
Ludwig-Maximilians-Universität München

Masterarbeit an der Fakultät für Physik

Studies on Velocity Measurements with the

ATLAS Calorimeters for the Search for Heavy

Long-Lived Particles

Studien zur Geschwindgkeitsmessung mit den

ATLAS Kalorimetern für die Suche nach

schweren langlebigen Teilchen

vorgelegt von

Michael Adersberger

geboren in Prien am Chiemsee

München, den 22.06.2015



II

Abstract

An interesting target for model independent searches for new particles with the
ATLAS experiment at the Large Hadron Collider are stable massive particles.
Stable massive particles are expected to be produced with velocities significantly
lower than the speed of light. The velocity is therefore a good discriminator
between exotic and Standard Model particles, as these are produced with almost
the speed-of-light. One sub-detector suitable for the measurement of velocities with
a Time-of-Flight method is the ATLAS tile calorimeter. Several improvements on
the β measurement are presented and the resolution could be improved by 17%.
The influence of the improved β estimation on a search for stable massive particles
is tested by revising a previous search for stable R-hadrons [1]. For this analysis∫
Ldt = 18.8 fb−1 of data taken at a center-of-mass energy

√
s = 8 TeV are

used. No excess over the expected background is found for all considered signal
regions. The results are used to set an upper limit on the production cross section
of sparticles at a Confidence Level of 95%. Comparing this with the theoretical
predicted cross sections a lower limit on the mass of gluinos, sbottoms and stops
can be estimated. The mass limits obtained are 1241 GeV for gluinos, 800 GeV
for stops and 760 GeV for sbottoms.
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Zusammenfassung

Die Suche nach langlebigen stabilen Teilchen mit dem ATLAS Detektor am
Large Hadron Collider ist vielversprechend, da sie modellunabhängig ist. Es
wird erwartet, dass schwere stabile langlebige Teilchen mit deutlich niedrigeren
Geschwindigkeiten als der Lichtgeschwindigkeit produziert werden. Man kann
daher die Geschwindigkeit benutzen, um exotische Teilchen von Standard Mo-
dell Teilchen zu unterscheiden, da diese mit annähernd Lichtgeschwindigkeit pro-
duziert werden. Das ATLAS Tile Kalorimeter kann genutzt werden, um anhand
einer Flugzeitmessung die Geschwindigkeit der Teilchen zu bestimmen. Mehrere
mögliche Verbesserungen für die Geschwindigkeitsmessungen mit dem Tile
Calorimeter werden in dieser Arbeit vorgestellt, welche die Geschwindigkeitsmes-
sung insgesamt um 17% verbessern. Die Auswirkungen dieser Verbesserungen auf
die Suche nach stabilen Teilchen wird getestet, indem eine bestehende Suche nach
schweren stabilen R-Hadronen mit den eingebauten Korrekturen wiederholt wird.
Für diese Analyse wird ein

∫
Ldt = 18.8 fb−1 an Daten verwendet, die bei eine

Schwerpunktsenergie von
√
s = 8 TeV aufgenommen wurden. Es wurden keine

Hinweise auf neue Teilchen gefunden. Die Ergebnisse werden verwendet, um ein
obere Grenze auf den Wirkungsquerschnitt der betrachteten Teilchenmodelle auf
dem 95% Konfidenzniveau zu setzen. Vergleicht man diese mit dem vorhergesagten
theoretischen Wirkungsquerschnitten, so kann ein untere Grenze für die Masse der
jeweiligen Teilchen errechnet werden. Die unteren Grenzen für die Massen der
betrachteten Teilchen, die sich aus dieser Analyse ergeben, sind: 1241 GeV für
Gluinos, 800 GeV für Stops und 760 GeV für Sbottoms.
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Chapter 1

Introduction

The aim of physics is to describe nature with quantitative models and
regularities. One of the best empirically validated models in physics is
the Standard Model (SM) of particle physics. The SM was able to predict
several particles before their actual discovery. The last piece of the par-
ticle puzzle predicted by the SM was discovered in 2012, the Higgs boson
[2]. So far everything seems to work fine, but the SM has several issues.
For example it is not possible to construct a consistent Quantum Field
Theory (QFT) of gravitation. So the question is, what comes next? Most
theories addressing the limitations of the SM predict new particles. But
as no evidence for particles beyond the SM was found so far, plenty of
new theories arise. This leads to a need for model independent searches.
One model independent search covering a wide range of new theories is
the search for heavy Long-Lived Particles (LLP).
The searches described in this thesis were performed with data from
the ATLAS experiment at the Large Hadron Collider (LHC) in Geneva,
Switzerland. One particular scenario of heavy LLPs are Stable Massive
Particles (SMP), which have lifetimes sufficiently large to traverse the
whole detector. An important property of SMPs is, that they are ex-
pected to be produced with significantly lower velocities than the speed
of light. As all SM particles are produced almost with the speed-of-light,
the velocity is a suitable discriminator between SMPs and SM particles.
One subsystem of the ATLAS detector suitable for velocity measurements
with the Time-of-Flight (ToF) method is the ATLAS Tile Calorimeter
(TileCal).
Several studies on the improvement of the velocity measurement with
the TileCal are presented. A method suggested in Ref. [3] is tested to
correct for a bias for large values of the estimated time measured with
the TileCal. The TileCal is segmented into cells, which have quite large
dimensions. In previous searches the center of the cell was used to mea-
sure the distance in the ToF method. I developed a method that uses
the length of the track in the cell to reconstruct the actual position for
the time measurement. This is compared with a fit method described
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in Ref. [3]. Furthermore the distance correction can be used to correct
the cell time to be measured at the same distances from the interaction
point for each TileCal cell. The influence on the smearing of the time
is tested, which is necessary to have a good agreement between Monte
Carlo simulated events and data. Also the influence on the parametriza-
tion of the uncertainty of the measured time as a function of energy
deposit in the cell is studied. Including the z0 position of the particle
tracks in the distance correction is tested. The influence of the suggested
methods on the timing calibration used in previous searches for SMPs
is discussed. Furthermore a study on velocity measurements including
the Liquid Argon (LAr) calorimeters is presented. The influence of the
corrected β estimation on the searches for SMPs is tested by redoing a
published search for stable R-hadrons [1].



Chapter 2

Theoretical Motivation

This chapter is a short summary of the main theoretical motivations
for the search for long-lived particles . The first section describes the
Standard Model of particle physics and the need for physics beyond.
There is a large variety of theories trying to solve the issues of the SM.
Many of these theories predict LLPs. Supersymmetry (SUSY), as the
most prominent example and Universal Extra Dimensions (UED), as a
further example, are discussed in the second part. The last section gives
a definition of longevity in the context of particle physics. Also some
examples of LLPs in the SM as well as in theories Beyond the Standard
Model (BSM) are given.

2.1 Standard Model of Particle Physics

2.1.1 Description of the Standard Model

The SM is a Quantum Field Theory, in which the particles are described
by the according fields. The particles of the SM can be divided into three
groups: Quarks, which are the constituents of the hadrons e.g. protons or
neutrons; Leptons, e.g. electrons or neutrinos; and the gauge bosons as
mediator particles of the forces, e.g. photons. Furthermore each lepton
or quark has an anti-particle which has the same mass but differs in all
charge-like quantum numbers by a factor of minus one. The quarks and
leptons can be divided into three generations. For the quarks each gen-
eration consists of an up- and a downtype particle with charge 2/3 e and
−1/3 e, respectively. Each lepton generation is formed from a charged
particle e.g. e− and an uncharged inherent neutrino e.g. νe. The particles
of the higher generations can be seen as a high mass copy of the particles
of the lower generation.
One important mathematical principle of the SM is, that the forces oc-
cur in the theory due to gauge symmetries. Each gauge symmetry comes
together with at least one particle as mediator of the force. For the
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SU(3) × SU(2) × U(1) symmetry of the SM, the according particles
are the photon, the Z and W± bosons for the electro weak interaction
and the gluons for the strong interaction. Important conserved quantum
numbers are electric charge, weak isospin and color. The color quan-
tum number is only carried by quarks and gluons, whereby gluons carry
two colors. In measurements no unbound colored particles have been
observed. To acomplish this in the theory the quark confinement was
introduced. The quark confinment predicts, that observable particles are
colorless or bound in hadrons with no overall color1.1The color quantum

number is represented by
the three colors red, blue
and green. A combination
of all three colors leads to
colorlessness as well as a
color and an anti-color.

The last piece of the SM puzzle is the Higgs boson. This particle arises
from the Higgs mechanism, which enables a mass term for the gauge
bosons of the weak interaction through a spontaneous symmetry break-
ing of the Higgs field. The leptons and quarks obtain their mass through
a Yukawa coupling to the Higgs field. A theoretical explanation of the
Higgs mechanism and the SM of particle physics can be found in Ref. [4].
The particle content of the SM is summarized in Tab. 2.1. From now on
the usual convention in particle physics c = ~ = 1 will be used.

Table 2.1: The particle
content of the SM with
mass, charge and color of
the particles, taken from
Ref. [5]. The anti-particles
differ by opposite sign in all
charge like quantum num-
bers.

Name Label Mass [MeV] Charge [e] Color

Leptons

Electron e 0.511 -1 -
Electron-neutrino νe < 2 · 10−6 0 -

Muon µ 105.66 -1 -
Muon-neutrino νµ < 0.2 0 -

Tauon τ 1776 -1 -
Tauon-neutrino ντ < 18 0 -

Quarks

Up u 2 2/3 r,g,b
Down d 5 -1/3 r,g,b

Charm c 1275 2/3 r,g,b
Strange s 95 -1/3 r,g,b

Top t 173·103 2/3 r,g,b
Bottom b 4·103 -1/3 r,g,b

Gauge bosons

Gluon g 0 0 (r,g,b)×2
Photon γ 0 0 -
W W± 80385 ±1 -
Z Z0 91188 0 -
Higgs H 126·103 0 -

2.1.2 Motivation for Theories Beyond the Standard
Model

The SM represents one of the best empirically proven theories so far. It
for example predicted the existence of W and Z bosons, gluon, top and
charm quarks before their discovery. But the SM has nevertheless some
issues discussed in the following :



2.1. STANDARD MODEL OF PARTICLE PHYSICS 5

102010151010105

Q [GeV]

10

20

30

40

50

60

Figure 2.1: The extrapola-
tion of the coupling con-
stants to the scale of GUT
for the energy transfer in
an interaction. It can be
seen that the different cou-
plings do not intersect in
one point.

Gravitation

Including gravitation, described by the general relativity, in the SM is
not possible. The reason for that is, that it is not possible to formulate
a consistent QFT of gravitation. Thus it is not possible to easily merge
the empirically well proven theory at large scales, the general relativity,
and the empirically well proven theory at small scales, the SM of particle
physics.

Baryon Asymmetrie

Assuming that we are at no prominent place in the Universe, the laws of
nature on earth are equal to the laws of nature anywhere else. The obser-
vation, that everything surrounding us is built of matter, not anti-matter,
leads to the assumption, that matter is dominant in the whole universe.
This is in conflict with the natural assumption that the universe is neu-
tral within all conserved charges and that the Big Bang produced equal
amounts of matter and anti-matter. The solution would be charge par-
ity violating processes out of the thermal equilibrium2. These processes 2These conditions are

called Sakharov conditions
[6].

occur in the SM, but are by orders of magnitude too weak to explain the
measured baryon asymmetry in the Universe.

Unification of Forces

The aim of a Grand Unified Theory (GUT) is to merge the EM, weak
and strong interaction into one force at a high energy-transfer scale (GUT
scale) described by a single GUT symmetry. The larger GUT symmetry is
at a lower scale spontaneously broken to the SU(3)×SU(2)×U(1) group
of the SM. This larger GUT symmetry can be described with a unified
coupling constant. But this is not realized within the SM, because the
SM couplings do not intersect in one point, as illustrated in Fig. 2.1. The
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motivation for a unification of forces is, that EM and weak interaction
are already described with the Electroweak theory. The unification would
further reduce the free parameters of the SM and automatically predict
the quantization of the electric charge.

Dark Matter

The standard model of cosmology provides several predictions for the
Universe. For example the existence of the cosmic microwave background
or the expansion of the Universe. These predictions are empirically well
proven and give a high evidence to this theory. Furthermore from mea-
surements a prediction on the composition of energy in the Universe can
be given: Dark energy (69.2 %), dark matter (26.0 %) and SM matter
(4.8 %) [7]. Dark energy is not understood and there is no commonly
accepted theory, explaining it. Slightly better is the understanding of
dark matter, as the interactions with observable matter give hints for
the presence of dark matter, e.g. in gravitation lens effects or in the mo-
tion of galaxies. This gives an idea of dark matter consisting of massive
particles interacting only weakly (weakly interacting massive particles
WIMPs). But also for dark matter no commonly accepted theory exist.
Merely five percent of the Universe consists of known matter described
by the SM of particle physics.

Fine-tuning

The Higgs mass in the SM is given by

m2
h = m2

0 −
|λf |2

8π2
Λ2 +O

(
ln

Λ2

m2
f

)
. (2.1)

The second term represents a first order quantum loop correction, dis-
Figure 2.2: First order
quantum loop correction
Feynman diagram of a vir-
tual fermion f to the Higgs
boson H.

played in Fig. 2.2. The corrections to the Higgs mass are of the order
Λ2. Λ represents the renormalization cut-off scale, the scale at which the
validity of the theory ends. This is usually set to the GUT scale, which
is of the order 1016 GeV [5]. For the observed Higgs mass at 126 GeV,
m2

0 and the quantum loop correction have to cancel each other to more
than 20 digits exact, which is found to be an unnatural fine-tuning.

There are also further issues of the SM, which will be not further de-
scribed here. The intention of this section was mainly to justify the need
for BSM theories, although the SM represents an empirically well proven
theory.
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2.2 Beyond Standard Model Theories

This section describes BSM theories, which are of particular interest for
the search for LLPs. The first part is on SUSY as the most prominent the-
ory beyond the SM. Also UED are introduced as a further BSM example.
There are other BSM models predicting LLPs, e.g. magnetic monopole
[8] or Q-ball [9], but, as the searches for LLPs are model independent,
only these two examples are discussed here. A detailed description of
interesting BSM theories in the context of LLPs is given in Ref. [10].

2.2.1 Supersymmetry

SUSY is the best understood concept in BSM theories so far and is fa-
vored by most theorists, because it implies solutions for some of the
previously mentioned issues of the SM. The only, but probably worst,
problem is, that nature does not seem to favor it, as no evidence for the
according SUSY particles was found so far.

Figure 2.3: Particle con-
tent of the Minimal Super-
symmetric Standard Model
(MSSM).

SUSY is a hypothetic new symmetry, which allows a transformation be-
tween fermions and bosons. Each fermion/boson builds a supermultiplet
with a bosonic/fermionic superpartner. The superpartners have equal
mass and quantum numbers. The bosonic partners of the fermions are
labeled with an ”s” in front of the name, e.g. sbottom. Whereas the
fermionic superpartners of the bosons get an ”ino” at the end, e.g. ”higgsino”.
The symbols of the sparticles all carry a ”∼” above, e.g. the higgsino h̃.
A minimum of twice the SM particles would be predicted by a supersym-
metric SM. The interaction eigenstates of the superpartners of the gauge
and Higgs fields are able to mix with each other to the observable mass
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eigenstates. The charged mass eigenstates are called charginos, whereas
the uncharged are called neutralino. Furthermore, additional particles in
the Higgs sector are needed to obtain mass terms for all fermions. For
the Minimal Supersymmetric Standard Model (MSSM) five Higgs bosons
are needed.
The interaction eigenstates of the MSSM are shown in Fig. 2.3. One issue
being solved in a supersymmetric model is the fine tuning problem. The
loop corrections to the bare Higgs mass of the fermions are canceled by
the loop corrections of their bosonic superpartners and vice versa. The
Feynman graphs for these processes are shown in Fig. 2.4. The correction
term for a fermion is given by

∆m2
H =

λ2
f

16π2
[−2Λ2 + 6m2

f ln(Λ/mf )]. (2.2)

Wheras the correction term of a boson is given by Eq. 2.3.

