicher H⁺ Massen.

[JHEP 06 (2021) 145]

$H^+ \rightarrow tb$

[JHEP 06 (2021) 145]

Zerfälle des Higgs-Boson in nicht detektierbare Teilchen (H \rightarrow invisible)

[ATLAS-CONF-2020-008, PDG]

Zerfälle des Higgs-Bosons in nicht detektierbare Zustände in unterschiedlichen BSM-Erweiterungen vorhergesagt – z.B. direkte Zerfälle vom Higgs-Boson in DM-Teilchen.

 $H \rightarrow$ invisible (d.h. in Neutrinos) im SM sehr selten (0.12%).

Unsichtbare Higgs-Zerfälle müssen durch Anwesenheit zusätzlicher Teilchen getaggt werden – z.B. Forward-Jets aus VBF-Higgs-Produktion.

VBF $H \rightarrow invisible$

[ATLAS-CONF-2020-008]

- E_{T}^{miss} Trigger, hohe E_{T}^{miss} .
- Zumindest zwei forward Jets in entgegengesetzten Hemispheren mit nur kleinem Winkel in transversaler Ebene (→ Unterdrückung Multi-Jet Untergrund).
- Hohe invariante Masse des Di-Jet-Systems.
- Unterschiedliche Signalregionen in Jet Multiplizität, m_{ii} und Δφ_{ii}

- Hauptuntergründe V+Jets datengestützt abgeschätzt durch Kontrollregionen.
- Simultaner Fit aller Regionen, beobachtete Datenereignisse in guter Übereinstimmung mit Untergrunderwartung.

\rightarrow BR(H \rightarrow inv) < 13 % @ 95 % CL

ATLAS Preliminary, 139 fb⁻¹

Kombination $H \rightarrow invisible$

[ATLAS-CONF-2020-052]

Kombination von VBF H \rightarrow invisible, Reinterpretation con Stop-Suchen und Run-1 Ergebnissen

 \rightarrow BR (H \rightarrow invisible) < 11 % @ 95 % CL

Komplementär zu direkten DM-Experimenten.

Higgs-Selbstwechselwirkung

Higgs-Selbstwechselwirkung gibt Auskunft über die Form des Higgs-Potentials (EFT-Ansatz):

$$V(H) = \frac{1}{2}m_H^2 H^2 + \lambda_3 \nu H^3 + \frac{1}{4}\lambda_4 \nu H^4 + O(H^5)$$

 λ_{a} kann in ggF-Prozessen gemessen werden, aber wegen destruktiver Interferenz der beiden Diagramme nur kleiner Wirkungsquerschnitt von 31.05 fb bei 13 TeV im SM.

VBF-Produktion weniger sensitiv zu $λ_3$, aber sensitiv zu $κ_{2y}$.

Der Wirkungsquerschnitt kann in BSM-Szenarien signifikant erhöht sein.

03.08.2021

Suchstrategien

Identifikation mittels Zerfallsprodukte vom Higgs-Boson

→ Endzustände mit bb besonders hohes Verzweigungsverhältnis.

 \rightarrow Zerfälle nach HH \rightarrow bbbb jedoch besonders hoher hadronischer Untergrund, daher vorteilhaft, wenn das eine der beide Higgs-Bosonen in eine leicht zu identifiziere Signatur zerfällt.

 \rightarrow HH \rightarrow bbyy wegen guter Separation vom Untergrund besonders sensitiv.

Auch andere Signaturen zusammen mit bb analysiert – Kombination aller Kanäle.

$HH \rightarrow b\overline{b}yy$

 \rightarrow sensitivster Kanal, ggF und VBF-Produktion.

Ereignisselektion via unterschiedlichen MVAs unter Verwendung von verschiedenen HH Signalhypothesen und der Masse des Higgs-Boson-Paar-Systems:

$$\widetilde{M}_{\rm X} = m_{\gamma\gamma\rm jj} - (m_{\rm jj} - m_{\rm H}) - (m_{\gamma\gamma} - m_{\rm H})$$

Untergründe:

- Nicht-resonant: y+Jets und yy+Jets Bestimmung via datengestützer Methode unter Verwendung der Seitenbänder in den invarianten Massen.
- **Resonant:** ttH, Unterdrückung durch eigens trainierten Klassifier.

