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Kurzfassung
Eine präzise Bestimmung der Masse des Top-Quarks ist sowohl in theoretischer als auch in exper-
imenteller Hinsicht von erheblichem Interesse. Eine genaue Kenntnis dieser Größe erlaubt nicht
nur Rückschlüsse auf andere Parameter des Standardmodells der Teilchenphysik - und stellt damit
eine wichtige Möglichkeit dar, dieses auf Konsistenz zu testen -, sondern ermöglicht auch indirekte
Vorhersagen über die Eigenschaften möglicher neuer Teilchen, die im Rahmen von Erweiterungen
des Standardmodells postuliert werden.

Am Large Hadron Collider (LHC) am Kernforschungszentrum CERN bei Genf werden seit März 2010
Protonen bei einer Schwerpunktsenergie von 7 TeV zur Kollision gebracht. Top-Quarks werden in
diesen Kollisionen bevorzugt in Paaren von Teilchen und Antiteilchen mit einemWirkungsquerschnitt
von etwa 170 pb erzeugt. Allein im vergangenen Jahr wurde am ATLAS-Experiment, einem der
vier großen Detektoren des LHC, eine Datenmenge entsprechend einer integrierten Luminosität von
5 fb−1 aufgezeichnet. Dies entspricht etwa 850.000 Top-Antitop-Ereignissen, die potentiell für eine
Massenmessung zur Verfügung stehen.

Mit wachsender Datenmenge wird sich die statistische Unsicherheit auf die Top-Quark-Masse weiter
reduzieren. Bereits die derzeit durchgeführten Messungen sind von systematischen Unsicherheiten
dominiert. Die Herausforderung an zukünftige Analysen besteht dementsprechend darin, die
Ursachen dieser systematischen Unsicherheiten zu identifizieren und ihren Einfluss soweit wie
möglich zu verringern. In diesem Zusammenhang spielt die Unsicherheit auf die Jet-Energieskala
als eine der dominanten Quellen systematischer Unsicherheit eine entscheidende Rolle.

In der vorliegenden Arbeit wird eine neue Methode zur Bestimmung der Masse des Top-Quarks
vorgestellt, die speziell zu dem Zweck entwickelt wurde, die Abhängigkeit der Top-Quark-Masse
von der Jet-Energieskala und die damit verbundene systematische Unsicherheit zu verringern. Die
Masse des Top-Quarks wird dabei allein anhand der Winkel zwischen den drei Jets aus seinem
hadronischen Zerfall, gemessen im Ruhesystem des Top-Quarks, berechnet. Da Winkel zwischen
Jets deutlich präziser vermessen werden können als deren Energien und Impulse, sollte die mit
dieser Methode bestimmte Masse eine verringerte Abhängigkeit von der Jet-Energieskala aufweisen.
Dies wird im Rahmen dieser Arbeit bestätigt.

Dazu wird der neue Ansatz mit den beiden bereits etablierten Methoden zur Massenbestimmung
verglichen: Im Falle der ersten und gängigsten Messmethode wird die Masse des Top-Quarks der
invarianten Masse der drei Jets aus seinem hadronischen Zerfall gleichgesetzt. Im zweiten Fall wird
diese Masse durch die invariante Masse der beiden Jets aus dem hadronischen Zerfall des W-Bosons
geteilt und das Verhältnis mit dem Literaturwert der W-Boson-Masse reskaliert.

Unter der vereinfachenden Annahme einer globalen Unsicherheit auf die Jet-Energieskala von 5%
erhält man eine entsprechende Unsicherheit sowohl auf die mit der Winkelmethode als auch auf
die mit der Verhältnismethode bestimmte Top-Quark-Masse von etwa 0.8 GeV. Die entsprechende
Unsicherheit im Falle der 3-Jet-Methode beträgt dagegen 7.7 GeV. Die Winkelmethode stellt somit
im Hinblick auf die Präzision der Messung eine erhebliche Verbesserung im Vergleich zur gängigen
3-Jet-Methode dar und ist mit der Verhältnismethode vergleichbar.

Die verbleibende Abhängigkeit der mit der Winkelmethode bestimmten Top-Quark-Masse von
der Jet-Energieskala ist durch die Notwendigkeit bedingt, den Lorentz-Boost des Top-Quarks
bezüglich des Laborsystems aus den gemessenen Energien und Impulsen seiner Zerfallsprodukte
zu berechnen, um so die Winkel zwischen den Jets im Ruhesystem des Top-Quarks zu bestimmen.
Erste Untersuchungen, die im Rahmen dieser Arbeit durchgeführt wurden, deuten darauf hin, dass
durch Interpolation hin zu Massenwerten entsprechend Top-Quarks mit kleinem Boost, für die
die Winkel zwischen den Jets direkt im Laborsystem gemessen werden können, die durch die Jet-
Energieskalen-Unsicherheit bedingte Unsicherheit auf die Top-Quark-Masse auf vernachlässigbare
Werte reduziert werden kann.
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Abstract
A precise determination of the top-quark mass is of great importance for both theory and experiment.
Not only does it allow for consistency tests of the Standard Model of Particle Physics, but it can
also be used to derive constraints on the properties of new particles predicted by many extensions
of the Standard Model.

The Large Hadron Collider (LHC) at CERN, where protons have been brought to collision since
March 2010, allows the production of top quarks at an as yet unprecedented centre-of-mass energy
of 7 TeV. In the year 2011 alone an amount of data corresponding to an integrated luminosity of
roughly 5 fb−1 has been recorded by the ATLAS experiment, one of the four big experiments at
the LHC. Top quarks are predominantly produced in pairs of top and anti-top quarks (tt̄) with a
production cross section of 170 pb at 7 TeV. This corresponds to approximately 850,000 tt̄ events
in the 2011 dataset which are available for analysis.

In current analyses, the overall uncertainty on the top-quark mass is already dominated by systematic
uncertainties and, with more data being collected, the statistical uncertainty is expected to be
reduced even further. For future precision measurements it is therefore imperative to assess and
reduce the different sources of systematic uncertainty. In this context, the jet-energy scale (JES)
and its uncertainty play a key role as one of the dominant sources of systematic uncertainty on the
top-quark mass.

In this thesis, a new estimator for the top-quark mass is introduced which has specifically been
developed with the aim of reducing the JES-related systematic uncertainty of the measurement. It
relies on the idea that angles between jets can be measured more accurately than their energies
and momenta. It is shown that the top-quark mass can be obtained using only the angles between
the three jets from the hadronic decay of the top quark determined in the restframe of the latter.

The new mass estimator is compared to the two established estimators, the invariant three-jet
mass and the 3-to-2-jet invariant mass ratio re-scaled by the literature value of the W-boson mass.
Assuming a global uncertainty on the JES of 5%, the systematic uncertainty on the top-quark mass
evaluated with the simple three-jet method is 7.7 GeV. With the jet-angles approach, this value
is reduced to a mere 0.8 GeV which is equal to the value obtained with the ratio method. Hence,
the new mass estimator yields a significant improvement in precision compared to the standard
estimator, the invariant three-jet mass, and is comparable to the ratio method which is already
used in some analyses.

First studies presented in this thesis indicate that the remaining JES dependence of the angles
method can potentially be eliminated by interpolation towards the masses of top quarks with small
Lorentz boosts for which the angles between the jets can be measured directly in the laboratory
frame.
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1. Introduction

The first proton-proton collisions at the CERN based Large Hadron Collider (LHC) in March 2010
marked the beginning of a new era of particle physics. With its current centre-of-mass energy of
7 TeV and an instantaneous luminosity of the order of 1033cm−2s−1 the LHC does not only provide
an excellent facility for testing the Standard Model of Particle Physics to a yet unprecedented
precision, it also bears the potential of discovering new physics beyond the Standard Model.