∆m2
H =

λb
16π2

[2Λ2 − 6m2
b ln(Λ/mb)] (2.3)

For the coupling constants, λ2
f = λb holds due to the symmetry between

Figure 2.4: Loop correc-
tions to the Higgs mass
from a fermion (a) and a
boson (b).

bosons and fermions. For the case of an unbroken SUSY the masses
of the particles and sparticles are equivalent, thus the correction terms
would perfectly cancel. As previously mentioned no direct experimental
evidence for SUSY particles was found so far. This means that the masses
have to differ. The solution is is to require SUSY to be broken. This
symmetry breaking can be spontaneous as in the Higgs sector, but there
are also other possibilities, especially if gravity is included. In a broken
SUSY, the masses of the supersymmetric partners are at a scale ΛSUSY >
Λweak. This leads to a remaining contribution of the loop corrections to
the Higgs mass given by

∆(m2
H) = O

( α
4π

)
|m2

b +m2
f |. (2.4)

It can be concluded, that the mass difference between particles and spar-
ticles should not be too large to still solve the unnaturalness of the fine-
tuning. The masses of the sparticles should therefore not be larger than a
few TeV. Thus if SUSY is a basic feature of nature, new particles should
have masses reachable for modern accelerators.
In principle lepton/baryon numbers are violated in SUSY models, what
is in conflict with the observation of an stable proton. To accomplish sta-
bility for the proton R-parity conservation can be required. R is defined
by Eq. 2.5.

R = (−1)3B+L+2S, (2.5)

where B is the baryon number, L the lepton number and S the spin of
the particle. Thus SM particles carry R = +1, whereas SUSY particles
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carry R = -1. If R-parity is conserved the proton is stable and also the
lightest supersymmetric particle (LSP). If the LSP is uncharged, it is a
good candidate for dark matter.
By defining SUSY as a local symmetry gravitation can be introduced
with the graviton as mediator. But still the problem of a consistent for-
mulation of the quantum gravitation remains. A further issue of the SM
that could be solved within a SUSY model is the baryon asymmetry.
The reason for that is, that strong CP violation could arise in the SUSY
sector. Furthermore also the unification of the coupling constants could
be realized due to the influence of the sparticles at the TeV scale. All in
all, SUSY is a promising concept in BSM theories, which is able to solve
many issues of the SM. On the other hand it has to be mentioned, that
a broken SUSY results in 105 free parameters. These can be reduced in
constrained scenarios, but it still states an enormous parameter space for
new theories. A detailed description of SUSY can be found for example
in Ref. [11].

2.2.2 Universal Extra Dimensions

With the introduction of a fourth or even fifth space-like dimension for
the fields of the SM, it is possible to unify gravitation and gauge theories,
though quantum gravitation still remains inconsistent. All observations
until now predict only three space-like and one time-like dimension. This
can be solved with the introduction of compactification [12]. Compactifi-
cation means that the extra dimension are microscopically curled up and
were thus not observable so far. A catchy analogue is the observation
of a straw from a big distance. From this point of view the straw looks
like a line. Only with the observation from a sufficient near distance the
differentiation between a straw and a line is possible. The particles can
be explain as standing waves on the compactified extra dimensions. This
leads to the Kaluza-Klein (KK) tower of possible discrete mass eigen-
states. Furthermore momentum conservation in the extra dimension in-
troduces the conserved KK quantum number stating the excitation level.
To obtain the chiral SM with zero modes, KK number violation by loop
effects is allowed, but a KK parity still remains. This leads to a lightest
KK particle as good candidate for dark matter. For further information
see Ref. [13].

2.3 Long-lived Particles

To understand the meaning of long-lived in the context of particle physics,
this section first describes the meaning of lifetime. Also the calculation
of lifetime with the equations of QFT will be briefly described. In the
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second part a recipe to identify long-lived particles in the SM as well as
in not too exotic3 BSM theories will be presented. Finally some examples3This recipe breaks

if fundamental laws of
physics are broken e.g. en-
ergy conservation.

for LLPs in the SM as well as in BSM theories are given.

2.3.1 Lifetime in Quantum Field Theories

From the macroscopic world it would be assumed that lifetime is some-
thing well determined. So if there is a unstable fundamental particle at
rest it will decay after a time t. But this is not the case, the decay of
particles has an intrinsically random element. The lifetime has to be
defined as a mean lifetime of the particle. The number N of remaining
particles of one type after a period of time dt can be calculated with
Eq. 2.6. This is statistical interpretation and thus only holds for a large
number of particles N . The decay rate (or width) Γ is the probability
per unit time that a particle will decay.

dN = −ΓN(t)dt (2.6)

By solving this differential equation, the number of remaining particles
is given by

N(t) = N0e
−Γt. (2.7)

The mean lifetime τ , as the subject of interest, is given as the reciprocal
of the decay rate

τ =
1

Γ
. (2.8)

The total decay width is given as the sum over all allowed decays

Γtot =
n∑
i=1

Γi. (2.9)

The decay width can be calculated with the relativistic form of Enrico
Fermi’s Golden Rule for decays Eq. 2.10, which is taken from Ref. [4].

Γ =
S

2~1

∫
|M |2(2π)4δ(p1 − p2 − p3 − ...− pn)

×
n∏
j=2

2πδ(p2
j −m2

jc
2)θ(p0

j)
d4pj
(2π)4

(2.10)

This equation can be split in two parts: On the one hand the amplitude
M , which describes all dynamical information of the processes. It can
be obtained by the calculation of the according Feynman diagrams. On
the other hand the integration over all possible phase space states of all
participants. This part is purely kinematic and represents the fact that a
process is more likely, if it has larger phase space for possible final states.
The contributions of the QFT used are thus mainly to the amplitude.
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2.3.2 Longevity of Particles

A particle is defined to be long-lived, if the mean lifetime of the particle
is sufficient to be directly detected with the detector. This means, that
the lifetime has to be long enough to produce at least a displaced vertex.
In this context it is essential that in high energy physics the particles are
produced with high momenta which includes that relativistic effects have
to be considered. The lifetime t0 is then elongated by the time dilation

t = t0γ, (2.11)

where

γ =
1√

1− β2
and β =

v

c
. (2.12)

The ATLAS inner detector is able to reconstruct displaced vertices with
a minimum radial distance cτ = 1 mm [14]. For particles decaying at
rest this corresponds to a lifetime of about 3 ns. We adopt t0 ≥ 3 ns
as criterion for LLPs. The spectrum of LLPs also includes particles
that have lifetimes sufficient to pass the hole detector. These particles
are called stable, although some of them may decay after leaving the
detector.
There are several reasons for long lifetime acting mainly as a combination.

• Lightest particle with a (almost) conserved quantum number

• Few decay channels

• Heavy intermediate particle(s)

• Soft coupling to lighter particles

• (Almost) mass degenerated with decay products

The decay of the lightest particle LP with a conserved quantum number
is not possible or strongly suppressed for an almost conserved quantum
number. The reason for that is quantum number and energy conser-
vation. A hypothetically decay into a heavier particle would result in
a mass/energy gain. Also few decay channels can contribute to a long
lifetime of a particle, because the decay width is the sum over all de-
cay channels Eq. 2.9. Considering this, a good candidate for a LLP in

Figure 2.5: Feynman dia-
gram for a toy theory de-
cay of a particle A into the
particle B, C and D over a
virtual heavy intermediate
particle I∗.

a BSM theory is always the second lightest particle with a conserved
quantum number, as it could only decay into the LP. A further reason
for longevity could be the decay over a heavy intermediate particle. The
according Feynman diagram is illustrated in Fig. 2.5. In the case, that
the mass of the intermediate particle exceeds the mass difference between
particles A and B, the process should be forbidden. This is not the case,
because the intermediate particle is not permanent existent and hence
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able to get energy from the vacuum for a short period of time due to the
time-energy uncertainty

∆t∆E ≥ 1

2
. (2.13)

The more energy the particle has to ”borrow” from the vacuum, the
less likely becomes the process. In a BSM theory this can be realized
especially if there is a huge mass gap between the new particles. A
soft coupling to the decay products minimizes the matrix element in
Eq. 2.10, what states another reason for long lifetime. This indicator gets
particularly important, if the gravitation and the according graviton arise
in the new theory, because of the orders of magnitude lower strength of
the gravitation Tab. 2.2. The last hint for longevity, is an (almost) mass

Force Strength

Strong 10
EM 10−2

Weak 10−13

Gravitation 10−42

Table 2.2: The strength of
the forces is only a rough
estimate given in Ref. [4].
In general their strength is
dependent on the distance
between the sources and
their nature.

degenerated state with its decay products. A (almost) mass degenerated
state means, that (almost) no energy remains for the momenta of the
decay products. This leads to a small phase space for the integration in
Eq. 2.10 contributing to a long lifetime of the particle. The focus in BSM
theories is again on the second lightest particle with a (almost) conserved
quantum number. If this particle is almost mass degenerated with the
LP, it would have a long lifetime.
In conclusion, a long lifetime of particles arises in QFTs because of the
combination of several different reasons.

2.3.3 Examples for Long-Lived Particles

Standard Model

Long lifetime of particles is nothing unknown, because also the SM in-
cludes several particles which have lifetimes sufficient to be counted as
LLPs. Following the recipe leading to long lifetime given above, some
examples in the SM will be presented.
The electron is a good example for the lightest particle with a conserved
quantum number, the lepton number. The electron is thus stable. A
further example for longevity in the SM is the muon. As it is the sec-
ond lightest particle it should naively decay relatively instantaneous to
the electron. But the lifetime of the muon is quite long, 2.196 · 10−6 s.
The long lifetime arises, because the only decay channel, the decay to
an electron plus neutrinos Fig. 2.6, is strongly suppressed. In principle

Figure 2.6: Feynman di-
agram of the decay of a
muon into an electron over
a virtual W ∗ boson.

also decays of the W boson to quarks would be possible, but the mass of
the lightest hadronized particle, the pion, is higher than the muon mass.
The hadronic decaying channels are thus kinematically forbidden. The
decay to the electron is suppressed due to the soft coupling to the W
boson as an interaction particle of the weak force and the high mass of
the virtually produced W boson.
Also in the baryonic sector long lifetime occurs in the SM. The lightest
particle with a conserved quantum number here is the proton and thus
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stable. Again the second lightest particle with the conserved quantum
number, the neutron, has a long lifetime. The only kinematically allowed
decay of the neutron is the beta decay into a proton, an electron and an
electron neutrino, the according Feynman diagram is shown in Fig. 2.7.
This decay channel is again suppressed due to the high mass of the W bo-

Figure 2.7: Feynman dia-
gram of a β decay of a neu-
tron.

son and the soft coupling of the weak interaction. It is further suppressed
due to the small mass difference between the neutron (939.6 MeV) and
the proton (938.3 MeV), leading to a 109 times longer lifetime compared
to the muon.

Name Label Charge [e] Lifetime [s]

Stable

Electron/Positron e ±1 ∞
(Anti-)Proton p ±1 ∞
(Anti-)Neutrino νl 0 ∞?
Photon γ 0 ∞

Metastable

Neutron n 0 880.1
(Anti-)Muon µ ±1 2.2 · 10−6

Long-lived neutral Kaon K0
L 0 5.1 · 10−8

Charged Pion π± 0 2.6 · 10−8

Charged Kaon K± ±1 1.2 · 10−8

Table 2.3: Lifetimes of se-
lected SM particles taken
from Ref. [5].

A summary of the stable and metastable particles of the SM, with a
lifetime sufficient to be counted as LLPs for searches with the ATLAS
detector is shown in Tab. 2.3.

Supersymmery

The SUSY parameter space offers a wide range of possible scenarios.
Many of these scenarios predict long-lived particles. Particular scenarios
of interest are those offering a charged LLP, as they produce clear signa-
tures in the detectors. The reference models used for the analysis Sec. 4.3
are scenarios with a sbottom, a stop or a gluino as long lived particle.
These arise as Rhadrons due to the color confinement. R-hadrons are
squarks or gluinos which hadronize with SM particles. In scenarios with
a χ̃0

1 as lightest supersymmetric particle (LSP) and dark matter candi-
date, a sbottom or a stop can be the next-to-lightest supersymmetric
particle (NLSP). If the mass difference between the LSP and the NLSP
is small enough, the NLSP can mimic the neutron in the SM and thus
have a long lifetime.
The scenario for a long-lived gluino is the Split-Supersymmetry [15],
where the masses of the scalars, except the ordinary Higgs, are at a high
mass scale4, whereas the gluino mass stays at the weak scale, illustrated 4The hierarchy prob-

lem is not solved in such a
scenario.

in Fig. 2.8. As the gluinos only couple to colored particles they only
decay over a virtual internal squark. This scenario is similar to the muon
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Figure 2.8: Qualitative
mass spectrum of a Split-
Supersymmetry scenario.
The mass of the gluino is
in the low mass region,
whereas the squarks are in
the high mass region.

...

in the SM and thus strongly suppressed due to the large mass difference
between the gluino and the squark.

Universal Extra Dimensions

In the simplest scenarios of UED the Kaluza-Klein modes are basically
high mass copies of the SM particles. Therefor KK modes of the light-
est SM particles could be long lived. Also further scenarios should be
considered where boundary terms in the extra dimensions are allowed.
These terms can be treated as free parameters of the theory. This leads
to further scenarios for long-lived particles, e.g. a stable graviton as light-
est KK particle and a long-lived next-to-lightest particle due to the soft
coupling strength of the gravitation.

2.4 Summary

In conclusion this chapter motivated the need for a theory beyond the
SM. As no further particles have been observed so far, a large variety of
possible new theories evolves. This leads to a need for model independent
searches. A good target for such a search are LLPs as they arise in a wide
range of theories in a large parameter space. It was further motivated
that the new particles have high masses, which should be within the
reach of the LHC as the most powerful particle collider so far.



Chapter 3

The Experiment

This chapter describes the Large Hadron Collider (LHC) with the ATLAS
experiment. This is followed by a discussion of the production of heavy
LLPs at the LHC. The signatures of SM particles as well as different
signatures of heavy LLPs in the detector will be presented in the third
section. The last section introduces important observables for the search
for heavy charged LLPs. A description of the energy-loss measurement
with the ATLAS pixel detector is given. Furthermore the time-of-flight
measurement and the according timing extraction from the calorimeter
signal is presented.

3.1 Experimental Setup

3.1.1 The Large Hadron Collider

To be able to discover hypothetical new particles with masses higher
than than those of SM particles, an accelerator colliding particles with
an enormous energy at a gigantic rate is needed. The high energy is
needed to produce the high-mass particles, whereas the rate is needed
to compensate the lower cross sections for higher momentum transfers.
The LHC, as the most powerful accelerator so far, is able to handle these
challenges.
The LHC is a synchrotron situated in the 26.7 km tunnel of the previous
Large Electron Positron Collider (LEP) near Geneva, Swiss. LEP was
due to the high synchrotron radiation of the electrons/positrons not able
to reach energies needed for the current searches for new particles. The
LHC is a proton-proton collider. This enables the design for a 14 TeV
center-of-mass energy in the proton-proton system, due to the lower syn-
chrotron radiation of protons. The disadvantage of a proton collider is,
that protons are not fundamental. Protons consist of three types of par-
tons; valence quarks, gluons and sea quarks. The valence quarks are two
up and one down quark. The gluons are the mediator of the strong force,
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holding the valence quarks together. The gluons are able to produce
pairs of virtual quarks, which immediately annihilate. This permanent
production and annihilation of quarks leads to a sea of quarks, accord-
ingly called sea quarks. These constituent particles have no well defined
momentum. Only a probability for a given particle to carry a certain
fraction of the proton momentum at a given energy scale can be given
with the Parton Distribution Functions (PDFs), shown in Fig. 3.1. The
PDFs have been precisely measured with dedicated experiments [16]. As

Figure 3.1: The parton dis-
tributions for the LHC [17].

the momenta of the incident partons are not well defined for a hadron
collider the center-of-mass energy in the parton-parton system is un-
known. Undetectable particles are evidenced by missing energy which is
not possible if the incident energy is unknown. To compensate this the
momenta in the transverse plane can be considered. Due to the beam
direction along the z-axis the momenta of the colliding partons are also
along the z-axis. From the momentum conservation in each direction
follows, that the momenta of the produced particles in the transverse
plane should be zero. The rest mass of the SM particles is negligible
against their momentum in high energy physics. Therefore the missing
transverse energy ��ET = −

∑
i(pT )i, where (pT )i are the momenta of all

involved particles, can be used to evidence undetectable particles.
A further disadvantage of a proton collider it the large background due
to QCD-processes, as all partons carry color.
The particle beam is subdivided into bunches. The design time between
two bunch crossings is 25 ns. The collision rate in a collider is given by
the luminosity

L = f
n1n2

4πσxσy
, (3.1)
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Figure 3.2: The integrated
luminosity delivered by the
LHC as well as the taken
data and the data good
for physics from the AT-
LAS experiment are shown
against the date in 2012
Ref. [20].

where f is the bunch-crossing frequency, n1,2 are the numbers of protons
in the colliding bunches and σx,y are widths of the beams in x- and y-
direction. The integrated luminosity

∫
L dt is proportional to the number

N of events observed for each process

N = σ

∫
L dt, (3.2)

with the proportionality constant σ, the cross section of the process. The
LHC is designed for a peak luminosity of 1× 1034 cm−2s−1. This states
an enormous rate and is only surpassed by the b-factories KEKB [18]
and PEP-II [19] running at lower energies.
During one bunch-crossing several protons can interact. The measure-
ments of the particles from the interesting interactions can be therefore
corrupted by particles from further interactions. This is called in-time
pile-up. As the readout windows of several sub-detectors exceed the
bunch spacing, also the so called out-ot-time pile-up can corrupt the
measurements, which are particles from different bunch-crossings.
As these conditions state a new milestone in the field of particle accelera-
tors many new challenges arise and have to be solved. The luminosity as
well as the beam energy are therefor increased stepwise. The data for this
analysis were taken in 2012 at a center-of-mass energy

√
s = 8 TeV with

a bunch spacing of 50 ns. The amount of data good for physics taken in
2012 at the ATLAS detector were

∫
Ldt = 20.3 fb−1, see Fig. 3.2. With

data good for physics is meant that no malfunctions of the detector cor-
rupted the data.
The numbers not explicit mentioned in this section as well as further
details on the LHC can be found in Ref. [21].
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3.1.2 The ATLAS Detector

The ATLAS detector is, just like CMS, a general-purpose particle detec-
tor at the LHC. The ATLAS detector is used for particle identification
as well as for precision measurement of the particle observables, as for
example momentum or energy. This has to be dealt with under the ex-
treme conditions of rate and center-of-mass energy provided by the LHC.