Bestimmung des HH-Signals mittels simultanen Fits in allen Kategorien in der (m_{vv},m_{ii})-Ebene.

HH → bБуу

- Die Suche ist noch limitiert durch die Statistik.
- Ergebnisse kompatibel mit SM:

 $\sigma_{ggF+VBF}^{HH} < 7.7 (5.2) \times \sigma_{ggF+VBF}^{HH SM}$ -3.3 (-2.5) < κ_{λ} < 8.5 (8.2)

Unterschiedliche BSM-Interpretationen untersucht.

[JHEP 03 (2021) 257]

Perspektiven in Bezug auf die Higgs-Selbstkopplung

[arXiv:1910.11775 [hep-ex], ATL-PHYS-PUB-2018-053]

HL-LHC: signifikanter Statistikzuwachs und mögliche Methodenverbesserung.

 \rightarrow Hinweis auf die SM-Higgs-Selbstwechselwirkung mit 4σ möglich? (Kombination von b \overline{b} yy und b \overline{b} ττ Kanälen) – entspräche einer Genauigkeit von 50% auf κ_{λ} . (ATLAS-Prognose hält hier 40% für möglich.)

HL-LHC und zukünftige Herausforderungen/Technologien

[HL-LHC project]

HL-LHC: Erwartungen

[Sergo Jindariani, LHCp 2021]

• Erwartete Statistik: 3000 fb⁻¹ (oder sogar 4000 fb⁻¹) \rightarrow 20 mal mehr Daten als aktuell vorhanden.

Gut für Präzisionsmessungen und bislang nicht addressierte Signaturen. Der Sensitivitätszuwachs bei vielen BSM-Suchen wird aber langsamer als aktuell erfolgen (da eventuell keine Steigerung in der Schwerpunktsenergie)

• Physik am HL-LHC:

Santiago Folgueras, LHCp

...und Herausforderungen

Die hohe int. Luminosität kommt mit einem Preis: hohes Pileup – μ = 200 bei 25ns bunch crossing Rate

\rightarrow Pileup:

- Detektor-Upgrades höhere Granularität wo möglich, oder Verbesserungen im Timing.
- Signifikante Updates/Neu-Design vom Trigger.
- Auch auf Rekonstruktions- und Analyselevel verbesserte Methodik zur Pileup-Unterdrückung (z.B. Graph Neural Networks)

\rightarrow Strahlung:

- Strahlungsschäden bzw. die akkumulierte Dosis kann zu schlechterer Performance führen.
- Ersatz der Tracker- und Kalorimeter-Systeme.
- Elektronik-Update.

Beispiel für eine ,emerging technology': Quantencomputing

Problem beim HL-LHC: große Datenmengen, hohe Komplexität \rightarrow auch Fortschritte im Computing notwendig.

Eine 'emerging technology' (die zugegebenermassen aktuell noch sehr spekulativ ist), die helfen kann: **Quantum information science**

Z.B. Quantencomputing:

- Im Gegensatz zu einem klassischen Computer ist ein Quantencomputer nicht deterministisch
 - \rightarrow Qubits (in **C**²: a|0> + b|1>) anstelle von Bits (nur 0 oder 1).
 - \rightarrow Informationen können 'dichter' gespeichert werden.
 - \rightarrow Komplexere Berechnungen (theoretisch) möglich.
 - \rightarrow Nachteil: das Ergebnis der Berechnungen ist auch probabilistisch.

Aktuell sind Quantencomputer klassischen Computern noch wesentlich unterlegen, aber schnelle Entwicklungen.