The top quark, the heaviest elementary particle known to date, plays a key role at this threshold
between known physics and new phenomena at the TeV-scale predicted by many theories: The
precise measurement of its properties (such as its production cross section, its charge or its mass)
does not only allow for consistency tests of the Standard Model, it also yields indirect predictions
of the masses of new particles. Most prominently, the value of the top-quark mass together with
that of the W-boson mass allows to derive constraints on the mass of the (Standard Model) Higgs
boson. In the case of a discovery of the latter and a subsequent direct measurement of its mass
these indirect constraints may serve as an important cross check.

The world average of the top-quark mass is based on measurements performed at the TeVatron
collider at the Fermilab near Chicago. Its current value, obtained from a combination of Run I
(1992-1996) and Run II (2001-2011) measurements, performed at the two experiments CDF and
DØ, and based on 5.8 fb−1 of data, is:

mtop = 173.2± 0.6 (stat.)± 0.8 (syst.) GeV [1]

With the shutdown of the TeVatron in September 2011, it is now up to the LHC based experiments
ATLAS and CMS to reproduce and eventually improve the precision to which the top-quark mass is
known. The measurements at these experiments benefit from the high luminosity and centre-of-mass
energy of the LHC which justifies its label “top-quark factory”: In the year 2011 alone, a dataset
corresponding to an integrated luminosity of roughly 5 fb−1 has been collected by both experiments.
Top quarks are predominantly produced in pairs of top and anti-top quarks (tt̄) via the strong
interaction with a production cross section of 170 pb at 7 TeV. This corresponds to approximately
850,000 tt̄ events in the 2011 dataset which are available for analysis. In current measurements, the
uncertainty on the top-quark mass is already dominated by systematic uncertainties (see Figure
1.1). With more data being collected, the statistical uncertainty is expected to be reduced even
further.

Hence the challenge for future analyses will be to assess and reduce the different sources of systematic
uncertainty on the top-quark mass. To this end, a wide range of analysis approaches has been
developed that focus on different kinematical and topological properties of tt̄ events in different
decay channels. The latter are classified according to the decay of the two W-bosons stemming
from the decays of the top and anti-top quark, respectively. These may either decay leptonically
into a charged lepton and its corresponding neutrino or hadronically into a quark and an anti-
quark. The tt̄ decay channels are accordingly labelled as dileptonic, semileptonic/lepton+jets and
allhadronic/all-jets.

The analysis presented in this thesis is performed in the semileptonic decay channel which is also
known as the “Golden Channel” for top-quark analyses: The leptonic signature can be used to
efficiently reject the huge QCD background characteristic for hadron colliders and the hadronic
decay allows a full kinematic reconstruction of the corresponding top quark. Various approaches to
reconstructing the top quark from its hadronic decay products - two light quarks from the W-boson

1



1. Introduction

Figure 1.1.: Current status of the top-quark mass measurements performed at the TeVatron collider and
the two experiments ATLAS and CMS at the LHC. These values have been summarised for the Moriond
conference, March 2012. [2]

decay and a b-quark which lead to hadronic jets in the detector - and determining its mass have
been developed.

It turns out that for most of these measurements the jet-energy scale (JES), which relates the
measured energy of the jets to that of the original partons, is among the dominant sources of
systematic uncertainty. To increase the precision of the measurement of the top-quark mass, it is
therefore essential to find a way to reduce the JES dependence of the measurement. One way to
achieve this aim is to replace the most commonly used mass estimator, which takes the invariant
mass of the three jets from the hadronic top-quark decay as the top-quark mass, by an improved
estimator which relies on the ratio of the invariant three-jet mass and the invariant mass of the
two jets from the W-boson decay re-scaled by the W-boson mass from literature to calculate the
top-quark mass. With this estimator a higher precision of the measurement can be achieved.

In this thesis, a new estimator for the top-quark mass is introduced which relies on the idea that
angles between jets can be measured more accurately than their energies and momenta. It is
shown that the mass of the hadronically-decaying top quark can be calculated using only the
angles between the three jets in the restframe of the top quark. The JES dependence of this
new estimator is compared to that of the two established estimators. The resulting JES-related
systematic uncertainty of the new method is comparable to that of the ratio method and constitutes
a considerable improvement in precision compared to the simple invariant three-jet mass estimator.

The remaining JES dependence can be attributed to the necessity of determining the Lorentz boost
of the top quark with respect to the laboratory frame from the four-momenta of its decay products.
This is required in order to calculate the angles between the jets in the top-quark restframe. By
plotting the reconstructed mass values against the Lorentz boost of the corresponding top quarks

2



and interpolating to the case of vanishing boost the mass point corresponding to top quarks that
are at rest in the laboratory frame is derived. The results presented in this thesis indicate that this
mass point is independent of the JES and that hence the JES-related systematic uncertainty is
negligible.
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1. Introduction

Conventions
Throughout this thesis, natural units are used in accordance with the conventions of particle
physics, i.e.

~ ≡ c ≡ kB ≡ 1.

All charges are given in units of the elementary charge

e = 1.602176487(40) · 10−19C [3]

and for energies and masses the unit electron-volt (eV) is used.

4



2. The Top Quark in the Context of the Standard
Model of Particle Physics

The discovery of the top quark by the CDF [4] and DØ [5] collaborations at the Fermilab-based
TeVatron collider in 1995 marked a significant milestone for both experimental and theoretical
high-energy physics but, unlike other discoveries in the history of particle physics, it did not come
entirely unexpected.
When the muon was found fifty years earlier [6, 7], in 1947, together with the long sought-after
π-meson, the physics community was baffled by the existence of this heavier version of the electron
which, at that time, did not fit into any model of subatomic particles.1 A succession of further
discoveries of particles today known as “baryons”2 and “mesons”3 as well as ground-breaking
experimental results on the parity and charge asymmetry at the subatomic level fuelled the
development of models and theories describing the elementary constituents of matter as well as the
fundamental forces governing their interactions.
By the end of the 1970s, a consistent set of theories had emerged - a result of a most fruitful
interplay between experimental discoveries on the one hand and theoretical predictions on the
other - which, since that time, has been commonly summarized under the term “Standard Model
of Particle Physics”. Its great predictive power concerning not only the existence of previously
unknown particles but even the setting of indirect constraints for their masses has since been proven
on various occasions. The most remarkable among these were the discoveries of the bottom quark
in 1977 [8], the intermediate vector bosons W± [9] and Z0 [10] in 1983 and finally, in 1995, the top
quark.

2.1. The Standard Model of Particle Physics

The Standard Model of Particle Physics fundamentally relies on the concept of gauge symmetry in
the framework of which it can be summed up most concisely in the following formula:

SU(3)C × SU(2)L × U(1)Y (2.1)

The individual terms stand for the gauge (Lie) groups of the three fundamental forces which can
presently be described within the framework of gauge theory: The strong interaction with symmetry
group SU(3)C , where the subscript “C” stands for the colour charge to which the quanta of the
strong field couple, and the electroweak interactions with symmetry group SU(2)L × U(1)Y with
the subscript “L” representing the left-handedness of the coupling to the electroweak charge isospin
and “Y” representing the hypercharge.

The fourth known fundamental force, gravity, is missing in this picture: Although there have
been attempts to formulate a gauge theory of gravity, all these theories have turned out to be
non-renormalisable, i.e. they contain an infinite number of free parameters, the values of which
would have to be determined by experiment in order to make sense of the theory. For this reason
gravity is not part of the Standard Model of Particle Physics and hence will not be considered here
any further.

1“Who ordered that?” Isidor I. Rabi is said to have exclaimed at the news of this discovery.
2This term is derived from the Greek word βαρύς meaning “heavy”.
3This term is derived from the Greek word µέσoς meaning “intermediate”.