Figure 3.3: The ATLAS
detector with labeled
subsystems, taken from
Ref. [22]. The ATLAS
detector is the largest
general-purpose particle
detector built so far with
a length of 44 m and a
height of 25 m .

The ATLAS detector is built as a series of cylindrical layers of different
detector systems in the barrel region and with similar structured circular
plate layers in the end-cap region, see Fig 3.3. The innermost system is
the Inner Detector (ID). The next components are the Electromagnetic
(EM) and hadronic calorimeters. The outermost system is the muon
spectrometer. A right-handed coordinate system can be placed in the

BP

IP

y

z

x

Figure 3.4: The coordinate
system for the ATLAS de-
tector with the nominal In-
teraction Point (IP) and
the Beam Pipe (BP).

ATLAS detector, illustrated in Fig. 3.4. The x-axis points to the center
of the LHC, the y-axis points upwards and the z-axis follows the beam
pipe. A polar coordinate system can be used as well, where the z-axis
remains on the beampipe, the polar angle φ describes the angle in the x-
y-plane to the x-axis and the azimuthal angle θ is the angle to the beam
pipe. In collider physics the pseudorapidity η is used for the azimuthal
direction instead of the angle θ. η is defined

η = −ln
[
tan

(
θ

2

)]
. (3.3)

The advantage of η is, that differences in pseudorapidity ∆η are Lorentz
invariant. A further advantage is, that the particle rate is almost con-
stant as a function of η. A detailed description of the ATLAS detector as
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well as the numbers mentioned in this section, if not explicitly referenced
otherwise, can be found in Ref. [22].
The different detector systems and subsystems are explained in the fol-
lowing passage.

The Inner Detector

The main task of the ID is the measurement of momentum. It is there-
fore immersed in a solenoidal magnetic field. The magnetic field bends
the tracks of the particles due to their charge and momentum. Hence
the goal is a precision position measurement of the particle tracks. The
innermost component is the silicon pixel tracker followed by a silicon mi-
crostrip tracker (SCT). More details about the pixel detector are given in
Sec. 3.4.1 as it can be used for the measurement of the energy-loss which
is an important observable for the search for heavy LLPS. The silicon
trackers provide high-rate capability as well as high-accuracy position
measurement due to the small size of the pixels and stripes. The outer-
most component is the Transition Radiation Tracker (TRT) consisting of
gas filled drift tubes. The TRT has a worse spatial precision, but states,
as it fills a larger volume, a good compromise between cost and precision.
Beside the momentum measurement the precision measurement can also
be used to reconstruct secondary or displaced vertices. This can be for
example used for b-quark identification.

The Electromagnetic Calorimeters

The electromagnetic calorimeter is a Lead-Liquid Argon (LAr) detector
with the aim of precision energy measurement for electromagnetically
interacting particles. A sampling calorimeter consists of periodic layers
of absorber and sampling material. Particles produce electromagnetic
particle shower in the absorber material, due to Bremsstrahlung and pair
production1. The energy deposit is measured in the sampling material. 1Pair production is

the conversion of a photon
into an electron-positron
pair nearby a nuclei
or electron needed for
momentum conservation.
Bremsstrahlung is the
radiation of photons
from a high-energetic
electron or positron in the
electormagnetic field of
atomic nuclei.

This allows a precise reconstruction of the incident particle energy. The
absorber and the electrodes, used for the readout of the LAr, have an
accordion-shaped geometry offering a crackless design in φ.

The Hadronic Calorimeters

The hadronic calorimeters are the tile calorimeter in the barrel region and
LAr calorimeters in the two end-caps. The principle of hadronic calorime-
ters is very similar to EM calorimeters. The difference is, that the
hadronic particle showers are produced due to strong interactions. The
shower are therefor wider and longer and hence exceed the EM calorime-
ters. The tile calorimeter (TileCal) consists of steel as absorber mate-
rial and scintillating tiles as active medium, whereas the LAr hadronic
calorimeters use copper as absorber and LAr as active medium. More
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details on the TileCal and in particular about the timing information
reconstruction are given in Sec. 3.4.2.

The Muon Spectrometer

The outermost and largest component of the ATLAS detector is the
muon spectrometer. It is used for an independent precision momentum
measurement for muons as they are the only charged SM particles able
to leave the calorimeters. The muon spectrometer is therefore immersed
in a toroidal magnetic field. Also in the muon spectrometer the momen-
tum is reconstructed from the bend of the track in the magnetic field.
The barrel region is equipped with Monitored Drift Tubes (MDT) for
accurate position measurement and Resistive-Plate Chambers (RPC) for
timing measurement. The timing information is essential for the trig-
ger system and can be also used for time-of-flight measurements. In the
end-cap regions MDTs, Thin-Gap Chambers (TGC) and Cathode Strip
Chambers (CSC) are used.

3.2 Production and Interaction of Long-

Lived Particles

This section describes the production mechanisms and the kinematic
properties of LLPs at the LHC. Also the interaction of LLPs and in
particular R-hadrons with the detector material will be discussed.

3.2.1 Production

LLPs are expected to be mostly pair-produced. The reason for that is
the proportionality σ(ab → X) ∝ Γ(X → ab), which is model indepen-
dent2. This means that the production rate of a single LLP X from two2It is only dependent

on mass, spin and color. SM particles a and b is proportional to the decay width to the same SM
particles. The particle can hence either have no significant production
rate and a long lifetime or a high production rate and a short lifetime,
and therefore does not count as a LLP. The dominant production is ei-
ther the rapid decay of a heavy particle to two LLPs or the direct pair
production. For R-parity conserving models only direct pair production
is allowed. The considered production processes are hence gg-fusion, qq̄-
annihilation (shown in Fig. 3.6) and qg-annihilation.
The parton-level differential cross section for this processes can be ob-
tained from the Lagrangian of the model, the masses of the particles and
the couplings. The latter two are free parameters or result from free
parameters of the chosen theory. The double-differential distributions
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Figure 3.5: Examples
for Feynman graphs of
the leading production
processes for LLPs. The
processes shown are pair
production of squarks
(left), gluinos (middle)
and sleptons (right) via
qq̄-annihilation. Also gg-
fusion or qg-annihilation
are possible.

d2σ/(dpTdy) are estimated through the convolution of the partonic dif-
ferential distributions with the parton density distributions. The total
cross section is obtained from the integration over rapidity y and trans-
verse momentum pT [23].

 [GeV]kinE

0 200 400 600 800 1000

no
rm

al
iz

ed
 #

 e
ve

nt
s

0

0.02

0.04

0.06

0.08

0.1
Rhadron [gluino]

mass = 100 GeV
mass = 900 GeV
mass = 1500 GeV

p [GeV]

0 200 400 600 800 1000

no
rm

al
iz

ed
 #

 e
ve

nt
s

0

0.05

0.1

0.15

0.2

0.25 Rhadron [gluino]

mass = 100 GeV
mass = 900 GeV
mass = 1500 GeV

Figure 3.6: The left dia-
gram shows the Rhadron
kinetic energy (Ekin) spec-
trum for different gluino
mass points. The momen-
tum distributions for dif-
ferent gluino mass points
are shown in the right di-
agram.

The left diagram in Fig. 3.6 shows the kinetic energy distributions of
gluino R-hadrons for different gluino masses. The spectra get slightly
broader for higher masses. This is understandable as Ekin states the
energy abundance after the production of the particle mass

Ekin = E −mc2. (3.4)

The energy available is given by the momenta of the two partons, as
their mass is negligible. The parton momenta follow the PDFs for the
given particle types. The kinetic energy spread follows the slope of the
PDF in the region where the partons carry momenta to produce the two
heavy LLPs. A flat PDF in this region means, that the possibility for
parton carrying the minimum momentum is similar to the possibility
of carrying more momentum, resulting in more Ekin for the LLPs. In
the region where the fraction of the momentum is more than ∼ 0.2, the
valence quarks have higher possibilities to carry these momenta. The
quarks have more flat PDFs than the gluons which are dominant in the
region of lower momentum fraction. This is in good agreement with the
Ekin spectra, as they are broader for m > 0.2× 4 TeV.
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The momentum with respect to Ekin and the rest mass m0 can be calcu-
lated as

p = Ekin

√
1 + 2

m0

Ekin
. (3.5)

The momentum as a function of the rest mass for a fixed Ekin = 100 GeV
is shown in Fig. 3.7. Ekin = 100 GeV is chosen as the approximate peak
energy of the Ekin spectra. Following Fig. 3.7 for the masses of 100 GeV,
900 GeV and 1500 GeV a momentum of 150 GeV, 450 GeV and 550 GeV
is expected. This is in good agreement with the peaks of the momentum
distributions for the different gluino masses in Fig. 3.6 (right). For par-

Figure 3.7: Momentum as
a function of the rest mass
for Ekin = 100 GeV.

ticles with masses in the order of the kinetic energy the velocities differ
significantly from the speed of light. This is an important property of
heavy LLPs as they are expected to have mean velocities between 0.4 c
and 0.9 c depending on the rest mass of the particle. Exemplary β distri-
butions for stau particles, R-hadrons and muons are shown in Fig. 3.8.

Figure 3.8: The β distri-
butions for τ̃ particles, g̃
Rhadrons and muons.
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It can be seen that muons are produced with almost the speed of light.
The heavy LLPs have broad velocity distributions, where the mean value
depends on the mass of the particle. For gluino Rhadrons with a mass
of 1300 GeV the velocities range from 25% to 70% of the speed of light.
LLPs are therefore clearly distinguishable from muons, as the main SM
background.
Colored LLPs have to fulfill the quark confinement and therefore hadronize.
The possible states for gluinos are ”mesonic” g̃q1q̄2, ”baryonic” g̃q1q2q3

and ”glueball” g̃g states. For squarks the possible states are ”mesonic”
q̃q̄1 and ”baryonic” q̃q1q2 states. Of particular interest for the search
for heavy LLPs is the composition of charge and uncharged hadronized
states, as uncharged R-hadrons would not leave a signal in the tracking
system. One model describing hadronization is the Lund string frag-
mentation model [24]. In this model the confinement is represented



3.3. SIGNATURES OF PARTICLES IN THE DETECTOR 23

by a string with constant tension. The colored quarks/squarks are at
the endpoints of the string. Thorough the movement away from the IP
the string is pulled out. This means that energy is transferred to the
string. If the energy of the string is sufficient, a quark pair (qq̄) can
be produced. This can repeat for the strings between the new quarks
and the incident quarks. A jet of hadrons forms. The assumption of a
universal composition of light-flavor quarks produced in the hadroniza-
tion can be used. From LEP data the constraints on the composition
is u : d : s ≈ 1 : 1 : 0.3, where diquarks are further suppressed [25].
”Mesonic” states occur more often as less quarks have to be produced.
Important for the interpretation of the results of the MAg search is the
difference between the composition of charged and uncharged sbottom
and stop R-hadron states. From the composition of light quarks pro-
duced in the hadronization, the fractions f of R-hadron states for stop as
exotic particle are f(R+

t̃d̄
) = 39.6%, f(R0

t̃ū
) = 39.6% and f(R+

t̃s̄
) = 11.8%.

The missing 9% are ”baryonic” states. The fractions for sbottom R-
hadron states are basically the same. The only difference between sbot-
tom and stop R-hadron states is, that for sbottomR−

b̃ū
is charged, whereas

R0
b̃d̄

and R0
b̃s̄

are uncharged. Consequently sbottoms tend to hadronize
more often to neutral R-hadron states than stops.
Concluding, LLPs are expected to be mainly pair-produced in the ATLAS
detector. They are expected to have high momenta, which together with
the high mass leads to a low velocity of the particles. As all SM particles
are lighter than the hypothetic LLPs, the velocity states a good discrim-
inator between LLPs and SM background. Colored sparticles hadronize
with light SM particles. As the light SM quarks are two down-type and
one up-type quark, the down-type sbottom more often hadronizes to
neutral states than the up-type stop.

3.3 Signatures of Particles in the Detector

As LLPs have lifetimes sufficient to directly interact with the detector, it
is essential to understand how their signatures in the detector can look
like for different possible scenarios. In the first section the SM particle
signatures in the detector are explained. In the second section important
LLP signatures in the detector are described.

3.3.1 Standard Model Particles

The different signatures of the SM particles are shown in Fig. 3.9.
The Electron is a charged lepton. It produces bent tracks in the ID
due to its charge. As it interacts via the EM interaction, the electron
showers and gets stopped in the EM calorimeter.
The Photon is the mediator particle of the EM force. As it is uncharged
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Figure 3.9: The signatures
of SM particles in the de-
tector. Quarks hadronize
due to the quark con-
finement leading to jet
objects in the detector.
Dashed lines indicate par-
ticles which are not de-
tectedable.
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no track in the ID is expected. Photons interact electromagnetically and
therefore produce particle showers in the EM calorimeters. The signature
is thus large energy deposits in the EM calorimeters with no associated
track in the ID.
The Muon is a high-mass copy of the electron. It therefore produces
a track in the ID. The main energy loss of leptons at high velocities
happens via Bremsstrahlung. This process describes the radiation of a
photon due to the acceleration of the lepton in the fields of nuclei. The
acceleration is indirectly proportional to the mass of the particle. As the
muon mass is 200 times larger than the electron mass, the muon is not
stopped in the calorimeters. The muon has also an associated track in
the muon spectrometer allowing a precision momentum measurement. It
is the only charged SM particle able to leave the detector.
The Neutrino is an uncharged lepton it neither interacts by EM nor
by strong force. The weak and gravitational interactions are negligible
in a general-purpose detector. Hence the neutrino leaves the detector
undetected. The only possibility to evidence the production of neutrinos
is ��ET .
The Jet consists of the hadrons produced due to the hadronization of
colored particles. The charged hadrons in the jet produce a bundle of
tracks in the ID. The directions of these particles are roughly the same
due to the boost of the incident quark. The hadrons produce particle
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showers in the EM as well as in the hadronic calorimeter.

3.3.2 Heavy Long-Lived Particles

LLPs are able to directly interact with the detector. But as they may
arise with very different lifetimes and properties they can leave differ-
ent signatures in the detector. Fig. 3.10 shows signatures considered in
searches with the ATLAS detector.

Muon
Spectrometer

Hadronic
Calorimeter

EM
Cal.