Quantencomputing - Beispiele

[Jean-Roch Vlimant, LHCp; arXiv:2012.12177 [cs.LG]]

In der Teilchenphysik verschiedene Anwendungen denkbar:

- Kombinatorische Probleme \rightarrow Pattern recognition, Tracking, Vertexing, Jet clustering,...
- Simulation von quantenmechanischen Systemen → Monte Carlo Simulation
- Machine Learning \rightarrow Lösung komplexerer Probleme durch Quantum Machine Learning.

Beispiel: Quantum Convolutional Neural Networks (QCNN)

- Convolutional Neural Networks CNN in der Bilderkennung weit verbreitet.
- Funktionsweise QCNN wie klassisches CNN: Ersetzen einer klassichen convolutional layer durch eine quantum layer.
- Vorteil: die quantum layer ist möglicherweise in der Lage Information etwas 'kompakter' zu verarbeiten, d.h. es sind weniger Trainingsiterationen nötig

→ Vorteilhaft in sehr komplexen Situationen, oder falls nur wenig Trainingsdaten zur Verfügung stehen.

• Aber: aktuell nur theoretische Erwartung.

Zusammenfassung

- Physikprogramm am LHC sehr erfolgreich und vielseitig.
- Erwartungen wurden vielfach übertroffen in Bezug auf Präsizionsmessungen.
- Jedoch noch keine BSM-Physik gefunden sehr bemerkenswerte Ausschlußgrenzen.
- Viele sehr vielversprechende zukünftige Richtungen, aber kein klarer Weg vorwärts.
- Alles möglich: Entdeckung 'morgen' oder lange und mühsam.
- Zugleich zeichnet sich eine zunehmende Synergie (und Öffnung des CERNs) mit und f
 ür andere Felder ab.

ECFA Early-Career Researchers Panel

"The objective of the ECFA Early-Career Researchers (ECR) Panel is for its members to discuss all aspects that contribute in a broad sense to the future of the research field of particle physics." Link

Deutsche Delegierten:

- Jeanette Lorenz (Fraunhofer IKS, LMU Munich)
- Alexander Mann (LMU Munich)
- Laura Moreno Valero (Münster)

DESY:

- Jan-Henrik Arling (DESY)
- Younes Otarid (DESY)
- (one missing, was Henrik Jansen)

Report on the ECFA Early-Career Researchers Debate on the 2020 European Strategy Update for Particle Physics

The ECFA Early-Career Researchers

February 6, 2020

in, CERN, Esplanade des Particules 1, Geneva, Switzerland Centre de Investigaciones Energéticas. Medicambientales y 3

cembri 30 Buchanat MC Romani

Capdevia, Institut de Pieca d'Altas Rengios, Campas UAB, Editici Cu, Bellaterra (Barcelona), Spain Canza, Moria Hulubei National Institute for R&D in Physics and Nuclear Engineering, Reactorului 30., Bucharce G. Rommin.

men-SYnchrotron, Notkestraße 85, Hamburg, Germany

Report on the ECFA Early-Career Researchers Debate on the 2020 European Strategy Update for Particle Physics

arXiv:2002.02837 [hep-ex]

Gestaltungsmöglichkeiten auch über die Young High Energy Physicists Association https://yhep.desy.de/

Weitere Suchen nach langlebigen Teilchen

Displaced leptons

Durch Veränderungen der Identifikations- und Rekonstruktionsalgorithmen (insbesondere Kriterien in Bezug auf den transversen Impaktparameter) sensitiv zu solchen Prozessen.

Langlebige Teilchen auch in SUSY-Modellen mit Gravitinos \rightarrow koppelt nur via Gravitation

[arXiv:2011.07812]

Displaced leptons

- Signalregionen mit zwei Leptonen (Elektron oder Myon).
- Veto von kosmischen Myonen, andere Untergründe von fehlidentifizierten Elektronen oder Myonen.

Kein Ereignis in den Signalregionen beobachtet.

→ Ausschlussgrenzen auf die Typen vom nächstleichtesten LSP platziert, oder auch -Mischung berücksichtigt.

LEP-Ausschlußgrenzen (~60 - 90 GeV) signifikant überschritten.