5



2. The Top Quark in the Context of the Standard Model of Particle Physics

2.1.1. Gauge symmetry and the Example of Quantum Electrodynamics
(QED)

The concept of a gauge symmetry which is at the heart of the Standard Model undoubtedly ranks
among the most profound and important ideas of modern physics: For a quantum field theory to
be called a gauge theory, its Langrangian L is required to be invariant under local transformations
U ∈ G of its fields where G is some symmetry (Lie) group such as U(1) or SU(3).
One of the best-known examples for a local gauge theory is Quantum Electrodynamics (QED) with
gauge group U(1)em, not to be confused with U(1)Y in Equation (2.1) (see also Section 2.1.4). The
Lagrangian for a free electron spinor field Ψ(x) is given by:

LQED = Ψ̄(x)(iγµ∂µ −m)Ψ(x) (2.2)

where the γµ are the Dirac matrices and repeated indices are summed over.

This expression is clearly invariant under global gauge transformations of the spinor fields

Ψ(x)→ eiαΨ(x)
Ψ̄(x)→ e−iαΨ̄(x) (2.3)

with the constant phase factor α ∈ R and eiα ∈ U(1). Invariance of L under local transformations

Ψ(x)→ eiα(x)Ψ(x)
Ψ̄(x)→ e−iα(x)Ψ̄(x) (2.4)

with space-time dependent phase factor α(x), however, requires the ordinary derivative in Equation
(2.2) to be redefined as follows:

∂µ → Dµ = ∂µ + iqAµ(x) (2.5)
where the newly introduced gauge field Aµ(x) transforms as

Aµ(x)→ Aµ(x)− q−1∂µα(x) (2.6)

and q is a free parameter which can be identified with the electric charge.
The complete QED Lagrangian, which includes the gauge/photon field as a dynamic variable, is
then given by

LQED = Ψ̄(x)(iγµDµ −m)Ψ(x)− 1
4FµνF

µν (2.7)

where the field tensor
Fµν = ∂µAν − ∂νAµ (2.8)

is gauge-invariant by itself.

The quanta of the gauge field Aµ(x) are the photons that couple to the electric charge, thereby
mediating the force between electrically charged particles. Hence the mere requirement for the
Lagrangian to be invariant under the action of some local symmetry group G automatically dictates
the existence of gauge fields and the nature of their couplings.

It is worth noting that this property, commonly referred to as universality, is of crucial importance
in modern physics when it comes to model building, e.g. in order to formulate a Grand Unified Theory
(GUT) that describes the three fundamental forces of the Standard Model in a unified framework:
The standard approach is to start by postulating a certain symmetry while merely requiring that the
corresponding symmetry group G contains the Standard Model: G ⊃ SU(3)C × SU(2)L × U(1)Y ,
and then build a Lagrangian that is invariant under the elements of this group.4

4Compare this to classical electromagnetism: While James. C. Maxwell had formulated his equations between 1861
and 1864 based on empirical insights, it was not until the 1920s that Herman Weyl, who also coined the term
“gauge invariance”, discovered their underlying U(1) gauge symmetry.
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2.1. The Standard Model of Particle Physics

The theory of Quantum Electrodynamics described above undoubtedly ranks among the most
successful theories of physics5: Not only has it served as a model for plenty of other theories such as
Quantum Chromodynamics (Section 2.1.2) or the theory of electroweak interactions (Section 2.1.4),
it has also been tested in numerous experiments to an astonishingly high accuracy, exhibiting a yet
unprecedented agreement between theoretical calculations and precision measurements.[12]

2.1.2. Quantum Chromodynamics (QCD)

The theory of the interaction of “coloured” particles, Quantum Chromodynamics (QCD), represented
by the first term SU(3)C in Equation (2.1), builds on many concepts developed in the context
of QED. However, there is a fundamental difference between these theories which is founded in
the structure of the underlying gauge group: SU(3), unlike U(1), is a non-Abelian Lie group,
meaning that its generators T i do not commute; This non-commutativity has profound consequences
for the couplings of the gauge field (see below).
The constituting commutation relation of the SU(3) Lie algebra is given by

[T A, T B ] = i

8∑
C=1

fABCT C (2.9)

where fABC are the structure constants of the Lie group and the T A are the generators in the
eight-dimensional adjoint representation of SU(3).

The generators can be re-written in a more common form in the (three-dimensional) fundamental
representation of SU(3) as tA = λA

2 where the λA are the well-known Gell-Mann matrices. (An
explicit form of the Gell-Mann matrices can be found in [13].)

The gauge-invariant QCD Lagrangian has a structure similar to the one of QED in Equation
(2.7):

LQCD =
∑
q

Ψ̄q,a(x)(iγµ∂µδab − gsγµtCabACµ −mqδab)Ψq,b(x)− 1
4F

A
µνF

A µν (2.10)

where repeated indices are summed over and

FAµν = ∂µAAν − ∂νAAµ − gsfABCABµACν . (2.11)

Here again, gs is a parameter that describes the coupling of the gauge fields to colour.

The spinors Ψq,a(x), which are in the triplet or fundamental representation of SU(3), represent a
field of spin- 1

2 particles that carry a quantum number similar to the electric charge in the case of
QED. This quantum number has accordingly been named colour charge. Hence the quanta of
this spinor field, the quarks, come in three colours (represented by the index a ∈ {1, 2, 3}): red,
green or blue. The index “q” stands for the six known quark flavours: up, down, strange, charm,
bottom, top (see the overview table in Section 2.1.5).

The gauge fields ACµ are - in complete analogy to QED - a direct consequence of the requirement that
the Lagrangian be invariant under the chosen symmetry group. They are in the (eight-dimensional)
adjoint representation of SU(3), hence A,B,C ∈ {1, ..., 8}. The quanta of this gauge field are called
gluons and, just like the photons couple to electric charge q with coupling constant α = q2

4π , gluons
couple to colour charge gs with coupling constant αs = g2

s

4π (see Equation (2.10)), thereby mediating
the interaction between coloured particles.

5Richard P. Feynman once called it the “jewel of physics”[11].
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Figure 2.1.: Gluon octet in the adjoint representation of SU(3)C

However, the non-Abelian structure of SU(3)C results in a colour charge for the quanta of the
gauge field ACµ : While photons do not carry a(n electric) charge and therefore do not interact with
one another, gluons carry both colour and anti-colour (Figure 2.1) which allows them to couple to
quarks according to vertex (a) in Figure 2.2 but also to other gluons according to vertices (b) and
(c). For QED, only the analogue to vertex (a) exist while (b) and (c) are not allowed for photons.

q̄(r̄)

q(b)

g(br̄)

(a)

g

g

g

(b)

g

g g

g

(c)

Figure 2.2.: Possible vertices of QCD: (a) gluon-quark coupling, (b) triple-gluon vertex, (c) quadruple-gluon
vertex

This gluon self-interaction results in a phenomenon known as anti-screening which has far-
reaching and profound consequences, in particular for the understanding of the physics processes
at hadron colliders such as the LHC (see below) and for the interpretation of the quark masses
(Section 2.1.3): The coupling constants of QED and QCD, α and αs respectively, are - contrary to
what their name suggests - not constant but vary as a function of the energy scale Q of the process.
This is a consequence of vacuum fluctuations, a phenomenon that occurs naturally in quantum
field theories: The quantum mechanical time-energy uncertainty relation6 ∆t∆E ≥ 1 allows the
creation of a particle-anti-particle pair with energy ∆E from the vacuum which exists for a brief
timespan ∆t before its constituents annihilate. These fluctuations modify the propagators of free
particles by adding virtual loops as shown in Figure 2.3. The effect of these vacuum contributions,
however, is fundamentally different in QED and QCD due to the different nature of their gauge
couplings: While in QED loop contributions can arise only from virtual electron-positron pairs (top
left in Figure 2.3), the gluon self-coupling of QCD also allows closed gluon loops in addition to
those from pairs of quark and anti-quark (top left in Figure 2.3). The virtual electron-positron
pairs of QED become polarised in the presence of electrically charged particles, thus screening the
bare charge which leads to a dampening of the electric field at large distances, very similar to the
dampening of an electric field that occurs in a dielectric material. As a consequence, the coupling
constant α of QED decreases over the distance whereas at higher energies, which allow smaller