Inner Detector

stable uncharged

displaced vertex

disappearing tracks

stopped

muon-like

chargeflip

Figure 3.10: Signatures of
LLPs in the detector. Most
of the mentioned scenarios
also provide slightly differ-
ent signatures due to dif-
ferent finale state particles.
For this cases one specific is
displayed, whereas the oth-
ers are mentioned in the
text. Dashed lines indicate
particles which are not de-
tectedable.

Stable uncharged LLPs do not interact with the detector and are ba-
sically a high mass copy of the neutrino. These particles are good can-
didates for dark matter, as they do not interact over the EM or strong
force. The searches are based on the associated final state particles and
missing transverse energy. This means that they depend on the produc-
tion mechanism and are thus model dependent
A Displaced Vertex occurs if the LLP decays a significant distance
away from the primary interaction point. The considered displaced ver-
tices have to be within the pixel detector. In these scenarios the LLPs
are uncharged and have lifetimes between pico- and nanoseconds. The
considered decay products in the search for SUSY particles are charged
lepton pairs with one neutrino, as displayed in Fig. 3.10, or at least five
charged particles. The latest published results and further information
can be found in Ref. [26].
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Disappearing Tracks are the signatures of charged LLPs decaying in
the ID to undetectable daughter particles. These signatures occur for
models with an almost mass degenerated charged NLSP with an un-
charged LSP. The decay of the NLSP produces therefore the undetectable
LSP and a soft3 pion. The pion is not reconstructed due to the small3Soft means with low

momentum due to the
small mass difference.

momentum. Ending tracks have thus no associated hits in the outer
tracking region and in the calorimeters. A detailed description of the
searches performed with the ATLAS detector can be found in Ref. [27].
Muon-like are signatures of charged Stable Massive Particles (SMP)
able to fly through the hole detector. SMPs can be either colorless par-
ticles, such as sleptons and charginos, or R-hadrons . Colorless SMPs
are comparable to heavy muons and are therefore not stopped in the
calorimeters due to their high masses. R-hadrons interact differently
with the detector as they are able to interact via the strong force. An
important property of R-hadrons is that the heavy exotic particle does
not significantly contribute to the interaction with the detector material.
The reason for that is, that the interaction of a parton (mass mpar) with
a quark of a nucleus is suppressed by 1/m2

par. Most of the interaction is
thus performed by the light SM particles, whereas the exotic particle acts
as spectator. Hence stable R-hadrons are also able to leave the detector.
Chargeflips are a particular feature of R-hadrons . They can occur due
to the interaction of the SM particles with the detector material. This
can lead to an exchange of particles. If the exchanged quarks carry differ-
ent charges, the charge of the R-hadron changes. The process displayed
in Fig. 3.10 is a charged to uncharged flip. Also the revers process is
possible, but not addressed in dedicated ATLAS searches. The latter
two scenarios, muon-like and chargeflip, are the considered signatures for
the Muon Agnostic (MAg) analysis, which does not include information
from the muon spectrometer in the search for SMPs. The nominal AT-
LAS analysis can be found in Ref. [1].
Stopped R-hadrons are a further interesting scenario for the search for
long lived particles. Some fraction of the producedR-hadrons may lose all
their kinetic energy mainly through ionization energy loss in the detector
material and get stopped. These particles can decay later into the LSP
and hadronic jets. The strategy for the search for stopped R-hadrons is
to look for large activity in the calorimeters in the time between two
bunch crossings. Further information and the latest results can be found
in Ref. [28].
Concluding heavy LLPs leave many different signatures in the detec-
tor partially having no significant SM background. This allows several
model independent searches stating an important piece in the puzzle of
the search for new particles.
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3.4 Observables for the Search for Stable

Massive Particles

Beside the signatures in the detector, heavy LLPs also differ in several
observables significantly from SM particles. The most important for the
search for SMPs are the energy loss and the velocity. The most suitable
subdetector for energy loss measurements is the pixel detector. The
energy loss measurement and the βγ reconstruction will be described in
the first section. The second section is about the time-of-flight velocity
measurement with the TileCal.

3.4.1 Energy-loss

First a motivation for dE/dx as observable for the search for charged
SMPs is given. This is followed by a description of the pixel detector and
the motivation for the usage for the dE/dx measurement. The last part
is about the dE/dx reconstruction and the βγ estimation. The numbers
mentioned in this section are taken from Ref. [22].

Motivation

Charged particles are able to lose energy in material due to the interaction
with the nuclei or the bound electrons. The interaction with the nuclei
is called non-ionising energy loss, whereas the interaction with the elec-
trons is called ionisation energy loss, due to the liberation of the bound
electrons through the interaction. The dominant process for relativis-
tic particles is the ionisation energy loss, described by the Bethe-Bloch
formular〈

dE

dx

〉
=

4πe4Z2
1

mec2β2
n

(
1

2
ln

(
2mec

2β2γ2Tmax
I2
e

)
− β2 − δ

2

)
, (3.6)

with me the mass and e the charge of the electron, n the volume density
of electrons in the material, the velocity βγ of the particle traversing the
material, Ie the mean ionisation potetial of the material and Tmax the
maximum energy transfer to a free electron in a single collision

Tmax =
2mec

2β2γ2

1 + 2γme
M

+
(
me
M

)2 , (3.7)

which reduces to Eq. 3.8 for heavy particles.

Tmax = 2mec
2β2γ2 (3.8)

Following this, a high dE/dx is expected for slow LLPs. This can be
seen in Fig. 3.11.
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Figure 3.11: The energy
loss reconstructed with the
pixel detector for tracks as
a function of momentum
times charge (left). The
most probable value dis-
tributions of pions (solid),
kaons (dashed) and pro-
tons (dotted) are super-
imposed. The expected
distributions for Rhadrons
with several g̃ masses are
shown in the right diagram
[1].

q p (GeV)
-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

)2
cm

-1
dE

/d
x 

(M
eV

 g

0

1

2

3

4

5

6

7

8

9

10

1

10

210

310

410

510ATLAS Data 2010

p
+

K+π

p
-

K -π

The dE/dx observable can be used to distinguish SM particles from
heavy charged SMPs. As Eq. 3.6 is only dependent on material specific
quantities, dE/dx can further be used for a βγ estimation. This together
with the momentum measurement through the bend of the track in the
ID allows a mass estimation for the particle. The mass can be calculated
using

mβγ =
p

βγ
. (3.9)

The mass is the quantity of interest as it is a property of the particle
and a free parameter in the Lagrangian of the possible new theories.
It therefore reduces the parameter space for possible new theories and
might allow predictions for further particles.

Pixel Detector

The pixel detector consists of three concentric layers with 1456 modules
in the barrel region and 3 layers on each side in the end-caps with 288
modules. The Insertable B-Layer (IBL) was placed as additional fourth
layer during the long shutdown 2013-15 inside the existing layers. It is
placed on the renewed beam pipe, for details consult Ref. [29]. The IBL
is equipped with 224 modules. The modules have a size of 19× 63 mm2

and consist of 46080 pixels. The size of a single pixel is 50 × 400 µm2.
The pixels are linked via bump bonds to the front-end readout chips.
The bare signal is preamplified in the readout chip to a signal with a
width proportional to the deposited charge in the pixel. The number of
25 ns clock cycles, where the signal exceeds a programmable threshold
(time-over-threshold ToT) is digitized and stored as 8 bit signal.
The pixel detector produces a stable ToT signal for a wide range of
charge deposits. This allows the most precise dE/dx measurement of
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the ATLAS subsystems. It is further well suitable as it is the innermost
component of the detector and thus particles would not have lost a sig-
nificant amount of energy on their way from the IP to the pixel detector.
Also the small thickness of the pixels is an advantage as it ensures a
constant dE/dx for all pixel layers.

βγ Estimation

Particles mostly deposit their whole charge not in one single pixel. Hence
the charge deposit in a pixel layer is calculated as the sum over a cluster of
pixels. The energy loss can be calculated from the cluster charge deposit
Q, the average energy needed for the production of an electron-hole pair,
W= 3.68 eV [30], the thickness of the silicon d, the angle of incident α
and the silicon density ρ with

dE

dx
=
QW cosα

eρd
. (3.10)

The dE/dx measurements for each cluster follow a Landau distribution,
as shown in Fig. 3.12.
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Figure 3.12: The clus-
ter dE/dx measurments
for 2010 Data and Monte
Carlo [31].

An average of three associated pixel clusters was obtained for the tracks,
according to the three detector layers. Due to this small statistics, av-
eraging of the measurements would give the most probable value of the
Landau distribution instead of the overall mean described by the Bethe-
Bloch formula. To ensure that no measurements from the tail of the Lan-
dau distribution smear the dE/dx measurement, the truncated dE/dx
averaging is used. The truncated mean is calculated from the 70 % lowest
energy loss measurements. For the pixel dE/dx this means, that mostly
the measurement with highest energy deposit is excluded from the aver-
aging.
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For the βγ estimation it is essential to know, that the averaging gives
the Most Probale Value (MPV) not the mean, because this means that
the Bethe-Bloch formula could not be used. Instead the five parameter
function Eq. 3.11 is used.

MPVdE/dx(βγ) =
p1

βp3
ln(1 + (|p2|βγ)p5)− p4 (3.11)

The free parameters p1...p5 are fixed by the fit to the MPV distributions
for kaons, pions and protons in Fig. 3.11 left. A detailed description
of this parametrization can be found in Ref. [31]. βγ is obtained by
inverting Eq. 3.11.
For the new run in 2015 the dE/dx measurement will improve as with
the IBL an average of four measurements per track is expected.

3.4.2 Time-of-Flight

This section describes the time-of-flight velocity measurement with the
TileCal. The first part gives a motivation for usage of the TileCal for
time-of-flight measurement. This is followed by a description of the tim-
ing extraction from the TileCal signal. The last part is about the β
estimation.

Motivation

The TileCal is a subsystem suitable for time-of-flight measurements. The
most precise time-of-flight measurements can be done with the muon
spectrometer. For the full-detector analysis described in Ref. [1] both
the TileCal and the muon spectrometer are used for a combined β es-
timation. The MAg search, described in Sec. 4.3, aims to be sensitive
to R-hadrons undergoing a chargeflip from charged to uncharged. It
therefore does not include informations from the muon spectrometer, as
uncharged R-hadrons would not be detected there. Hence the time-of-
flight measurement with the TileCal is the best available for the MAg
analysis.
Also with the β measurements a mass estimation is possible. Again an
additional momentum measurement is necessary for the mass estimate.
Eq. 3.12 is used to calculate the mass from the velocity β and the mo-
mentum p.

mβ = p

√
1

β2
− 1 (3.12)

The TileCal β estimate is important as it states a complementary velocity
measurement to the βγ estimate from the pixel dE/dx.
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Tile Calorimeter

The TileCal is the barrel subdetector of the hadronic calorimeters. It
consists of three cylindric sections, the barrel and the two extended bar-
rels. Each barrel consists of 64 modules in φ with a size of ∆φ = 0.1 rad.
The layout of a TileCal module is shown in Fig. 3.13. Steel is used as
absorber and scintillating tiles as active medium. The absorber and tile
plates are placed staggerd in r-direction and periodic in z-direction. The
tiles are read out on both sides with wave-length shifting fibers. The
fibers root to different photomultipliers (PMT) placed on the upper side
in r-direction. The modules are substructured through the grouping of

Wavelength Shifting Fiber

Scintillator Steel

Source

Tubes

PMT

Figure 3.13: Design of a
ATLAS Tile Calorimeter
module [22].

fibers to specific PMTs. These substructures are referred to as cells. The
layout of the cells is shown in Fig. 3.14. The dimensions and shapes of
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Figure 3.14: Layout of the
TileCal cells and their la-
beling. The design of the
cells in negative z-direction
is symmetric.

the cells are different. The innermost cell A1 for example has a size of
∼ 25× 25 cm, whereas the outermost cell D6 has a size of ∼ 1× 1.5 m.
The shape of the cells of sampling scheme 13 (see Fig. 3.14) are ba-
sically two shifted rectangular cells. This shape is chosen two have a
quasi-projective geometry. The η extension of the cells is similar, with
∆η ≈ 0.1 for the barrel cells and ∆η ≈ 0.2 for the extended barrel cells.
The signal from the PMTs is amplified and shaped in the front-end elec-
tronics. The FWHM of the signal pulse is fixed to about 50 ns [32]. The
front-end-electronics produces a high and a low gain pulse. Each signal
is digitized by an Analogue to Digital Converter (ADC). The signals are
sampled every 25 ns and the values are stored in the Tile Data Man-
agement Unit chip until the event is accepted by the first-level trigger.
The samplings are synchronized with the 40 MHz system clock, whereby
the fourth sampling corresponds to the point in time where a particle,
produced at the nominal IP and traveling with the speed of light, arrives
at the center of a cell. The high-gain signal is used for the signal recon-
struction, except the ADC saturate. For that case the low-gain signal is
used.

Signal Reconstruction

The signal reconstruction has the aim to estimate the three main char-
acteristics of a signal pulse: amplitude, pedestal and phase (Fig 3.15).
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Figure 3.15: The TileCal
signal pulse with the seven
samplings (dots) [32].

The algorithm used has to handle two challenges. It has to be fast4 and4The processing time
for one signal reconstruc-
tion has to be below 10 µs.

it has to be stable against electronic noise and pileup fluctuations. The
algorithm used is the Optimal Filtering (OF). The OF uses weighted lin-
ear combinations of the seven samplings Si to calculate the amplitude A,
the pedestal p and the phase τ (Eqs. 3.13).

A =
n∑
i=1

aiSi, Aτ =
n∑
i=1

biSi and p =
n∑
i=1

ciSi (3.13)

The weights ai, bi and ci are obtained by minimizing the variance of the
parameters against the electronic noise and pileup fluctuations. Further
a knowledge of the signal pulse shape is needed. The pulse shape was
precisely measured with test beams and validated with collision data.
The quantity of interest for the search for SMPs is the phase from now on
called cell time tcell, which is the time difference of the peak of the pulse
to the fourth sampling. It is therefore a measure for the relative time to
a particle originating from the IP, traveling with the speed of light and
arriving at the cell center. This allows to calculate the time-of-flight of
the particle with Eq. 3.14, where d is the distance from the IP to the
center of the cell.

tToF = tcell +
d

c
(3.14)

One problem of this measurement is, that the OF algorithm is optimized
for small phases: tcell < 10 ns. SMPs, as they are expected to be signif-
icantly slower than the speed of light, are able to arrive within the full
readout window of 75 ns. For example a particle with 0.2 c would arrive
at an outer cell, with a distance to the IP of 5 m, 66.7 ns after a particle
traveling with the speed of light. The OF algorithm does not reconstruct
the correct cell time for larger values of the tcell. The reason for that is,
that the OF is based on a linearization of the pulse time dependence.
For larger values of tcell higher orders getting more and more important
and hence corrupt the tcell measurement. For further information see
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Ref. [32].
To allow precise time measurements a time calibration is needed. The cal-
ibrations done for the ATLAS Tile Calorimeter are described in Ref. [33].
Corrections are mostly applied, due to differences in the fiber lengths.

β Estimation

With the time-of-flight information from the TileCal signal a β estimation
for each passed cell can be done with Eq. 3.15.

βcell =
dcell

tcellc+ dcell
(3.15)

As the TileCal consists of three layers of cells the particles are expected
to transverse several cells as can be seen in Fig. 3.16. The particles # hit cells

0 1 2 3 4 5 6 7

ar
bi

tr
ar

y 
un

it

0

50

100

150

200

250

300

310×

Figure 3.16: The number
of passed TileCal cells for
muons.

deposit energy in each cell passed due to the energy loss in the detector
material. Due to that, several beta measurements for a given particle are
possible. To obtain the most precise β estimation, these measurements
are combined to a mean β̄. The single β measurements have very different
uncertainties due to the energy deposit and the distance of the cell to the
IP. Therefore it is essential to use a weighted mean estimation. For the
weights the uncertainties of the β measurements have to be calculated.
The main contribution to the β estimation is the σtcell(Edep) according to
the energy deposit in the cell. The timing resolution can be parametrized
from data, shown in Fig. 3.17.