 $\widetilde{II} \rightarrow I\widetilde{G} I\widetilde{G}, I \in [e, \mu, \tau]$ 10⁵ Lifetime [ns] Expected limits ATLAS 10^{4} **Observed** limits √s=13 TeV, 139 fb⁻¹ co-NLSP All limits at 95% CL 10^{3} е́_{LВ} μ μ 10^{2} $\tilde{\tau}_{1,2}$ 10¹ 10^{0} 10-1 10^{-2} 500 600 700 800 900 400 m(I) [GeV]

[arXiv:2011.07812]

Suchen nach (schweren) Resonanzen

Suche nach Resonanzen

Resonanzen in vielen BSM-Theorien vorhergesagt:

- GUT, Compositness-Modelle, Extradimensionen, aber auch in SUSY.
- In Zerfällen von einem Mediatorteilchen zwischen SM und DM.

Vorteil: Masse lässt sich (genau) aus Zerfallsprodukten rekonstruieren, klare Separierung vom Untergrund.

03.08.2021

Überblick

→ Suche nach Resonanzen in vielfältigen Endzuständen:

- $X \rightarrow Jet Jet$
- $X \rightarrow$ Lepton Lepton
- $X \rightarrow t\bar{t}$
- Aber auch: X → Lepton Neutrino oder X → Di-Boson (y, W, Z, H) mit weiteren Zerfällen.

[Summary plots]

Di-jet Resonanzsuchen

Di-Jet-Prozesse im SM hauptsächlich durch QCD-Prozesse produziert → kontinuierlicher Untergrund

Neues Teilchen würde als Resonanz im m_{jj}-Spektrum erscheinen, z.B. von angeregten Quark q^{*} in Compositness-Modellen, oder schweren W' oder Z'-Bosonen.

Selektion: Single-Jet Trigger, >= 2 Jets with p_T >150 GeV, Winkel und Rapiditätsdifferenz zwischen Jets.

Untergrund abgeschätzt durch Fit mit der 'slidingwindow-Methode', wobei für den Untergrund eine parametrisierte Funktion verwendet wird.

Ausschlusslimits z.B. angeregtes Quark m(q*) < 6.7 TeV, Z'-Boson m(Z')<2.7 TeV @ 95 % CL.

[JHEP 03 (2020) 145]

Resonanzen in Dilepton-Signaturen

Viele Modelle (GUT, LED, DM, Preonen) sagen resonante oder nicht-resonante Abweichungen im Spektrum der invarianten Masse von einem Leptonpaar voraus.

Selektion von einem hochenergetischen Elektron oder Myonpaar.

Die meisten Untergründe werden mittels Simulation bestimmt. Normierung der Drell-Yan-Untergründe mittels gemessener Ereignisse im Z-Peak.

Suche nach Peak in einem Massefenster um die erwartete Resonanz, mit Hilfe eines unbinned maximum likelihood Fits innerhalb Massefensters.

Keine signifikante Abweichung gefunden, Ausschlusslimits z.B. 5.15 TeV auf Z'_{SSM}-Bosonen.

[arXiv:2103.02708]

Unkonventionelle Resonanzsuchen: mono-S

Dark Higgs Modell:

- Zusätzliches Higgs-artiges Boson s.
- Motiviert durch die Notwenidigkeit im DM-Sektor Massen zu generieren.
- Dadurch können Forderungen von der Reliktdichte abgeschwächt werden, weil sich für die DM-Teilchen ein Annihilationskanal öffnet.

Unterschiedliche Suchen nach dem Skalar s + E_{T}^{miss} , je nach Zerfällen:

→ Reinterpretation von mono-H, aber auch Suche nach Zerfällen s → VV mit hadronischen oder leptonischen Zerfällen.

Falls s sehr geboostet, Rekonstruktion von Jets mit großen R notwendig.

Reinterpretation

How to maximise usefulness of data and analysis?

Analyses typically focus on a small number of benchmark simplified models, but are typically more general (\rightarrow other DM searches, leptoquarks, other than the target models)

New tools/material for re-interpretation of the analyses available!