6This is given in natural units.
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2.1. The Standard Model of Particle Physics

Figure 2.3.: The effect of vacuum fluctuations on the couplings of QED (a) and QCD (b) [14]

distances to be probed, the coupling increases (bottom left in Figure 2.3).
In QCD, however, the additional contributions from the gluon loops reverse the effect of the vacuum
fluctuations, leading to a phenomenon called anti-screening: At larger distances, i.e. smaller
energies, the vacuum augments the colour charge, an effect similar to the increase of the magnetic
field in a paramagnetic substance. Accordingly, the strong coupling constant αs decreases with
increasing Q (top right in Figure 2.3 and Figure 2.4). This effect is known as asymptotic freedom.
It implies that quarks inside mesons and baryons can approximately be treated as free particles
and that perturbation theory can successfully be applied in this energy regime.

On the other hand, αs is large for small energies and large distances. This has profound consequences
for both theory and experiments:

• Perturbation theory fails in the low-energy regime. This calls for non-perturbative approaches
to model QCD processes and calculate quantities such as proton and quark masses, the search
for and optimisation of which is still a field of ongoing research. An already well-established
non-perturbative method is lattice QCD: Calculations are performed on a discrete spacetime
lattice which not only regularises the theory but also allows for numerical simulations of QCD
processes. This model correctly predicts the confinement of colour for the strong interaction
[12] and is currently used to derive quantities such as the masses of hadrons and quarks [3].

• It is impossible to observe free quarks. Any attempt to separate two coloured particles, for
example the quark and anti-quark in a meson, leads to an increase of the energy density of
the gluon field between the quarks. At some point, the additional energy stored in the field is
large enough for the creation of another pair of quark and anti-quark from the vacuum which
then forms two colourless mesons with the two initial quarks. This phenomenon is known
as confinement: The coloured quarks are confined within hadrons which do not possess a
net colour. This does not only make it difficult to measure properties of quarks such as the
top quark mass but it also poses an epistemological problem: How can we make sense of
a quantity such as the mass of a particle that we can never, due to the very nature of its
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QCD α  (Μ  ) = 0.1184 ± 0.0007s Z
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Figure 2.4.: The running coupling constant of QCD as a function of the energy scale Q [3]

interactions, observe isolated from other particles? Is there a way to unambiguously define
the concept of quark masses and if so how are these theoretical definitions related to the
quantities measured in experiment? These issues are addressed in Section 2.1.3.

Figure 2.5.: Schematic representation of parton and hadron shower triggered by final-state partons [15]
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2.1. The Standard Model of Particle Physics

• The final-state quarks from a hard-scattering process cannot directly be observed in the
detector, as explained above. Instead, they trigger complex cascades of particles as shown
in Figure 2.5: The individual quarks emerging from the hard scattering process generate
parton showers by radiating gluons which in turn split into gluons or pair of quark and
anti-quark according to the vertices in Figure 2.2. During hadronisation new particles are
created from the vacuum to form colourless bound-states (hadrons) which can be either pair
of quark and anti-quark (mesons) or triple-quark bound-states (baryons). This process
continues until all coloured particles are absorbed into hadrons. The unstable hadrons finally
decay into stable7 particles such as protons or neutrons. Thus, one single final-state parton
from a hard-scattering process results in a whole bunch of stable hadrons which can be
observed in the detector. The correct kinematic reconstruction of these hadronic jets, in
particular the determination of their energy, and the identification of the final-state parton
that triggered a jet is a non-trivial task. It is, however, of fundamental importance for the
identification and full kinematic reconstruction of the original hard-scattering process and
therefore poses a major challenge to all physics analyses at hadron colliders. For further
details on jet reconstruction see Section 5.4.

• The aforementioned evolution of hadronic jets from single partons can not (yet) be calculated
completely from the theory: For the parton shower, approximative methods such as Next-to-
Leading Order (NLO) calculations and Next-to-Leading-Log Approximations (NLLA) are
available [16] while for hadronisation only phenomenological models exist. These generally
fall into two categories:

– String Models: The strong interaction between two coloured partons in the shower is
described by a colour flux tube or string with tension κ ≈ 1GeV

fm [16, 17]. The energy
stored in the string therefore increases linearly with the distance until it breaks up
producing a pair of quark and anti-quark that forms colourless mesons with the original
partons. This model, known as linear confinement model, makes explicit use of the
energy dependence of the strong coupling constant and is supported by lattice QCD
studies.[17]

– Cluster Models: The coloured particles in the parton shower are grouped with their
nearest neighbours into clusters without a net colour. These clusters are treated as
quasi-particles that then decay into hadrons.

Monte-Carlo generators generally use either one of these two models to simulate hadronisation
processes. For example, the Monte-Carlo generator Pythia [17] relies on the string model
while Herwig [18] uses the cluster approach.

(a) (b)

Figure 2.6.: Phenomenological models of hadronisation: (a) string model and (b) cluster model [19]

7In this context, the term “stable” refers to all particles that do not decay within the detector.
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2. The Top Quark in the Context of the Standard Model of Particle Physics

2.1.3. The Concept of Quark Masses

As explained in Section 2.1.2, quarks cannot be observed as free particles due to confinement, a
direct consequence of their very nature as particles carrying a colour quantum number. This poses
a major problem for both theory and experiment when it comes to defining and measuring quark
masses.
There are various approaches to tackle this issue, each with its own set of approximations and
systematic errors, and quark masses can differ significantly depending on which conventions and
definitions are used. Therefore, it is important to always keep the (gauge) theoretical framework in
mind, and special care must be taken when theoretical concepts are to be related to experimentally
measured quantities.

A reasonable starting point for addressing the problem of the quark masses is, naturally, at
the fundamental level of the QCD Lagrangian which contains the quark masses as parameters
that take finite values after renormalisation. This implies that, beyond leading-order QCD, the
quark masses depend on the chosen renormalisation scheme and the energy parameter µ of the
renormalisation. Conventionally, the so-called Modified Minimal Subtraction scheme MS is
chosen8 and the energy scale µ is fixed at either µ = 1 GeV or µ = 2 GeV for light quarks (d, u, s)
while for the charm and bottom quark it is customary to choose µ = mc and µ = mb.[3]

There is, however, an alternative mass concept that is sometimes used to define quark masses: the
pole mass9. This definition has been adapted from QED where it applies to free particles such as
the electron. For these, the position of the pole in the propagator (or, to be more precise, its real
part) defines the mass of the particle.
In Quantum Chromodynamics, this mass concept can be used as a perturbative definition of
the quark mass but with only a limited accuracy due to the non-perturbative effects that are
characteristic for QCD. In fact, the full quark propagator of QCD does not have a pole. Therefore,
the pole mass is not a physical quantity and has only very limited applicability.
The relation between mpole

Q and mQ is known up to three loops in perturbation theory.[3]
One might expect that the above complications resulting from confinement do not, or at least only
in a limited way, apply to the top quark: Due to its huge mass, the top quark has an extremely
short lifetime of 0.5 · 10−24 s and a corresponding width of 1.29 GeV [3] which is larger than the
QCD energy scale ΛQCD ≈ 200 MeV, meaning that its lifetime is shorter than the timescale for
hadronisation. Therefore, top quarks decay before they can form hadrons, in other words, they
are not found to be confined into colourless bound-states because their lifetime is not sufficient for
them to form any. It might therefore be hoped that the top quark pole mass does not suffer from
the above-mentioned ambiguity.
However, it can be shown [20] that this is not the case and that in fact the intrinsic O(ΛQCD)
ambiguity of the pole mass applies to any coloured particle, no matter whether stable or unstable and
independent of its lifetime. It has therefore been suggested (see again [20]) to use MS mass as the
standard top mass concept with regard to the increasing precision of top quark mass measurements
that will at some point reach an accuracy comparable to ΛQCD.