E [MeV]

2000 4000 6000 8000

 [n
s]

tσ

1

2

3

4

5

6

Data 2012

2/E)2
2

+(p2)E/2
1

(p

=109.13
1

p
=1997.13

2
p

Figure 3.17: Functional
parametrization of
σtcell (E) for muons.
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The σtcell values are obtained from the tcell distribution as a function
of the energy deposit in the cell. The distribution is divided into slices
in E. Each slice is fitted with a Gaussian and the σ of the Gaussian is
used as uncertainty of tcell. This can be done as muons are expected to be
produced with almost the speed-of-light and therefore no bias is expected.
More details on this will be given in Sec. 4.2.7. To ensure a reasonable
tcell measurment and to suppress detector noise, only cells passed with an
energy deposit E > 500 MeV, are included in the averaging. The mean
is calculated for β−1 as it ensures, due to the proportionality to tcell, that
it is also normally distributed. Hence it is allowed to calculate the mean
by

β−1 =

∑N
i=0 β

−1
i /σ2

β−1
i∑N

i=0 1/σ2
β−1
i

, (3.16)

where
σβ−1

i
=
σtcell
d

. (3.17)

The overall uncertainty of β−1 is accordingly given by

σ2
β−1 =

1∑N
i=0 1/σ2

β−1
i

. (3.18)

From that the uncertainty of β is obtained through error propagation as
σβ = β2σβ−1 .

3.5 Summary

The LHC with the ATLAS detector was described in this section as the
experimental setup For the studies presented in the following chapter. It
was further motivated that heavy LLPs would be mainly pair produced
with high momenta at the LHC. The high mass leads to slow velocities
of the LLPs, compared to SM particles. Further the signatures of LLPs
compared to SM particles have been discussed. From that a motivation
for the MAg search was given being sensitive to SMPs and in particular
to R-hadrons undergoing a charge-flip. Finally the dE/dx measurement
with the pixel detector and β estimation with the TileCal were intro-
duced. These observables allow two independent velocity measurements,
which therefore are able to be less affected by detector mis-measurements
constituting the main background for the search for SMPs. With the
reconstructed velocities and a momentum measured in the ID a mass
estimation is possible.



Chapter 4

Search for Stable Massive
Particles

4.1 Data and Simulated Event Samples

Several samples are needed for the studies on β estimation with the
TileCal as well as for the Muon Agnostic search. These samples are
presented in this section.

4.1.1 Data Event Samples

The data used for the validation of the corrections on the β estimation
and for the MAg analysis were taken at a

√
s = 8 TeV in 2012.

Events excepted by a subset of triggers are stored in a stream, e.g. events
accepted by muon triggers are stored in the muon stream. Also event
pre-selection requirements can be applied to events stored in a stream.
For the validation of the β estimation a dedicated Z → µµ stream is used.
In the MAg analysis data events stored in the JetTauEtmiss stream are
used. In the nominal analysis also the HadDelayed steam was used, which
states an important difference between this analysis and the nominal one.

Z → µµ Stream

For the validation of the studies on the β estimation the Z → µµ stream
is used. Muons from Z → µµ are good to identify in data and, as
muons are the main backgrounds for the search for SMPs, suitable for
the validation of the β corrections. The integrated luminosity of the
Z → µµ enriched data samples is

∫
L dt ≈ 19.3 fb−1

In the Z → µµ stream an event pre-selection is applied. In each event
at least one vertex with three associated tracks is required. The vertex
position in z-direction has to be within −150 mm < zvertex < 150 mm
from the origin of the ATLAS coordinate system. Furthermore at least
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one muon, reconstructed with the StacoMuon or the Muid algorithm,
with pT > 20 GeV is required. An invariant mass of the two Z → µµ
muon candidates larger than 55 GeV is required.

RPVLL JetTauEtmiss Stream

In the JetTauEtmiss stream all events accepted by either a jet, a tau or
a ��ET trigger are stored. The integrated luminosity of the JetTauEtmiss
samples is

∫
Ldt ≈ 18.8 fb−1. For this analysis the RPVLL JetTauEtmiss

stream is used, which has a event pre-selection applied. The events are
required to have at least one ID track with pT > 80 GeV, at least six hits
in the SCT and at least two hits in the pixel detector.

HadDelayed stream

In the nominal MAg analysis, beside the JetTauEtmiss stream, also the
HadDelayed stream was used. Due to technical reasons this was not
possible for this analysis. In the HadDelayed stream a 20 GeV lower
unprescaled��ET trigger threshold is available. The rate of events accepted
by the lower ��ET threshold would be to high for the event processing. To
enable the lower threshold, events are kept in the pipeline to be processed
in time windows with no normal processing.

4.1.2 Simulated Samples

For the studies on the β estimation as well as for the MAg analysis several
MC simulated samples are needed, which are presented in the following.

Z → µµ Samples

For the studies on the improvement of the β estimation a sample is used
containing ∼ 1 million Z → µµ events. The events are generated with
Pythia6 [34].

Signal Samples

The signal samples contain events of pair produced gluino, sbottom and
stop R-hadrons, respectively. Each signal point gluino R-hadron sample
contains 20,000 events, whereas the sbottom and stop R-hadron samples
contain only 10,000 events. The events are generated with Pythia6
using special routines for the modeling of the hadronization [35]. The
”gluinoball” fraction is assumed to be 10% for all gluino mass hypothe-
ses. The interaction of R-hadrons with the detector is simulated with
Geant4 [36] using different scattering models. For gluino R-hadrons the
generic scattering model is used, whereas for sbottom and stop R-hadrons
the regge scattering model is used. An explanation of both scattering
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models can be found in Ref. [10]. The gluino R-hadron samples are pro-
duced for mass hypotheses between 100 GeV and 1600 GeV. For sbottom
and stop R-hadrons samples are produced, for mass hypotheses between
100 GeV and 1200 GeV.
To be able to compare MC events with data, the MC events have to be
weighted according to the expected cross section of the signal and the
integrated luminosity of the used data samples. The weight w is given
by

w =

∫
Ldt · σ
N

(4.1)

with σ being the cross section of the process and N being the number of
events in the signal sample.
The signal cross sections are taken from the nominal analysis [1] and are
shown in Tab. 4.1.

Mass [GeV] σ gluino R-hadrons [pb] σ sbottom/stop R-hadrons [pb]

100 2.93·104 5.60·102

200 9.35·102 1.85·101

300 9.87·101 2.00·100

400 1.77·101 3.57·10−1

500 4.21·100 8.56·10−2

600 1.21 ·100 2.48·10−2

700 3.92·10−1 8.11·10−3

800 1.39·10−1 2.89·10−3

900 5.27·10−2 1.09·10−3

1000 2.11·10−2 4.35·10−4

1100 8.76·10−3 1.79·10−4

1200 3.74·10−3 7.62·10−5

1300 1.64·10−3

1400 7.25·10−4

1500 3.24·10−4

1600 1.46·10−4

Table 4.1: Cross sections
for gluino, sbottom and
stop R-hadrons.
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4.2 Studies on β Estimation

The calorimeters are in primarily not built for precise time measurements.
Consequently not much optimization has been done until 2012. Therefore
corrections on tcell are discussed in this section. Furthermore possible
corrections on the β estimation will be presented.

4.2.1 Z → µµ candidate selection

For the validation of the corrections Z → µµ candidates in data are
used. The selection criteria for the candidates are shown in Tab. 4.2
and are be discussed in the following. The selection criteria follow the
recommendations of the ATLAS Muon Combined Group.

Table 4.2: The Z → µµ
candidate selection.

Description Value

Track to Muon match Ntrack
µ (∆Rtrack µ < 0.1) =1

Minimum transverse momentum track ptrackT > 20.0 GeV

Sensible momentum 20.0 GeV < ptrack < 4.0 TeV

Isolation from high momentum jet ∆Rjet,pT>40.0 GeV > 0.3

Isolation from high momentum track ∆Rtrack,pT>10.0 GeV > 0.25

Central longitudinal and radial vertex position |z0| < 10.0 mm, |d0| < 2.0 mm

At least six SCT hits or passed dead sensors Nhits
SCT +Ndead

SCT > 5

At least two pixel hits or passed dead sensors Nhits
PIX +Ndead

PIX > 1

Less than three pixel and SCT holes Nholes
PIX +Nholes

SCT < 3

At least six TRT hits Nhits
TRT > 5

Two muon candidates Nµ = 2

Invariant mass muons in Z mass window |m(cand(m = mµ), µ)−mZ | < 10 GeV

Beside the general track quality requirements, described in detail for
the MAg analysis in Sec. 4.3.2, some specific criteria are applied for the
Z → µµ selection. The candidate tracks are required to have exactly
one muon candidate reconstructed by the StacoMuon algorithm with
∆R < 0.1. Two candidates with pT > 20 GeV are required in each
event. From the two candidates the invariant mass is reconstructed and
is required to be within a 10 GeV mass window of the Z boson mass.

4.2.2 Cell-Time Smearing

Motivation

To be able to compare data and MC it is essential that the simulated
and measured quantities behave similar. The uncertainty on the tcell
measurement estimated from Z → µµ MC and data show quite large
discrepancies. The tcell distributions for the cell BC8 is shown in Fig. 4.1.
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Figure 4.1: tcell distribu-
tions for muons from Z →
µµ MC and data .

For cell BC8 the width of the tcell distribution in data is more than twice
the width seen in MC. It is therefore essential to introduce a smearing
of tcell. The discrepancy might be due to an incorrect modeling of the
produced photons in the tiles and in the wavelength-shifting fibers.
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Figure 4.2: Uncertainty on
tcell in each cell for MC
muons. The labeling of
the cells is according to the
names in Fig. 3.14.

The differences between data and MC depend on the cell that is consid-
ered. This can be seen in Fig. 4.2 and Fig. 4.3. For example for cell D6
the uncertainties differ only by a factor of 1.8, whereas for cell A15 they
differ by a factor 3.0. Thus a smearing of tcell has to be done in each cell.
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Figure 4.3: Uncertainty on
tcell in each cell for data
muons. The labeling of
the cells is according to the
names in Fig. 3.14.
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Implementation

The smeared tcell distributions have to have the same Gaussian shape as
the initial tcell distribution. It is further assumed that the mis-measurements
are normally distributed. Therefore it can be used, that the sum of two
independent normally distributed random variables is also normally dis-
tributed. For the smearing this means, that the normally distributed tcell
in MC (Eq. 4.2) plus a normally distributed smearing factor (Eq. 4.3)
should give the normally distributed tcell seen in data (Eq. 4.4).

tcell,MC ∼ N(t̄cell,MC , σ
2
tcell,MC

) (4.2)

tsmear ∼ N(t̄smear, σ
2
tsmear) (4.3)

tcell,MC + tsmear = tcell,Data ∼ N(t̄cell,MC + t̄smear, σ
2
tcell,MC

+σ2
tsmear) (4.4)

Accordingly the smeared tcell,MC can be calculated with

tcell,smeard = tcell,MC − (t̄cell,MC − t̄cell,Data) +RndGaus (0, σtsmear) , (4.5)

where

σtsmear =
√
σ2
tcell,Data

− σ2
tcell,MC

. (4.6)

The RndGaus gives a random number following a Gaussian with mean
at zero and σtsmear as spread. The smeared tcell is consequently obtained
from the previously measured mean and uncertainty of tcell in data and
MC for each cell.
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Figure 4.4: The tcell dis-
tributions for data and
smeared MC for all mea-
surements.

Results

The resulting tcell distribution for all cells is shown in Fig. 4.4.
The distributions for MC and data are in good agreement after the smear-
ing of MC. Some issues still remain as the two distributions have not
exactly the same shape. The reason for that is the incorrectly modeled η
dependence, which will be discussed later in this section. The smearing
is applied similar to the smearing in the nominal analysis [1].
This smearing can also be applied for the signal samples, as the discrep-
ancies seem to arise due to a mis-modeling of the detector and are thus
independent of the particle type.

4.2.3 Cell-Time Correction

Motivation

As previously mentioned the tcell estimation using the OF algorithm is
optimized for tcell < 10 ns. As SMPs are expected to have also longer tcell,
the behavior of the estimated β for longer tcell has to be studied. There-
fore gluino R-hadron samples are used. The R-hadron candidate tracks
are matched to truth particles. This allows a comparison of the truth
βtruth and the estimated βest. The behavior of βest − βtruth as a function
of tcell is shown in Fig. 4.5. For a better visualization βest − βtruth = ∆β
is normalized to βtruth.
For tcell < 20 ns the estimated β looks reasonable. The fluctuations to
higher values in the very low tcell region and to lower values in the higher
tcell region are due to pile-up. To validate this the events are split in
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Figure 4.5: ∆β/β as func-
tion of the cell time. For
low cell times the esti-
mated β is reasonable and
has only some fluctuations
due to pile-up. Whereas
for higher cell times the es-
timated β is to low.
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events with high and low pile-up, respectively. High pile-up events are
events with more than 23 interactions per bunch-crossing, whereas low
pile-up events are required to have less than 23 interactions per bunch-
crossing. For events with high pile-up 0.98±0.02% of all β measurements
are in the tail, where ∆β/β > 0.3, whereas for the events with low pile-
up only 0.81± 0.02% are in this region.
For tcell > 20 ns a bias of ∆β/β can be seen. This is due to the worse
performance of the OF for higher values of tcell. Using a functional
parametrization to correct for the deviation from ∆β = 0 was suggested
in Ref. [3]. The implementation of this correction will be presented in
the following.

Implementation

To correct for the tail seen in Fig. 4.5 the form has to be functionally
parametrized. To use the parametrization for the correction, βest−βtruth
is not normalized by βtruth, as shown in Fig. 4.6 (left). The histogram is
divided into slices along the tcell axis. Each slice is fitted with a Gaussian
function, shown in Fig. 4.6 (right). The mean of the Gaussian is used as
point for the parameterization f(tcell) of the deviation from ∆β = 0.
The computer program Eureqa [37] is used to obtain f(tcell). Eureqa
combines user given mathematical blocks as +, -, *, /, cos, ... to fit mul-
tidimensional data points. The combination of these blocks is performed
by genetic algorithms. These algorithms optimize the fit on the basis
of complexity and fit quality by mating, mutating and terminating the
expressions. The best compromise between fit quality and complexity for



4.2. STUDIES ON β ESTIMATION 43

β/β∆ 

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

 [n
s]

ce
ll

t

0

10

20

30

40

50

60

70

80

0

200

400

600

800

1000

1200

1400

1600

β ∆

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

nu
m

be
r

0

2000

4000

6000

8000

10000

12000

14000

16000 ATLAS Work in Progress

Rhadron
= 8 TeVsMC 2012    

m=100...1600 GeV
Slice 8.0ns - 11.2ns
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the fit to the points shown in Fig. 4.6 (left) represents

f(tcell) = −0.0212− 0.00175tcell − 0.00579cos(−0.127tcell). (4.7)

This is used to calculate the corrected β with

βcor(tcell) = βest − f(tcell). (4.8)

Results

The corrected distribution is shown in Fig. 4.7. The β-resolution is now
centered around zero and thus no bias of β is left. For the combined β
estimation (Fig. 4.8) it can be seen, that this correction is important, as
the long tail to low βest is gone as expected. Further the mean of the
distribution is almost at zero for the corrected β. The influence of this
correction on the β estimation for muons as main background is shown
in Fig. 4.9. In data as well as in MC the width of the β distributions are
slightly smaller.
All in all the time correction applied to β improves the estimate signifi-
cantly for signal and also slightly for background candidates.
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Figure 4.7: ∆β/β as func-
tion of the cell time for the
time corrected β.
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Figure 4.8: β resolution for
Rhadron candidates with
and without time correc-
tion.

β/β∆

0.5− 0.4− 0.3− 0.2− 0.1− 0 0.1 0.2 0.3

fr
ac

tio
n 

ca
nd

id
at

es

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04 R-hadron m=100...1700 GeV

 = -0.074
uncor

β
 = 0.069uncorσ

 = 0.016
cor

β
 = 0.054corσ

Figure 4.9: β distribution
for muon candidates from
Z → µµ in MC and data
with and without the time
correction. The β distri-
bution looks basically the
same as the β-resolution
distribution for muons as
they are expected to have
βtruth = 1.

β

0.6 0.8 1 1.2 1.4

µ
fr

ac
tio

n 

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04
µ µ →MC Z

 = 0.989
uncor

β
 = 0.0919uncorσ

 = 1.017
cor

β
 = 0.0907corσ

Data

 = 0.99
uncor

β
 = 0.0843uncorσ

 = 1.017
cor

β
 = 0.0824corσ



4.2. STUDIES ON β ESTIMATION 45

4.2.4 Dimension Correction

Motivation

One assumption of the standard β estimation is, that the particles fly
trough the center of the cell. Accordingly the tcell is assumed to be
measured at the cell center. For cells with a size up to 1 m× 1.5 m this
does not hold and a dependence of βest on the incidence angle is expected.