Apart from the theoretical difficulties of defining appropriate concepts for the masses of quarks,
there is still the question how these can be related to the quantities measured in experiments.
In the case of the top quark, there are basically two ways to perform a direct mass measurement
based on the analysis of the final states in tt̄ events.

• Template Methods: Monte Carlo generators are used to produce a set of templates with
different input values of mMC

top . These are compared to data on the basis of the distributions

8It should be noted that analyses of inclusive B meson decays indicate that different schemes such as the 1S or PS
scheme might be better suited, at least for heavy quarks. [3]

9This quantity is conventionally denoted by mpole
Q as opposed to the MS mass mQ.
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2.1. The Standard Model of Particle Physics

of a number of chosen kinematic variables and the top quark mass is extracted from this
template fit.

• Calibration Curve Methods: The value of a chosen mass estimator is calculated from
measured final-state observables in data. The same procedure is applied to a number of Monte
Carlo datasets generated with different input values of mMC

top which allows to determine the
functional relation between the “true” (i.e. generated) and the reconstructed top quark mass
mtop, reco(mtop, truth). The mass obtained from data is then re-calibrated on the basis of the
thereby obtained calibration curve.

The obvious complication with both of these methods is that they fundamentally rely on the quark
mass concept mMC

top used by the Monte Carlo generator which does not relate directly to a particular
renormalisation scheme.
To deal with this source of uncertainty, tt̄ cross-section measurements10 are compared to fully
inclusive higher-order QCD calculations while either assuming that mMC

top = mt or mMC
top = mpole

top
([21, 22, 23]). Results from the DØ experiment [23] indicate that the top mass measured at TeVatron
- which dominates the current world-average of the top-quark mass as quoted in [1] - is closer to
mpole

top than to mt.

2.1.4. Electroweak Interactions and Spontaneous Symmetry Breaking

The relevance of top quark physics in general and precision measurements of the top quark mass in
particular can only be fully understood in the context of the theory of electroweak interactions,
represented by the SU(2)L × U(1)Y term in Equation (2.1).
As outlined before in the cases of QED and QCD (Sections 2.1.1 and 2.1.2), the requirement that
the Lagrangian be invariant under the actions of the elements of the respective symmetry group
yields the existence of two gauge fields:
A triplet W i

µ with i ∈ {1, 2, 3} for SU(2)L and a singlet Bµ in the case of U(1)Y . The corresponding
quantum numbers are the weak isospin I and the weak hypercharge Y, respectively.
The concept of weak isospin is intimately related to that of chirality11: A fermion is called left-handed
if its Dirac spinor Ψ is an eigenstate of the chirality operator PL = 1

2 (1− γ5) and right-handed if it
is an eigenstate of the chirality operator12 PR = 1

2 (1 + γ5). For an anti-particle these definitions
are simply reversed. A general Dirac spinor can be written as the sum of left- and right-handed
components:

Ψ = PLΨ + PRΨ = ΨL + ΨR (2.12)
In the context of electroweak gauge theory, the left-handed fermions form isospin doublets with
isospin I = 1

2 and third component I3 = ± 1
2 while the right-handed fermions are isospin singlets (I

= 0). In the case of anti-particles the situation is simply reversed for left- and right-handed states.
The gauge fields W i

µ, which form an isospin triplet13 (I = 0), exclusively couple to left-handed
fermions (hence the index “L” in SU(2)L) and right-handed antifermions which means that parity
is maximally violated. The fact that the W i

µ themselves also carry isospin is a direct consequence
of the non-Abelian nature of SU(2) and, like in the case of SU(3), implies gauge-field self-coupling.
The weak hypercharge to which the Bµ couples can be calculated for each particle using the
Gell-Mann-Nishijima formula:

Qem = I3 + 1
2 Y. (2.13)

Table 2.1 summarizes the quantum numbers for the fermions of the first generation. The same
numbers apply to the fermions of the other two families.

10Unlike inclusive observables such as the top-quark mass, the cross section is a fully inclusive quantity, i.e. one that
is sensitive to kinematic or topological properties of the final state, and as such has a smaller sensitivity to αs.

11This term is derived from the Greek word χείρ meaning “hand”.
12The quantity γ5 = iγ0γ1γ2γ3 is the product of the four Dirac matrices γi.
13This is in full analogy to the gluon octet of QCD.
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Qem I3 Y

(νe)L 0 1
2 -1

eL -1 − 1
2 -1

(νe)R 0 0 0

eR -1 0 -2

(a) Leptons

Qem I3 Y

uL
2
3

1
2 - 1

3

dL - 1
3 − 1

2 - 1
3

uR
2
3 0 4

3

dR - 1
3 0 - 2

3

(b) Quarks

Table 2.1.: Quantum numbers of the electroweak theory for the fermions of the first generation

The gauge fields of the known gauge bosons, the W±µ , Z0
µ and Aµ for the photon, can be obtained

by forming linear combinations of the aforementioned gauge fields as follows:

W± = 1
2(W 1

µ ∓ iW 2
µ)

Z0
µ = −Bµ sin θW +W 3

µ cos θW

Aµ = Bµ cos θW +W 3
µ sin θW (2.14)

where θW is known as the weak mixing angle.
The linear combinations W± act as ladder operators on the weak isospin doublets in Figure 2.1: A
left-handed down-type quark turns into its up-type isospin partner by absorbing a W+, e.g.

sL +W+ → cL,

and a left-handed up-type quark vice-versa turns into its down-type isospin partner by emitting a
W+, e.g.

tL →W+ + bL.

Thus, the weak interaction allows changes of quark flavour.
The caveat of the electroweak theory in the formulation outlined so far is that the requirement of
gauge invariance can only be met if the gauge fields are massless. While this is indeed the case for
the photon field Aµ, the W± and Z0 bosons found in nature have considerable masses of 80.4 GeV
and 91.2 GeV, respectively.14
This problem can be solved by introducing a scalar field Φ with a non-vanishing vacuum expectation
value 〈Φ〉0 and a potential V (Φ†Φ) that is invariant under SU(2)L × U(1)Y but has a ground state
which does not possess this symmetry.
In the so-called Minimal Standard Model Φ takes the form of a complex SU(2)L doublet with
hypercharge Y (Φ) = 1

Φ =

φ+

φ0

 = 1√
2

φ1 + iφ2

φ3 + iφ4

 I3 = + 1
2

I3 = − 1
2

(2.15)

14Theorists were fully aware of this problem when the model for electroweak unification was introduced in 1961.
Even though the W± and Z0 had not been discovered yet, theoretical considerations indicated that they should
be heavy. S. Glashow, one of the “fathers” of the electroweak unification, admitted: “It’s a stumbling block we
must overlook.” The problem was only solved six years later when S. Weinberg and A. Salam suggested the Higgs
mechanism of spontaneous symmetry breaking. [13]
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which possesses four real, scalar degrees of freedom, the φi, and groundstates Φ0. These are
commonly expressed in the form

Φ0 = 1√
2

0

v

 (2.16)

where v = µ
λ is a real parameter related to the potential V (Φ†Φ) which in the context of this

minimal model is given by:

V (Φ†Φ) = −µ2Φ†Φ + λ2(Φ†Φ)2, µ, λ ∈ R. (2.17)

The value of v can be estimated from precision measurements of electroweak observables. A single
vacuum groundstate Φ0 does not possess the SU(2)L×U(1)Y symmetry of the complete electroweak
Lagrangian (including the additional terms for the Higgs field). This means that when the system
is in one of its possible ground states (the collection of which does possess SU(2)L × U(1)Y
symmetry), the full underlying symmetry of the Lagrangian is hidden. This phenomenon is known
as spontaneous symmetry breaking.
During spontaneous symmetry breaking, the gauge fields corresponding to the W±, Z0 aquire mass
by “absorbing” three of the four degrees of freedom of Φ. The photon gauge field Aµ remains
massless and the remaining fourth degree of freedom leads to a scalar field with mass

mH =
√

2µ =
√

2λv, (2.18)

the Higgs field. In group-theoretical terms, this process can be described as

SU(2)L × U(1)Y → U(1)em, (2.19)

where U(1)em is the familiar gauge group of QED.

The Higgs mechanism does not only reconcile the local gauge invariance of the unified electroweak
theory with the observed masses of the weak gauge bosons, it also able to describe the fermion
masses via Yukawa coupling of the scalar field Φ to the chiral Dirac spinor fields of the fermions:

LHF = g̃f (Ψ̄f
RΦ†Ψf

L + Ψ̄f
LΦΨf

R) (2.20)

where
g̃f =

√
2 mf

v
(2.21)

is the Yukawa coupling constant for the fermion f.

Like the value of the Higgs mass mH , the Yukawa coupling constants g̃f - and therefore the fermion
masses mf - are not predicted by the theory but have to be obtained from experiments.
The value of the parameter v, known as the scale of electroweak symmetry breaking, can be
estimated from precision measurements of electroweak observables to be about 246 GeV. [13]

2.1.5. Overview of the Standard Model Particles and their Properties

The particles and forces of the Standard Model and their properties, as outlined in Sections 2.1.1,
2.1.2 and 2.1.4, can be summarized as follows:

The three fundamental forces described within the gauge theoretical framework of the Standard
Model are the strong, weak and electromagnetic interactions. The quanta of the correspond-
ing gauge fields are bosonic particles, i.e. they have integer spin. Their properties are summarised
in Table 2.2.

The second class of particles contained within the Standard Model are the quanta of the fermion
fields: All the Standard Model fermions are spin- 1

2 particles and fall into either one of two categories,
depending on their colour charge:
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strong weak electromagnetic

intermediate gauge bosons g W± Z0 γ

spin 1 1 1

mass [GeV] 0 80.4 91.2 0

interaction length [m] 10−15 10−18 ∞

electric charge [e] 0 ±1 0 0

colour charged yes no no

chiral sensitive no yes no

couples to colour weak isospin electric charge

Table 2.2.: The three fundamental interactions of the Standard Model and their properties with masses
taken from [3]

Leptons (Table 2.7) do not carry a colour charge and therefore do not couple to gluons. As a
consequence, they can be observed as free particles and their masses can be defined without the
ambiguities related to quark masses (Section 2.1.3).

Generation Flavour Symbol Qem[e] Mass [GeV]

1
Electron e− −1 511.0 · 10−6

Electron Neutrino νe 0 < 2 · 10−9

2
Muon µ− −1 105.7 · 10−3

Muon Neutrino νµ 0 < 0.19 · 10−3

3
Tau τ− −1 1.777

Tau Neutrino ντ 0 < 18.2 · 10−3

Figure 2.7.: Leptons and their properties with masses taken from [3]. The limits on the neutrino masses
stem from direct measurements.

Quarks (Table 2.8) are “coloured” particles that couple to gluons. Hence they are subject to
confinement and cannot be observed as free particles.

Generation Flavour Symbol Qem[e] Mass [GeV]

1
Down d − 1

3 (5.0+0.7
−0.9) · 10−3

Up u + 2
3 (2.5+0.6

−0.8) · 10−3

2
Strange s − 1

3 (100+30
−20) · 10−3

Charm c + 2
3 1.29+0.05

−0.11

3
Bottom b − 1

3 4.19+0.18
−0.06

Top t + 2
3 172.9± 0.6 (stat.)± 0.8 (sys.)

Figure 2.8.: Quarks and their properties with masses taken from [3] and [1]
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2.1. The Standard Model of Particle Physics

All quark masses except that of the top quark are MS masses, evaluated at renormalization scale
µ = 2 GeV for the down, up and strange quark, at µ = mc for the charm and at µ = mb for the
bottom quark. The top quark mass is based on a combination of data from TeVatron Run I and
Run II as provided by the TeVatron Electroweak Working Group (TEVEWWG) [1].

Both quarks and leptons can be grouped into three families. All quantum numbers such as spin and
charge are identical for corresponding particles from different families such as the up-type quarks u,
c and t; only their masses are different.
The fermion mass eigenstates, denoted by d, s, b, ..., used in the classification above are, however,
not identical to the weak isospin eigenstates in Section 2.1.4, denoted by d’, s’, b’, ..., on which the
W± act as ladder operators.
In the quark sector, the relation between these two sets of states is given by a unitary 3× 3 matrix,
the Cabibbo-Kobayashi-Maskawa (CKM) matrix VCKM

15:
d′

s′

b′

 =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb



d

s

b

 . (2.22)

This implies that the exchange of a W± boson does not only allow changes of flavour within
the same isospin doublet and therefore within the same generation - which would be the case if
VCKM was unitary - but also inter-generational transitions such as16 s→W+ + u or t→W+ + s.
The matrix elements |Vij |2 correspond to the transition rates between an up-type quark qi and a
down-type quark qj . Their numerical values are not predicted by the Standard Model but have to
be determined experimentally. The measured values as given in [3] are:

VCKM =


0.97428± 0.00015 0.2253± 0.0007 0.00347+0.00016

−0.00012

0.2252± 0.0007 0.97345+0.00015
−0.00016 0.0410+0.0011

−0.0007

0.00862+0.00026
−0.00020 0.0403+0.0011

−0.0007 0.999152+0.000030
−0.000045

 (2.23)

15The equivalent to the CKM matrix in the lepton sector is the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix
which was introduced in order to explain neutrino oscillations.

16This process was first postulated by N. Cabibbo in 1963 who introduced the two-dimensional equivalent to the
CKM matrix, the Cabibbo matrix, in order to explain the decay of the K−, the lightest strange particle. This led
to the development of the GIM mechanism and the postulation of the charm quark by S. Glashow, J. Iliopolus
and N. Maiani in 1970. [13]
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2. The Top Quark in the Context of the Standard Model of Particle Physics

2.2. Relevance of the Top Quark for the Standard Model and
Beyond

In the context of the electroweak theory outlined in Section 2.1.4, the importance of the top quark
with its unusually high mass becomes fully evident:
In the SU(2)L × U(1)Y gauge theory, as in any quantum field theory, higher-order radiative
corrections to scattering processes have to be taken into account perturbatively because they
have measurable effects on quantities such as cross sections and masses.17 While the radiative
contributions from heavy particles are negligible in QED and QCD, the Yukawa structure of the
electroweak theory implies that these contributions have measurable effects.
In particular, this allows experiments to trace particles with masses considerably higher than the
centre-of-mass energy at which a particular experiment operates, thus allowing to probe their
properties without observing them directly.
This remarkable feature of the SU(2)L × U(1)Y theory made it possible to constrain the mass of
the top quark to a range of 173+18

−20 GeV even before its discovery at TeVatron in 1995 by using
precision measurements performed at the Large Electron-Positron collider (LEP). [24]

Figure 2.9.: Loop contribution of the top quark and the Higgs boson to the W-boson propagator [25]

In the same way, a combination of precision measurements of the top quark and W-boson masses
yields constraints on the mass of the (yet) unobserved Higgs boson by taking into account the
radiative corrections of the top quark and Higgs boson to the W-boson propagator (Figure 2.9) and
vice versa.