Figure 4.10: The β-
resolution as a function
of η for the cells of the D
layer.

This dependence is shown in Fig. 4.10 for the cells of the outermost layer.
The variation is most pronounced for the outer cells ±D5 and ±D6. This
is in good agreement with the expectations as these are the largest cells.
In Ref. [3] a fit correction for the bias of βest as function of η in each cell
is suggested. I developed a correction that is based on the length of the
track in the cell, which does not need any previous parametrization for
the correction. The implementation of both methods will be explained
in the following.

Implementation

The fit correction for the η dependence works similar for the fit correction
for the time dependence. The histogram of ∆β as a function of η is
divided into slices in η. Each slice is fit with a Gaussian function. The
means of the Gaussians are parametrized with

f(η) =
−p0 + p1 + η

p1

. (4.9)

The parameters are estimated for each cell separately. β is then corrected
with Eq. 4.10 according to the cell passed.

βcor = βest − fcell(η) (4.10)
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The correction that uses the length of the tracks in the cell is from now
on referred to as DistCor. The DistCor uses the trajectory of the track to
reconstruct the position where tcell is actually measured. For a particle
with speed-of-light traversing the center of the cell, the center is the
position, where the time is measured. The idea is, that the position,
where tcell is actually measured, is at the same phase of the track in the
cell, as the cell center on a track through the center of the cell. This

Figure 4.11: The recon-
structed position dtrk of
the time measurement for a
particle following the green
track. The blue dashed line
refers to a particle travel-
ing with the speed-of-light
traversing the cell center.

r

z

is illustrated in Fig. 4.11. As the cells have a rectangular shape, the
center of the cell is always at the half length of the track in the cell. The
position, where tcell is measured, is therefore at the half length of the
track in the cell. For the new distance two things have to be calculated:
The length of the track in the cell (lTrkCell) and the distance of the IP
to entrance point of the particle in the cell (dTrk,In). The exact positions
and the dimensions of the cells are known. From the dimension and
the position of the cell, the length of the track as well as dTrk,In can be
calculated from geometrical considerations. The new distance for the β
measurement is given by

dcor = dTrk,In +
lTrkiCell

2
. (4.11)

This works well for all cells except the cells those in sampling 13 due to
their different shape. The cells of sampling scheme 13 (see Fig. 3.14) are
basically two shifted rectangular cells, as illustrated in Fig. 4.12. It can
be seen, that a track of a particle can have two separated parts in the
cell. To estimate the new distance in that case, two signal pulses are
considered shifted by the time difference between the peaks in the two
cells. The new distance can be estimated from the peak of the summed
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r
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Figure 4.12: The shape of
a cell of sampling scheme
13 (see Fig. 3.14) with
a particle track traversing
the cell. All important po-
sitions on the track for the
estimation of dnew are la-
beled.

pulse signals. The signal pulse shape is measured in dedicated calibration
runs. The pulse shape was functionally parametrized using Eureqa. The
resulting parametrization for a signal amplitude of one is

f(t) = e
−t2

(41.5+0.16t)2 (4.12)

As the estimation of the peak with this parametrization is only possible
numerically, a Gaussian function was used instead. The parametrization
with a Gaussian is given by

f(t) = e
−t2
44.42 . (4.13)

That this simplification is reasonable can be seen in Fig. 4.13. It shows

Figure 4.13: The pulse
shape obtained with Eu-
reqa (red) and the Gaus-
sian (blue) in the left fig-
ure. The difference be-
tween the shape from Eu-
reqa and the Gaussian in
the right figure.

the two considered pulse shape functions in the left plot. It can be seen,
that the deviation in the peak region is very small whereas the differences
in the tails are larger. The difference in the peak region is shown in the
right figure. As the distance between the peaks does not exceed 0.5 m
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the time difference between the peaks for a particle flying with 0.3 c is
about 5 ns. From Fig. 4.13 right it can be seen that for this case the
deviation is far below 1 %. The assumption to use a Gaussian is hence
reasonable. The combined pulse is accordingly given by

fcomb(t) = Ae
−t2
44.42 +Be

−(t−b)2

44.42 , (4.14)

with A the amplitude of the first pulse, B the amplitude of the second
pulse and b the time difference between the pulses. The peak of the first
pulse is set to zero as only the difference between the pulses is of interest.
The peak can be calculated from the derivative of the combined pulse
function with

dfcomb(t)

dt
= − 2At

44.42
e

−t2
44.42 − 2B(t− b)

44.42
e

−(t−b)2

44.42
!

= 0. (4.15)

The difference between the single pulses should not be significantly more
than 5 ns as previously mentioned. Thus the peak of fcomb should not
differ more than 3 ns from the single peaks. This allows to set the
exponential parts to one as the exponents are almost zero. Therefore
Eq. 4.15 reduces to

−At−B(t− b) !
= 0. (4.16)

The time of the combined peak is then given by

tPeak =
bB

A+B
. (4.17)

The amplitudes of the signals are a measure for the energy deposit in the
cell. With the assumption of a constant dE/dx in the cell, the length of
the track in the cell can be used instead of the amplitude in Eq. 4.17. It
is further assumed, that β does not change significantly in the cell. With
dnew = βtpeak and d̄2 − d̄1 = βb, the new distance for the β estimation is
given by

dnew = d̄1 +
(d̄2 − d̄1)l2
l1 + l2

. (4.18)

Where l = dOUT − dIN states the length of the track in the cell.
Hence an estimation of a corrected distance for all cells of the TileCal is
possible. The corrected β can be estimated by

βcor =
dnew

tcellc+ dcell
. (4.19)

Results

To understand the influence of the corrected distance, Figs. 4.14 and 4.15
show dnew and dcenter in the direction of the trajectory of the particle.
The dimension of the cell are shown with the entrance and exit points of
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Figure 4.14: The TileCal
cells in z–r-plane in black
and in blue dnew in the di-
rection of the trajectory of
the particle.

Figure 4.15: The TileCal
cells in z–r-plane in black
and in red the distance of
the IP to the cell center in
direction of the trajectory
of the particle.

the particles in the cell (black).
The new distance as a function of η in each cell has three different re-

gions according to the side of the entrance and exit, respectively. It can
be further seen, that for the cells of sampling scheme 13 (see Fig. 3.14)
some of the dnew values seem to fluctuate. This is due to tracks hitting
only one part of the two-parted cell. The signal stops at a certain angle
in cell ±A16. The reason for that is the requirement for the candidates
to have η < 1.65.
It is further interesting to consider the difference between dcenter and dnew
as a function of η, shown in Fig. 4.16.
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Figure 4.16: Difference be-
tween dcenter and dnew as
a function of η for cell D5.

It shows the difference between the actual position where tcell is measured
and the position that was used for the β estimation in the nominal anal-
ysis. It can be seen, that the distribution is asymmetric in dcenter− dnew.
The high η region differs by up to ∼ 300 mm, whereas the low η region
only differs by up to ∼ 200 mm. The cell times are accordingly quite
asymmetric especially in the outer cells. This means, that the mean of
tcell is expected to be shifted for these cells.
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Figure 4.17: Distribution
of the uncorrected ∆β/β as
function of η for cell D6 in
MC.
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Figure 4.18: Distribution
of ∆β/β with the distance
correction (left) and the
linear correction (right) as
function of η for cell D6 in
MC.
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As the effect of the distance correction on the β estimation is strongest
for the outermost cells, D6 is used for the intepretation of the results
of the corrected β. The uncorrected β shows a bias as a function of η,
shown in Fig. 4.17. The influence of the linear correction and the distance
correction on the β estimation in MC is shown in Fig. 4.18. It can be
seen, that for the linear correction no bias remains, whereas the distance
correction only slightly improves the β estimation as the deviations are
smaller, but a correlation between βDistCor and η remains.
The correlation between β and η can be also seen in data for muons pass-
ing the Z → µµ selection. The uncorrected β as a function of η is shown

Figure 4.19: Distribution
of uncorrected β as func-
tion of η for cell D6 in
Data.

η
1 1.1 1.2 1.3 1.4 1.5

β

0.4

0.6

0.8

1

1.2

1.4

1.6

0

0.0005

0.001

0.0015

0.002

0.0025

0.003
Cell D6

no
correction



4.2. STUDIES ON β ESTIMATION 51

η
1 1.1 1.2 1.3 1.4 1.5

β

0.4

0.6

0.8

1

1.2

1.4

1.6

0

0.0005

0.001

0.0015

0.002

0.0025

0.003
Cell D6

distance
correction

η
1 1.1 1.2 1.3 1.4 1.5

β

0.4

0.6

0.8

1

1.2

1.4

1.6

0

0.0005

0.001

0.0015

0.002

0.0025

0.003
Cell D6

linear
correction

Figure 4.20: Distribution
of β with the distance cor-
rection (left) and the linear
correction (right) as func-
tion of η for cell D6 in
Data.

in Fig. 4.19. Also in data it can be seen, that β differs from βtruth which
is basically one for muons. In data the bias can be corrected with the
distance correction, shown in Fig. 4.20 (left). The linear correction cor-
rects too much, so that the slope is overcompensated, shown in Fig. 4.20
(right). It can be further seen, that the distributions of β uncorrected
and βLinCor have different slopes in the high and low η region compared
to the middle region, as expected from the distance correction.
Consequently, the distance correction works fine, the problem is more
the incorrect simulation of tcell in MC. The problem might be the correct
modeling of the photon path in the tiles as well as in the wavelength-
shifting fibers. To understand these differences a dedicated simulation of
a particle in a TileCal cell should be performed. This was not possible
as a part of this work. As the discrepancy between data and MC might
be a mis-modeling of the readout the deviation is assumed to be model
independent and therefore similar for muons and R-hadrons .
Fig. 4.21 shows the β-resolution with (right) and without (left) time cor-
rection for R-hadrons in cell D6. It can be seen that the fluctuations to
smaller values of β are corrected with the time correction. For βDistCor,
shown in Fig. 4.22, a very similar bias as shown in Fig. 4.20 (left) for
muons remains. Fig. 4.23 shows βLinCor with (right) and without (left)
time correction. Also for R-hadrons , the linear correction overcom-
pensates the bias. This is expected as the DistCor takes into account
that a R-hadron with a significantly lower β needs a different time for
the distance between dnew and dcenter. The LinCor by contrast is only a
correction on β and therefore corrects equally for all particles.
The combined β for muons and R-hadrons is shown in Fig. 4.24 and
Fig. 4.25, respectively. It can be seen that for both particles the β reso-
lution is improved using DistCor. The agreement between data and MC
is reasonable for the distance corrected β due to the distance corrected
smearing that will be introduced in the following section.
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Figure 4.21: ∆β/β
with βuncor (left) and
βTimeCor (right) as
function of η in cell D6
for R-hadrons mg̃ =
100 GeV...1600 GeV.
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Figure 4.22: ∆β/β with
βDistCor (left) and
βDistCor+TimeCor (right)
as function of η in cell
D6 for R-hadrons mg̃ =
100 GeV...1600 GeV.
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Figure 4.23: ∆β/β
with βLinCor (left) and
βLinCor+TimeCor (right))
as function of η in cell
D6 for R-hadrons mg̃ =
100 GeV...1600 GeV.
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Figure 4.24: β distribution
for Z → µµ muon can-
didates in data and MC
with and without DistCor
+ TimeCor.
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4.2.5 Distance Corrected Smearing

Motivation and Implementation

The agreement between data and MC with the smearing introduced in
Sec. 4.2.2 is not good as the bias of tcell is not correctly modeled. This
can be seen in Fig. 4.26. In particular the distribution of βDistCor differs

Figure 4.26: β distri-
bution for Z → µµ
muon candidates in data
and MC with and with-
out DistCor + TimeCor.
For MC the nominal
smearing is used.
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significantly between MC and data.
tcell is not measured at the same distances. This means, that tcell also has
a bias. One nice side effect of the distance correction is, that it also allows
to correct the bias of tcell. The idea is to correct tcell to be measured for
all incident angles at the distance of the cell center. The time-of-flight
for the distance between dnew and dcenter is therefore subtracted from tcell
to obtain tcell,cor. Using βest, tcell,cor can be calculated as

tcell,cor = tcell +
dnew − dcenter

βestc
. (4.20)

The tcell smearing is then applied with the mean and RMS values obtained
from the tcell,cor distributions.

Results

The distributions of tcell corrected and uncorrected in MC and data are
shown in Fig. 4.27. The tcell,uncor distribution in MC has a double peak.
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This is understandable, as the difference between dnew and dcenter as a
function of η is more flat in the upper and lower region in η as in the
middle, shown in Fig. 4.16. Therefore also in high and low tcell region
more measurements are expected than in the central region. For tcell,cor
the distribution has one narrow peak. Also in data the correction reduces
the tcell uncertainty.
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Figure 4.27: The distri-
bution of tcell,uncor and
tcell,cor in cell D6 for Z →
µµ muons in MC (left) and
data (right).

The results of the time corrected smearing on the estimated β are shown
in Fig. 4.24. It can be seen, that the β-resolution in MC is worse than
in data. This ensures that the β-resolution in the signal samples is not
underestimated. In the analysis MC is only used for the limit setting with
the signal samples. The signal is expected to be at lower β, this means
that especially the tail to high values of β should not be underestimated in
MC. Also this is accomplished with the distance corrected smearing. All
in all the distance corrected smearing is a conservative method ensuring
no overestimation of the signal β resolution.

4.2.6 Primary Vertex Shift Correction

Motivation and Implementation

The length used for the β estimation can not only differ due to the
incident angle in the cell, also the starting point of the track can differ as
the vertex associated to the track of the particle can differ from the origin
of the ATLAS coordinate system. The spread of the primary vertices in
x and y is of the order of 15 µm due to the beam size σ∗ = 16.6 µm,
whereas the spread in z direction is a few cm due to the length of the
bunches σz = 7.55 cm. Hence a significant spread for the orgin of the
tracks in z-direction is expected, whereas the differences in x- and y-
direction are negligible. The z0 position for candidate tracks is shown
in Fig. 4.28. It can be seen, that the z0 position of tracks varies by up
to 15 cm. Therefore it makes sense to include the z0-position into the
estimation of dnew. This is done by calculating the path in the cell for the
trajectory starting at the actual z0 position. The z0-corrected distance
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Figure 4.28: z0 spread
of candidate tracks.
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is then calculated the same way as dnew for the DisCor and can be used
for a corrected β estimate.

Results

The resulting β distribution in MC and Z → µµ enriched data is shown
in Fig. 4.29. It can be seen, that the distance corrected β distribution and
the z0-distance corrected β distribution have only very little differences.
The correction does not play an important rule, as not only the end of
the track at the IP is shifted also the peak position in the cell is shifted.
Therefore the correction for the distance is basically only the relative
dnew difference between the unshifted peak position and the z0 shifted
peak position. Anyway a slightly improved β resolution can be seen.
Consequently the z0 correction can, but not necessarily must be applied
at the moment. As the bunch length might be elongated to achieve higher
luminosities for the LHC, this correction may play a more important role
in future runs.

4.2.7 Cell Time Uncertainty

Motivation and Implementation

The distance corrected tcell has further possible applications. One pos-
sibility is to estimate a corrected tcell uncertainty. Therefore the scatter
plot of the corrected tcell as a function of the energy deposit in the cell
E is divided into slices. Each slice is fitted with a Gaussian function
and the standard deviation is used as the uncertainty of tcell. The time
uncertainty can be parametrized following Ref. [22] with

σtcell =

√(
p1√
E

)2

+
(p2

E

)2

. (4.21)



4.2. STUDIES ON β ESTIMATION 57

β

0.7 0.8 0.9 1 1.1 1.2 1.3

µ
fr

ac
tio

n 

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04 µ µ →MC Z

 = 1.017
uncor

β
 = 0.0835uncorσ

 = 1.018
cor

β
 = 0.0829corσ

Data

 = 1.017
uncor

β
 = 0.0801uncorσ

 = 1.017
cor

β
 = 0.0798corσ

Figure 4.29: β distribu-
tion for Z → µµ muon
candidates in data and
MC with and without z0
correction.

The two contributions to Eq. 4.21 are the statistical uncertainties (first
term) and electronics noise (second term).