As shown in Figure 2.10, the correlation between the top-quark mass mtop and the W-boson mass
mW is approximately linear for different values of the Higgs mass mH . The grey bands correspond
to the sets of linear functions mW (mtop) for values of mH in the range between 115 GeV and 1000
GeV that have not yet been excluded by theoretical considerations or experimental results: The
lower limit of 115 GeV corresponds to the upper bound of the Higgs-mass range that has been
excluded via direct searches at LEP and the upper limit is the upper theoretical limit on mH .
The white band between 127 GeV and 600 GeV corresponds to the mass range excluded by direct
searches at TeVatron and the LHC. The red area is derived from indirect electroweak fits using
precision data taken at LEP1 and SLD.18

The orange and green ellipses mark the points in the mtop-mW -plane that are in agreement with
the combined data taken at LEP and TeVatron, based on analyses published in 2009 and 2012,
respectively. They clearly illustrate how the increasing precision on the W-boson mass leads to
stricter (indirect) constraints on the mass of the Higgs boson. The remarkable agreement between
the ellipses and the grey band between 115 and 127 GeV points towards a light Higgs boson. In
the case of its discovery and a subsequent direct measurement of its mass, the indirect constraints

17 A prominent example for such a radiative effect is the Lamb shift which can be probed by precision measurements
of the hydrogen atom and is correctly predicted within the framework of QED by taking into account higher-order
loop diagrams.

18 This is the acronym of the SLAC Large Detector experiment at the Stanford Linear Accelerator Center (SLAC).
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2.2. Relevance of the Top Quark for the Standard Model and Beyond

Figure 2.10.: Constraints on the Higgs mass from precision measurements of the W-boson and top-quark
mass as of February 2012 [26]

from precision measurements of the W-boson and top-quark masses will serve as an important
cross-check.

Moreover, the top quark itself might play a more fundamental role in the context of electroweak
symmetry breaking, being the only known particle with a mass close to the electroweak scale v
(Section 2.1.4) and a Yukawa coupling to the Higgs field g̃t =

√
2 mtop
v close to unity.

The top-quark mass might also be sensitive to signatures of physics beyond the standard model
(BSM) via radiative contributions from heavy exotic particles and some BSM theories also predict
decays of heavy unstable particles into top quarks.

Finally, tt̄ events form a major background in many searches for new physics and therefore need to
be understood in all thoroughness.

All this calls for a detailed study of the top quark in general and a precise measurement of its mass
in particular.
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3. Top-Quark Production and Decay

3.1. Top-Quark Production

In the Standard Model, top quarks can be produced either via the strong or the electroweak inter-
action, see Sections 3.1.1 and 3.1.2. Both production mechanisms play a role in mass measurements
as signal and background processes, respectively.

3.1.1. Single-Top Production via Electroweak Processes

Single top quarks can only be produced via the electroweak interaction which allows the creation of
quark flavour via the exchange of a W-boson. The leading-order Feynman diagrams for single-top
production are shown in Figure 3.1.1

q (q̄) q′ (q̄′)

W

b t

(a) t channel

q

q̄′

W

b̄

t

(b) s channel

b

g

b

W−

t
b W−

t

g t

(c) Wt channel

Figure 3.1.: Leading-order single-top production

In the t-channel, a bottom quark turns into a top quark by exchanging a virtual W-boson with
an up-type quark q (or anti-quark q̄). This process is the dominant mechanism for single-top
production at both the TeVatron (

√
s = 1.96 TeV) and the LHC (

√
s = 7 TeV) with respective

1These diagrams exist, of course, in an analogous form for the production of single anti-top quarks. The cross
sections stated in the following comprise the production of both single top quarks and single anti-top quarks.
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3. Top-Quark Production and Decay

NNLO approximative cross sections [27]

σNNLOapprox
st_t-channel (mtop = 173 GeV, 1.96 TeV) = 1.04+0.00

−0.02 ± 0.06 pb

σNNLOapprox, top
st_t-channel (mtop = 173 GeV, 7 TeV) = 41.7+1.6

−0.2 ± 0.8 pb

σNNLOapprox, anti-top
st_t-channel (mtop = 173 GeV, 7 TeV) = 22.5± 0.5+0.7

−0.9 pb.

The first uncertainty stems from a variation of the renormalisation scale between µ = 1
2 mtop and

µ = 2 mtop and the second is related to the uncertainty of the parton-distribution functions (PDFs).
All cross sections in this and the following subsection are calculated at µ = mtop.

The production cross section for single top and anti-top quarks are the same at TeVatron but
differ at the LHC: While in proton-anti-proton collisions (TeVatron) it is equally likely to have a
quark and an anti-quark - either as valence or sea quarks - in the initial state, in proton-proton
collisions (LHC) anti-quarks can only arise from virtual qq̄ fluctuations, i.e. as sea quarks, which
makes it much more unlikely to have an anti-quark in the initial state. This asymmetry accounts
for the difference in the above cross sections for single-top and anti-top quark production at the LHC.

In the s-channel, a pair of quark and anti-quark from the same isospin dublett combines to
form a W-boson that subsequently decays into a top (anti-top) and anti-bottom (bottom) quark.
This channel has the smallest non-negligible contribution to single top production at both TeVatron
and the LHC. The respective cross sections are given according to [28]:

σNNLOapprox
st_s-channel (mtop = 173 GeV, 1.96 TeV) = 0.523+0.001 +0.030

−0.005 −0.028 pb

σNNLOapprox, top
st_s-channel (mtop = 173 GeV, 7 TeV) = 3.1± 0.06+0.13

−0.10 pb

σNNLOapprox, anti-top
st_s-channel (mtop = 173 GeV, 7 TeV) = 1.42± 0.01+0.06

−0.07 pb,

Like for the t-channel, the production cross section for single anti-top quarks at the LHC is again
smaller than that for single top quarks. In this case, however, the reason lies in the higher number
of up-quarks compared to the number of down-quarks among the valence quarks of the proton.
This leads to a higher probability of W+-production compared to W−-production (see Figure 3.1b)
and hence to a higher number of top quarks compared to anti-top quarks in the final state.

Finally, single top quarks can be produced in association with W-bosons (Wt-channel), a process
that is negligible at TeVatron but yields a significant contribution to the overall single-top production
cross section at the LHC (see [29]):

σNNLOapprox
st_Wt-channel(mtop = 173 GeV, 7 TeV) = 7.8± 0.02+0.5

−0.6 pb

which is the same for single-top and anti-top quark production because the initial state bottom and
anti-bottom quarks can only arise from bb̄ fluctuations within both protons and anti-protons and
therefore occur with equal probability.