Results

The differences between the uncorrected and the corrected σtcell as a func-
tion of the energy deposit in the cell are shown in Fig. 4.30. The relative
difference between the uncorrected and the corrected σtcell is more than
5 % for very high energy deposits, while for low energy deposits almost
no differences occur. The reason for that is, that the correction is more
important for larger cells. For larger cells the path inside the cell is longer
and thus also the expected energy deposit is larger.
The resulting functional parametrization of the corrected σtcell as a func-
tion of the energy deposit is shown in Fig. 4.31. The error on the single
measurements is to small to be seen. In the tail the fit is reasonable,
but for low energies the agreement between data and fit is worse. An-
other possibility would be to use an uncertainty according to each en-
ergy bin, but as the discrepancies between data and fit are smaller than
the discrepancies due to the bin width, I decided to use the functional
parametrization.
The influence on the β estimation is negligible. For the combination
with other β measurements a correct estimation of the β uncertainties
is essential. Therefore the distance corrected time uncertainty may be
worth considering for the combination of β measurements from different
detector systems.
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Figure 4.30: σtcell as a
function of E for tcell
corrected and tcell uncor-
rected.
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4.2.8 Cell-Time Calibrations

Energy-Layer Calibration

In the nominal analysis [1] a calibration of the tcell according to energy
deposit in the cell and cell layer is applied. This is done by dividing
the measured tcell times in the Z → µµ data samples into energy–layer
bins. For each of the bins the means are used as calibration constants,
and are subtracted from the same energy–layer bins in MC/data sam-
ples. A detailed description of the energy-layer calibration can be found
in Ref. [38].
This calibration can be dropped as it is redundant with the distance cor-
rection. The reason for that is, that the energy is proportional to the
length of the tracks in the cell and therefore the bias arises due to the
different length from the IP to the tcell measurement point. The layer
binning takes the varying cell dimensions in the different layers into ac-
count. This means the DistCor delivers a physical interpretation for the
energy-layer calibration and further enables to use this calibration. This
is very helpful, as it makes the analysis faster and easier.

Runwise tcell shift calibration

Due to a misalignment of the LHC and ATLAS clocks, tcell can have a
bias. This is measured with the Z → µµ enriched data samples from all
tcell measurements with energy deposit Edep > 500 MeV in one ATLAS
run, shown in Fig. 4.32. It can be seen, that the distribution is slightly
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asymmetric. This is understandable as on the one hand some cells are
expected to have asymmetric tcell distributions according to the asym-
metric bias of the distance to the tcell measurement point. On the other
hand the mis-measurements due to pileup can cause an asymmetry in the
tcell distribution. To introduce no bias, instead of the overall average as
used in the nominal analysis, the mean of a Gaussians fit is used as mea-
sure for the mis-alignment. The fit is less influenced by the asymmetry
and ensures, that no bias is introduced. The means of the Gaussian are
centered around zero, as shown in Fig. 4.33, whereas the average means
have an average bias of almost 0.15 ns, as 1shown in Fig. 4.34. Therefore
I decided to use the Gaussian fit means for the runwise calibration.

Figure 4.33: Gaussian
mean of the tcell distribu-
tions as a function of the
runnumber.
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4.2.9 Liquid Argon Calorimeter β estimation

One possibility to have more β measurements is to include the LAr
calorimeter cells in the β estimate. The LAr calorimeter cells are smaller
and closer to the IP. Therefore a significantly worse β-resolution is ex-
pected for LAr cells. The β distributions with and without LAr cells
included is shown in Fig. 4.35. For the LAr no dimension corrections

β

0 0.5 1 1.5 2 2.5 3

ar
bi

tr
ar

y 
un

it

0
200
400
600
800

1000
1200
1400
1600
1800
2000
2200
2400

µ µ →MC Z

TileCal only 
TileCal+LAr 

Figure 4.35: β distribution
for the TileCal only and
with the LAr included.

are applied. Due to their projective design and the small cell size this is
not necessary. It can be seen, that more candidates with the LAr cells
included in the β estimation survive the pre-selection. But especially in
the low-β region the LAr-included β estimate has way more entries. All
in all more outliers can be seen for the LAr-included β estimate. Conse-
quently I decided to not use the LAr cells for the β estimate. Dedicated
studies on the LAr β measurement could improve estimate, so that it
might make sense to include them in the future.

4.2.10 Summary

Several improvements for β estimation with the calorimeters were consid-
ered. A parametrization of the bias for high values of tcell was applied.
Further the differences in the point of the tcell measurement were cor-
rected. According to this a distance corrected smearing was introduced
enabling a good agreement between data and MC. Also the z0 position
of the track was included in the β estimation. The influence of the tcell
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distance correction on the parametrization of σtcell as a function of the
energy deposit was studied and found to be almost negligible. Further
the influence of the corrections on the time calibration in the nominal
analysis was studied. The energy–layer calibration can be dropped as
it is redundant with the DistCor. Also the runwise tcell calibration due
to the unsynchronized ATLAS clock with respect to the LHC clock is
improved, as the nominal method is influenced by expected asymme-
tries in the tails. All in all, the β resolution, including the considered
improvements, is 0.08. Compared with the β-resolution in the nominal
analysis of 0.79 this is almost the same, but in the nominal analysis
the β-consistency requirement was implemented, which was dropped for
these studies. The drop of the consistency cut will be discussed later on.
The β distribution including the β-consistency cut for data candidates is
shown in Fig. 4.36. Consequently with comparable candidate selection
the β-resolution was improved by 17% compared to the nominal analysis.

Figure 4.36: β distribution
Z → µµ muons in data
with the β quality require-
ment.
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4.3 Muon Agnostic Analysis

In this section the MAg analysis [1], which is redone with the new β
corrections explained in the previous section, is presented. The analysis
uses data taken in 2012, whereby the data taking period A is excluded
due to differences in the available triggers. The amount of statistics used
is
∫
Ldt ≈ 18.8 fb−1. First the event selection is discussed. The following

part is about the candidate pre-selection, based on requirements on the
track quality as well as requirements on the dE/dx and β measurement.
The final selection cuts are discussed in the next part. A data driven
background estimated has been chosen to accomplish good statistics in
the tails of the β spectrum presented in the fourth section. This is fol-
lowed by a description of the systematic uncertainties considered. Finally
the results are presented and interpreted.

4.3.1 Event Selection

The requirements on events used for the analysis are shown in Tab 4.3
and will be discussed in the following.

Description Requirement

Trigger selection EF xe80 tclcw loose

Detector flags GRL

LAr veto

RPVLL preselection (MC) Ntrkpt5 > 0 with:

pT > 80 GeV and

NHits
SCT > 5 and

NHits
Pix > 1

Table 4.3: The event selec-
tion for the MAg analysis.

Trigger selection: The trigger used for the analysis are the lowest un-
prescaled ��ET trigger chains available. The events have to be accepted
by the EF xe80 tclcw loose trigger. ��ET triggers can be used, as R-
hadrons contribute to the ��ET due to their moderate energy deposits. In
principle no high ��ET would be expected. But through the recoil from
jets caused by Initial State Radiation, the R-hadron system can get a
boost, resulting in larger ��ET . As ISR does not occur in every event, the
efficiencies of ��ET triggers for the search for R-hadrons are not very high
(∼ 20%− 25%). The MAg does not include informations from the muon
spectrometer, therefore��ET triggers are the only triggers that can be used
for this analysis.
Detector flags: The ATLAS detector is a very complex system. There-
fore some of the subsystems can have defects. The ATLAS Data Quality
team produces from all reported defects of the subsystems a Good Run
List (GRL) that states for two minute intervals, if the detector delivered
trustworthy data. To further ensure good running conditions of the de-
tector the LAr veto is prompted. This rejects events where defects in the
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LAr calorimeter appeared.
Preselction: The RPVLL JetTauEtmiss stream used for the data has a
pre-selection. This has to be accomplished in MC. The selection criteria
used for the RPVLL pre-selection are therefore applied to MC events as
well. In the events, at least one ID track, with a pT > 80 GeV, at least
five hits in the SCT and at least one hit in the pixel detector, is required.

4.3.2 Candidate Pre-selection

The candidate pre-selection criteria are shown in Tab. 4.4 and will be
explained in the following.

Table 4.4: The candidate
pre-selection for the MAg
analysis.

Description Value

At least four tracks from any vertex Nvertex
tracks > 3

Minimum transverse momentum ptrackT > 50.0 GeV

Sensible momentum 0.0 TeV < ptrack < 4.0 TeV

Isolation from high momentum jet ∆Rjet,pT>40.0 GeV > 0.3

Isolation from high momentum track ∆Rtrack,pT>10.0 GeV > 0.25

At least six SCT hits or passed dead sensors Nhits
SCT +Ndead

SCT > 5

At least six TRT hits Nhits
TRT > 5

Central longitudinal and radial vertex position |z0| < 10.0 mm, |d0| < 2.0 mm

No shared pixel cluster Nsharedhits
PIX = 0

At least two good pixel clusters Nhits
PIX good dE/dx

> 5

Sensible pixel dE/dx 0 MeVg−1cm2 < dE/dx < 20 MeVg−1cm2

Sensible pixel βγ 0.204 < βγ < 10

Eta cut |η| < 1.65

Z veto |m(cand(m = mµ), µ)−mZ | > 10 GeV

Cosmic veto Q(cand) ·Q(trk) > 0 &

|η(cand) + η(trk)| > 0.005 &

||φ(cand)− φ(trk)| − π| > 0.005

Sensible TileCal β 0.2 < β < 2

Quality β σβ < 0.12

At least four tracks from any vertex: This ensures that no cosmic
particles contaminate the events. The reason for that is, that cosmic
particles reconstructed in the ID are two absolutely back-to-back tracks.
For more than two associated tracks to the vertex additional cosmic par-
ticles would be needed to fake it.
Minimum transverse momentum: The minimum transverse momen-
tum ensures a reasonable cutflow, but as in the final selection hard re-
quirements on the momentum are applied, it has almost no influence on
the selection.
Sensible momentum: For one particle produced at the LHC with√
s = 8 TeV the absolute momentum for pair-produced particles is lim-
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ited to 4 TeV according to energy and momentum conservation. Conse-
quently the limit for a sensible momentum rejects mis-measurements of
the detector.
Isolation from high momentum jet: To ensure that no particles from
jets corrupt the time measurement in the TileCal an isolation between
the candidate and any jet in the event with pT > 40.0 GeV is required.
For the separation in the η − φ-plane ∆R =

√
η2 + φ2 is used. It is

necessary to claim isolation only from high momentum jets, as SMPs
deposit smaller amounts of energy in the calorimeters and therefore may
be reconstructed as low momentum jets.
Isolation from high momentum track: Comparable to the isolation
from jets also an isolation from other high momentum tracks is required.
At least six SCT hits or dead sensors passed: The requirements
on the minimum SCT hits ensures a good track quality.
At least six TRT hits: Also the TRT hits requirement is used to
achieve a good track quality.
Central longitudinal and radial vertex position: Due to the high
momenta of the SMPs they are expected to originate almost in any case
from the Primary Vertex PV. The requirements on the longitudinal z0

and the transverse impact parameter d0 ensure that the candidates come
from the primary vertex and therefore have a well determined origin. It
further ensures that the candidate origins from a primary particle.
No shared pixel cluster: Further particles could also deposit charge in
the candidate pixel cluster. To prevent this corruption, no shared pixel
clusters are allowed for candidates.
At least two good pixel clusters As the main background for the
search for SMPs are mis-measurements in the detector, and fluctuations
are more probable for one measurement as for more measurements simul-
taneously, at least two good pixel clusters for each candidate track are
required.
Sensible pixel dE/dx: For the dE/dx measurement candidates with
an unexpected high energy loss as well as with a unphysical energy gain
are rejected.
Sensible pixel βγ: An upper limit of the βγ range is used to reduce
the muon background, whereas the lower limit is used to suppressed mis-
measurements in the detector, as SMPs with the considered masses are
not expected to have βγ < 0.2. A further reason for the lower limit is
the readout window of the TileCal cells, since candidates with lower ve-
locities are expected to exceed the readout window of 75 ns. As for this
case the β measurement in the TileCal is corrupted, the pixel βγ can be
used to reject candidates with lower velocities.
Eta cut: The TileCal covers the range of ∼ η < 1.7, but as for the
highest η region only one cell is hit, the upper limit for η is set to 1.65.
Also a wider range could be considered, but due to the different detec-
tor systems in the end-caps and the worse β resolution only the TileCal
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region is used.
Z veto: High momentum muons produced at the LHC predominantly
originate from Z-bosons, the candidates are rejected, if the invariant
mass of the candidate and the hardest muon is within a 10 GeV mass
window of the Z-boson mass. For candidates the muon mass is assumed
for the calculation of the invariant mass. If the track of the candidate
can be matched to the hardest muon, the second hardest muon is used.
The ID track and muon track are matched if ∆RTrack,µ < 0.1.
Cosmic veto: Candidates are rejected with signatures compatible with
cosmic particles in the detector. The signatures of a cosmic particle are
two back-to-back tracks. As a cosmic particle would travel one of the
tracks revers in the frame of the detector, the bend of the tracks in the
magnetic fields is in opposite direction. This means, that cosmic parti-
cle associated tracks would have different reconstructed charges. Conse-
quently candidates having a back-to-back track with different estimated
charge are rejected.
Sensible TileCal β: As previously mentioned ,candidates with β < 0.2
exceed the readout window of the TileCal tcell measurement. Therefore
a lower β limit is set. An upper limit suppresses muon background.
β Quality: If the uncertainty on the β measurement is too large, the
estimated β is not trustworthy. Hence candidates with an uncertainty
σβ > 0.12 are rejected.
Consistency β: In the nominal analysis a further selection criterion
was applied, the β-consistency check. The β consistency check requires
the probability of χ2

β for N Degrees of Freedom (NDF) to be larger than
0.001. P (χ2

β, NDF ) is the nearer to zero, the more inconsistent the mea-
surements. χ2

β can be calculated with

χ2 =
∑
i

(β−1 − β−1
i )

σ2
β−1
i

. (4.22)

NDF is given by the number of β measurements as NDF = Nβ−1, where
Nβ states the number of β measurements. I decided to drop the β con-
sistency check. It does not ensure that the β is measured correctly only
that the agreement between the single measurements is sensible within
their uncertainties. It has further more or less similar efficiencies in data
and signal and therefore mainly reduces the statistics. The high-mass R-
hadron signal regions have only very little statistics and as the improved
β estimation reduces the background further, it makes sense to not apply
the β consistency check.
In R-parity conserving models, R-hadrons are are always produced in
pairs. Nevertheless in only 10% of the events both R-hadrons are recon-
structed as candidates. The reason for that is, that ∼ 50% of sparticles
hadronize to uncharged R-hadrons. Also the candidate pre-selection re-
jects ∼ 40% of the candidates leading to the low number of events ex-
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pected with two R-hadrons reconstructed as candidates. As the theoret-
ical production cross section is per event, for the case of more candidates
per event, one of the R-hadron candidates is randomly selected and re-
jected. It would be also possible to use a two candidate signal region, but
this only reduces the background. As this analysis has anyway almost
no background a two candidate region is not used.
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Figure 4.37: Cutflow for
data candidates. In red the
β-consistency check which
is not applied in the analy-
sis

The cutflows for data candidates and weighted candidates from a 1300 GeV
gluino R-hadron signal sample are shown in Fig. 4.37 and Fig. 4.38, re-
spectively.

4.3.3 Final Selection

For the final selection, which is specific for each signal masspoint, momen-
tum, β, βγ, mβ and mβγ are used as discriminators. For the optimization
the data driven background estimate described in the following section
and the signal samples are used.
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Figure 4.38: Cutflow for
candidates for gluino R-
hadron 1300 GeV hy-
pothesis. In red the β-
consistency check which is
not applied in the analysis.
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Momentum

As no corrections are applied on the momentum the requirements for
the different g̃, b̃ and t̃ masspoints from the nominal analysis are used
unchanged for this analysis.

β and βγ

For the β and βγ selection criteria an optimization has to be applied
to accomplish the best available signal purity in the signal region. To
evaluate the signal purity two different measures were considered

P1 =
S√
B

(4.23)

and

P2 =
S√
B + S

. (4.24)

For the significance problems arise if the number of background events
is almost zero. This is the case for the high mass signal regions. Hence
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as measure for the purity Eq. 4.24 is used.
For the optimization of the β and βγ requirements the cuts applied in
the nominal analysis are used as starting point. They are varied until
the best purity in the signal region is achieved.

mβ and mβγ

The very final cuts are on the mass estimates. The method is the same as
in the nominal analysis. The cuts are set according to the peak and the
width of the expected signal mass distributions. The estimated masses
have to be higher than the peak minus two times the width σ of the
respective mass distribution. The final mass cuts for a 1300 GeV gluino
R-hadron hypothesis are shown in Fig. 4.39.
The search is divided into a final selection optimized for gluinos and a
final selection optimized for sbottom/stop, as the lower cross section of
the sbottom/stop case requires harder cuts.
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Figure 4.39: Signal
and background can-
didate masses in the
mβ-mβγ -plane.

4.3.4 Background Estimation

The main backgrounds for the MAg search are high momentum muons
which have mis-measured β and βγ values. Also non-collision back-
grounds may fake SMPs in the detector as for example electronic noise
or cosmic particles. The non-collision background should be heavily sup-
pressed by the candidate pre-selection. The remaining non-collision back-
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grounds are negligible and included in the data-driven background esti-
mate.
On the one hand the data-driven background estimate is used, because
especially in the low-β tail high statistics are needed, which would require
enormous amounts of MC. On the other hand the data driven method
does not rely on the modeling of the readout, which is shown to be not
perfect. The method is the same as used in the nominal analysis.
The final selection is on the estimated masses mβ and mβγ. β, βγ and p
are uncorrelated, as the main background are mis-measurements of en-
ergy loss and tcell, which are measured in different detector subsystems.
Probability density functions are produced from data for β, βγ and p.
The PDFs are produced from all candidates passing the pre-selection. To
compensate a small correlation due to their dependence on η the PDFs
are produced in five η bins. For the β and βγ PDFs a momentum between
70 GeV and 180 GeV is required and the final selection cuts on β and
βγ respectively are applied. Consequently different PDFs are produced
for each mass hypothesis. For the momentum PDF the final momentum
cuts are applied. The candidates further have to fulfill β < 0.90 and
βγ < 2.5. The PDFs of β and βγ for a gluino (mg̃ = 500 GeV) in the η
region 0.99 < η < 1, 32 are shown in Fig. 4.40.

Figure 4.40: PDF for the
β and βγ in the η region
0.99 < η < 1.32.
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From the 2D-PDF of the momentum as a function of η a (p, η) pair is
sampled. The according PDFs(η, β/βγ) are used to sample values for β
and βγ. From p and β/βγ the masses mβ and mβγ are calculated. This is
done 2500 times for each candidate passing the selection. Consequently,a
weight of 1/2500 is used for the background events.
The resulting background distribution, with the superimposed MC and
data distributions in the mβ–mβγ-plane for a 500 GeV gluino mass hy-
pothesis, is shown in Fig. 4.41 for mβ and in Fig. 4.42 for mβγ. It can be
seen, that the agreement between data and background is reasonable.
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Figure 4.41: mβγ distribu-
tion in data, background
and signal for a 500 GeV
gluino R-hadron mass hy-
pothesis.
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4.3.5 Systematic Uncertainties

Several sources of systematic uncertainties have to be considered for the
MAg analysis. Some of the uncertainties estimated for the nominal anal-
ysis have not changed or did not change significantly. These uncertainties
are therefore taken over for this analysis. The systematic uncertainties
taken from the nominal analysis are thus for the theoretical cross section,
the trigger efficiency, the ISR, the pixel dE/dx calibration and the the
luminosity of the data samples. The uncertainties that are estimated new
for this analysis are those for the β calibration and for the background
estimate.

Uncertainty on the Theoretical Cross Section

The theoretical cross section and the uncertainty are obtained from a set
of different cross section predictions using different PDFs, factorization
and renormalization scales following Ref. [23]. The resulting uncertainties
are 15% for gluinos with m = 100 GeV and go up to 52% for m =
1700 GeV gluinos.

Uncertainty on Trigger Efficiency

For the uncertainty on the trigger efficiency the turn-on curve of the each
used trigger was parametrized with Eq. 4.25 for Z → µµ events in data
and MC.

ε
(
��ET

)
=
A

2

[
1 + erf

(
��ET −B√

2C

)]
(4.25)

Z → µµ events are used as they are similar to R-hadrons as muons
are not included in the ��ET calculation on trigger level. Furthermore
muons from Z → µµ can be easily identified in data. The uncertainty
is calculated from the differences in the efficiency seen in data and MC
and from the 1σ up and down variation of the parameters B and C. The
resulting uncertainty on the signal trigger efficiency is less than 3.9 %
conservatively used for all mass and sparticle hypotheses.

ISR Uncertainty

R-hadron events are accepted by the ��ET triggers mostly due to ISR.
Variations in the modeling of the ISR radiation are therefore critical for
the signal efficiency and have to be taken into account as a systematic
uncertainty. The ISR level in the generator (PYTHIA6) is scaled up
and down. The resulting uncertainty on the signal efficiency is 9.6%
conservatively used for all mass and sparticle hypotheses.
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Uncertainty on Pixel dE/dx

The difference between dE/dx of the MC and data R-hadron candidates
are considered as systematic uncertainty. Furthermore the variation of
the proton mass over time and the offset of the average proton mass are
taken into account. The uncertainty on the signal efficiency for the pixel
dE/dx is 1.1%.

Luminosity

The uncertainty on the luminosity of the used data sample is 2.8 % [39].

Uncertainty on Calorimeter-Time Smearing

The uncertainty on the signal efficiency due to the tcell smearing is esti-
mated by scaling the smearing 5% up and down. The influence of this
variation on the β distribution for Z → µµ muons in MC compared with
the distribution obtained from data is shown in Fig. 4.43. This variation

β

0.6 0.8 1 1.2 1.4

fr
ac

tio
n 

ca
nd

id
at

es

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14 µ µ →MC Z

smear up
smear down

Data 2012

Figure 4.43: β distribu-
tion for Z → µµ muons
for smearing scaled up and
down MC and for data.

is then applied to the signal samples and the RMS between the scaled
up, scaled down and nominal signal efficiency is used as uncertainty. The
maximum variation is found to be 1.4% and used for all signal points as
a conservative estimation.

Background uncertainty

For the uncertainty on the background estimate a tight and a loose se-
lection for producing the PDFs is applied, as shown in Tab. 4.5.
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Table 4.5: Tight loose and
baseline selection for the
production of the PDFs.

Selection p PDF β and βγ PDF

Baseline β < 0.90 and βγ < 2.5 70 GeV< p <180 GeV

Tight β < 0.88 and βγ < 2.4 80 GeV< p <150 GeV

Loose β < 0.92 and βγ < 2.6 60 GeV< p <200 GeV

Again the RMS between the background efficiencies obtained for the
the different selections is used as systematic uncertainty. As for higher
masses, the background estimate in the signal region relies more on the
tails of the PDFs, it is expected, that the systematic uncertainty increases
with mass. This is shown in Fig. 4.44. As the uncertainty grows more or

Figure 4.44: Systematic
uncertainty on the back-
ground as a function of the
mass for the gluino opti-
mized search.
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less linear with mass a linear fit to the uncertainty as a function of mass
is used to estimate the systematic uncertainty on the background. This
is done for the sbottom/stop optimized search and the gluino optimized
search separately. A summary of all considered systematic uncertainties
is given in Tab. 4.6.

Table 4.6: Summary of
considered systematic un-
certainties.

Source Systematic uncertainty [%]

Theoretical cross section 15–52

Trigger efficiency 3.9

ISR 9

Pixel dE/dx 1.1

Calorimeter time smearing 1.4

Luminosity 2.8

Background estimate 3.0-17.6
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4.3.6 Results and Interpretation

An experimental evidence for new particles would be a significant excess
of observed data over the expected background. The distributions for
background, expected signal and data in the mβ–mβγ plane for the gluino
mg̃ =1300 GeV, the sbottom mb̃ =800 GeV and the stop mt̃ =800 GeV
R-hadron hypothesis are shown in Figs. 4.45, 4.46 and 4.47, respectively.
No excess over the expected background was observed for all signal re-
gions optimized for the different mass hypotheses.
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Figure 4.45: Estimated
background, data and
expected signal distribu-
tion in the mβ-mβγ -plane
for a 1300 GeV gluino
hypothesis.
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Figure 4.46: Estimated
background, data and
expected signal distribu-
tion in the mβ-mβγ -plane
for a 800 GeV sbottom
hypothesis.
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Figure 4.47: Estimated
background, data and ex-
pected signal distribution
in the mβ-mβγ -plane for a
800 GeV stop hypothesis.
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As no evidence for new particles was observed, the results can be used
to set cross section limits for the different hypotheses.
The upper limits on the cross sections are calculated using the HistFitter
package [40] by simple counting of background, signal and data events
in the signal region. The limit setting is based on a frequentist analysis
using a likelihood ratio as test statistic. First a likelihood probability
density function for the expectations has to be constructed. A Poisson
counting model is assumed for the number of observed events Nobs. The
systematic uncertainties are taken into account as nuisance parameters
θ and are assumed to be Gaussian distributed. The likelihood ratio is
given by

Q = −2 ln

(
L(µ,

ˆ̂
θ)

L(µ̂, θ̂)

)
, (4.26)

with the signal strength µ, a scaling factor for the number of expected

signal events s.
ˆ̂
θ is the value of θ, which maximizes L for a specific µ,

called the conditional maximum-likelihood estimation. θ̂ and µ̂ are the
parameters for which the unconditional likelihood maximizes. Hence the
numerator is always smaller or equal to the denominator. This means,
that the ratio is between one and zero, with a ratio near one stating a
good agreement between the model and the hypothesis. The CLs+b is
given by

CLs+b = 1− ps+b(Q ≥ Qobs) = 1−
∫ ∞
Qobs

f(Q|µ) dQ, (4.27)

with p being the p-value, Qobs being the value of the test statistic observed
in the experiment and f being the probability density function. The CLs+b
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is the probability to get a value of the likelihood ratio, which is equal
or higher than Qobs. This integral can be solved with the asymptotic
formula described in Ref. [41]. To be less affected by fluctuations of the
background CLs is used for the limit setting, which is given by

CLs =
CLs+b
CLb

, (4.28)

with CLb, being the confidence level under the background only hypoth-
esis. In particle physics it is convenient to use a CL of 95% for the
exclusion of a signal. This means that a fluctuation to equal or more
than s+b events is less than 5%. By increasing or decreasing the signal
strength the value of µ can be obtained for which the CLs is 5%. This is
illustrated in Fig. 4.48. The limit on the signal strength can be converted
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Figure 4.48: P-value as
function of the signal
strength for CLs+b, CLs
and CLb in the sbottom
800 GeV signal region.

into an upper limit on the cross section using

σLim =
µs

εs
∫
Ldt

, (4.29)

with εs, the signal efficiency. The signal efficiency is estimated as the ra-
tio of events with a candidate in the signal region divided by the number
of events in th signal sample.
The resulting limits for the gluino, sbottom and stop models are shown
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in Fig. 4.49, Fig. 4.50 and Fig. 4.51, respectively. With this search for R-
hadrons a lower mass limit at 95% CL is obtained for gluinos at 1241 GeV,
for sbottoms at 760 GeV and for stops at 800 GeV. The limits from the
nominal MAg search are 1262 GeV for gluinos, 758 GeV for sbottoms
and 868 GeV for stops. The limits obtained in this analysis are worse
for the stop/gluino models, but slightly improve the limit on the sbot-
tom mass. The limit on the gluino mass is higher than the limit on the
squark masses due to the higher cross section. Sbottom and stop have
the same cross section. The difference between the sbottom and stop
limits arises as sbottoms hadronize to neutral states more often than
stops. The lower limits for gluino/stop compared to the nominal anal-
ysis are understandable, as less statistics are used. This analysis does
not include period A of the data taking and is therefore only based on
an integrated luminosity of 18.8 fb−1 instead of 19.1 fb−1. Besides the
RPVLLJetTauEtmiss stream the nominal analysis also used the HadDe-
layed stream, which has a 20 GeV lower unprescaled ��ET trigger. For
R-hadrons not in each event large ��ET is expected, as it relies on ISR.
Hence a lower ��ET trigger threshold improves the statistics significantly.
For example for gluino R-hadrons with mg̃ = 1300 GeV, 23% more can-
didates are left after the event selection. This is predominantly because
of the lower ��ET trigger threshold. The limits on the stop and gluino
masses are mostly dominated by the low statistics. They are located in
the high mass region where almost no background is left. Therefore no
improved mass limits are expected. The sbottom limit is at lower masses,
where the background plays a more important role. With the discussed
improvements of the β estimate and the according suppression of the
background, more or less the same limit on the sbottom mass could be
obtained with significantly less statistics (O(25%)).
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Figure 4.49: Limits on the
cross section for the differ-
ent gluino mass hypotheses
as well as theoretical cross
section.
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Figure 4.51: Limits on the
cross section for the differ-
ent stop mass hypotheses
as well as theoretical cross
section.
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Chapter 5

Conclusion and Outlook

5.1 Conclusion

Studies on the β estimation with the ATLAS calorimeters were per-
formed. The time correction for the bias seen at high tcell is able to
improve the β resolution especially for R-hadrons . In data the DistCor
is able to correct the bias of β as a function of η in each cell, whereas
the linear correction overcompensates the bias. This is in conflict with
the studies performed in MC, which therefore seems to have incorrectly
modeled tcell. The DistCor is further used to correct tcell to be measured
at the same distance of the particles from the IP. This is used to obtain
a more reasonable smearing of tcell in MC, which is necessary to have a
good agreement between MC and data. Including the distance z0 of the
particle track to the IP in the DistCor slightly improves the β-resolution.
The influence of the correction of tcell on σtcell as a function of the energy
deposit in the cell is shown to have a more than 5% lower σtcell for high
energy deposits. The influence of the new parametrization of σtcell as a
function of the energy deposit is found to be negligible for the β esti-
mation. The energy–layer time calibration used in the nominal analysis
does not have to be applied as this is corrected by the DistCor. This is an
important improvement as it makes the analysis simpler and faster. In
the runwise time calibration due to mis-alignment of the ATLAS clock
with respect to the LHC clock, a fit with a Gaussian function of the
tcell distributions is shown to be less influenced by asymmetries in the
tails. With this method no bias of tcell is introduced through the cali-
bration. Furthermore including the LAr calorimeter in the β estimation
was evaluated, but was, as the resulting β distribution has more outliers,
not included in the final β estimate. The overall improvement of the
β-resolution compared to the nominal analysis is 17%.
The influence on the search for SMPs was tested by redoing the MAg
search with the improved β estimate. The considered R-hadron sparticles
are gluinos, sbottoms and stops, whereby different mass hypotheses were
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tested (100 GeV–1600 GeV for gluinos and 100 GeV–1200 GeV for sbot-
toms/stops). No excess over the expected background for all signal re-
gions was observed. The results are used to set upper limits on the cross
section of the sparticles considered. Comparing these with the theoreti-
cally predicted cross sections lower limits on the particle masses can be
estimated. The obtained mass limits are 1241 GeV for gluinos, 800 GeV
for stops and 760 GeV for sbottoms. Compared with the nominal analy-
sis, the limits for the gluino/stop mass a worse, whereas the limit on the
sbottom mass slightly improves the published limit. As for this analysis
only a 20 GeV higher ��ET trigger threshold was available, significantly
less statistics in the signal regions is obtained. Therefore the results are
promising and justify, that the improved β estimation is a useful im-
provement for the search for SMPs.

5.2 Outlook

Further ideas for improving the β estimation and the search for R-
hadrons came into my mind, which might be interesting for future studies.
One essential part would be to investigate in the modeling ofR-hadrons in
the TileCal. Therefore dedicated studies on the interaction of one par-
ticle with the detector might be helpful. Furthermore the behavior of
σtcell for low energy deposits should be investigated. It might be useful
to introduce a further term in the parametrization of tcell as function of
the energy deposit describing the behavior in the low energy deposit re-
gion. A very powerful variable for the suppression of the background for
the search for R-hadrons might be the dE/dx estimated with the Tile-
Cal. As R-hadrons are expected to have a significantly higher energy loss
they would deposit, because of the long track in the TileCal, much more
energy as muons. The resolution of the dE/dx measurement with the
TileCal is not sufficient for a reasonable mass reconstruction, but using
dE/dx as selection requirement might be quite powerful to suppress the
expected background.
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