3.1.2. Top-Pair Production via the Strong Interaction

The dominant production mechanism for top quarks at hadron colliders is, naturally, via the strong
interaction. Since these processes do not allow changes of quark flavour, top quarks can only be
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3.1. Top-Quark Production

produced in pairs, i.e. together with their anti-particle.2
The leading-order Feynman diagrams for strong top pair production are shown in Figure 3.2.

q

q̄

g

t̄

t

(a) qq̄ → tt̄ (s-channel)

g

g

g

t̄

t

(b) gg → tt̄ (s-channel)

g t

g t̄

(c) gg → tt̄ (t-channel)

g

tg

t̄

(d) gg → tt̄ (u-channel)

Figure 3.2.: Leading-order tt̄ production (2 → 2 processes)

These processes fall into two categories depending on their initial-state partons: quark-anti-quark
annihilation (qq̄ → tt̄; s-channel only) and gluon-gluon fusion (gg → tt̄; s-, t- and u-channel).
While top pair production at TeVatron is dominated by quark-anti-quark annihilation with about
85% of the total cross section, the situation is just reversed at the LHC. [3]
The reason for this is twofold:

• Firstly, as explained above, both quarks and anti-quarks occur in abundance as valence quarks
in proton-anti-proton colliders such as TeVatron. At a proton-proton collider like the LHC,
however, anti-quarks can only arise from virtual fluctuations, making it much more unlikely
to find a pair of quark and anti-quark with sufficient centre-of-mass energy to produce a
top-anti-top pair.

• Secondly, the centre-of-mass energy is significantly higher at the LHC (
√
s = 7 TeV compared

to 1.96 TeV at TeVatron) which leads to different shapes of the PDFs compared to the situation
at TeVatron. The result is a higher probability of finding a pair of gluons with sufficiently
high energy for top-pair production.

In addition to the leading-order 2→ 2 processes discussed so far, higher-order diagrams with more
than two partons in the final state give non-negligible contributions to the top-pair production cross
section. Additional final-state partons may arise from inital-state radiation (ISR) or final-state
radiation (FSR) when one of the initial- or final-state partons (due to the gluon self-interaction
these can be both quarks and gluons) radiates a gluon. This is illustrated in Figure 3.3. These
processes are taken into account by general-purpose Monte Carlo generators such as Pythia and
Herwig as part of the parton shower.

Moreover, associate production of a top pair with an additional quark or gluon in the final state as
shown in Figure 3.4 is possible. These processes are not simulated by all Monte Carlo generators.
For many top-quark analyses, however, in particular for precision measurements of the top-quark
mass, they need to be taken into account. Therefore, many of these analyses rely on the Monte
Carlo generator MC@NLO [30] which does not only simulate the hard scattering top-pair and
single-top production processes at next-to-leading order (NLO) such as those in Figure 3.4 but also

2Top-quark pairs can also be produced via electroweak processes such as Z → tt̄ or γ → tt̄. These are, however,
negligible compared to strong pair production due to their smaller gauge coupling.
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3. Top-Quark Production and Decay

g t

g t̄
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(b) FSR

Figure 3.3.: tt̄ production with additional final-state partons from (a) initial-state and (b) final-state
radiation

takes into account the interference between the different diagrams. MC@NLO is usually interfaced
with Herwig to simulate parton showers and hadronisation.3

g t

g t̄

g

(a)

t
g

t̄

q

q

(b)

Figure 3.4.: tt̄ production with (a) an associated gluon and (b) an associated quark in the final state

The relevance of these higher-order processes, such as those illustrated in Figures 3.3 and 3.4, does
not only lie in their contribution to the overall cross section; the additional partons in the final
state also lead to additional hadronic jets which complicate the identification of the jets from the
top-quark decay and therefore the reconstruction of the event. For details see Section 8.1.

The overall top-pair production cross section including NNLO approximative corrections is

σNNLOapprox
tt̄

(mtop = 173 GeV, 1.96 TeV) = 7.08+0.00 +0.36
−0.24 −0.27 pb

σNNLOapprox
tt̄

(mtop = 173 GeV, 7 TeV) = 163+7 +9
−5 −9 pb

at TeVatron and the LHC, respectively. [32] The cross section is more than 20 times higher at the
LHC compared to the TeVatron due to its higher centre-of-mass energy. Together with its higher
luminosity, this makes the LHC an excellent facility for studying the top quark and justifies the
term “top quark factory” that has been coined for it.

Figure 3.5 illustrates the dependence of the top pair production cross section on the top mass both
for the LHC and TeVatron. For a given centre-of-mass energy

√
s, the production cross section

decreases with increasing top mass because more energy is required to produce a top-anti-top pair.
This functional dependence can be used for indirect measurements of the top-quark mass via fully
inclusive cross section measurements.

3With this setup, it can happen that one of the ISR or FSR processes in Figure 3.3 is simulated both by MC@NLO
as part of the hard process and Herwig as part of the parton shower. An overlap removal tool is implemented at
generator level to avoid double counting.[31]
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3.2. Top-Quark Decay

(a) (b)

Figure 3.5.: NNLO approximative top pair production cross section as a function of the top mass at the
TeVatron (a) and at the LHC (b)

Compared to the combined cross section of the different single-top production channels the top-pair
production cross section is more than twice as high which is one reason why most top-quark
analyses focus on top-pair rather than single-top events. The other reason is that it is more difficult
to identify top quarks in single top events due to a less distinctive event signature and larger
background from other processes.4

The following analysis therefore uses only top-pair events to reconstruct the top quark and measure
its mass. Single-top processes form a part of the physical background (see Section 6).

3.2. Top-Quark Decay

Top quarks decay into lighter quarks via the weak interaction. As explained in Section 2.1.3, with
1.29 GeV the decay width of the top quark is larger than the QCD energy scale ΛQCD ≈ 200 MeV,
which means that top quarks decay before they can form hadrons.

In the Standard Model, the top-quark decay channels and their respective probabilites are determined
by the CKM matrix (see section 2.1.5): Top quarks decay almost exclusively via

t→W+ + b

with a probability of |Vtb|2 ≈ 99.8%, while the decays

t→W+ + s and t→W+ + d

with respective probabilities |Vtb|2 ≈ 0.16% and |Vtb|2 ≈ 0.0074% are extremely rare.

The W+-boson5 then decays either leptonically into a charged lepton and its corresponding
neutrino

W+ → l+ + νl

4This also explains why more than ten years elapsed between the discovery of the top quark in top-pair events in
1995 and the observation of single-top events at TeVatron. [33, 34]

5The following equally applies to the charge-conjugated case.
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3. Top-Quark Production and Decay

where l ∈ e, µ, τ , or hadronically into a pair of quark and anti-quark

W+ → qi + q̄′j

where qi is an up-type quark and q̄′j its (down-type) isospin partner.

The branching ratios for the leptonic and hadronic W-boson decays can be estimated as follows:
Neglecting the non-diagonal elements of the CKM matrix, i.e. identifying the isospin eigenstates
q̄′j with the mass eigenstates q̄j , there are two possibilities for hadronic W decays: W+ → u+ d̄

and W+ → c + s̄. (The decay W+ → t + b̄ is kinematically forbidden.) Since quarks come in
three colours and there are three possible leptonic decays, this makes a total of 9 possible W-boson
decays, with a branching ratio of ≈ 2

3 for the hadronic and ≈ 1
3 for the leptonic decay channel.

Top-pair events can be classified into three decay channels according to the decays of the W+ and
W− bosons that stem from the decays of the top and anti-top quark, respectively: Each of these

g

q̄

q’

W+

b

t

b̄

q̄′

q

W−

t̄

(a) allhadronic

g

q̄

q’

W+

b

t

b̄

ν̄

l−

W−

t̄

(b) semileptonic

g

ν

l+

W+

b

t

b̄

ν̄

l−

W−

t̄

(c) dileptonic

Figure 3.6.: Overview of the decay channels for tt̄ events

decay channels is characterised by its detector signature and corresponding dominant background
processes and therefore requires its own specific methods of event selection and reconstruction.
Top quark analyses such as the measurements of the top-quark mass are performed separately in
all three channels thus providing an excellent opportunity for cross-checks between the different
measurements.

All-hadronic/ All-Jets Channel

A tt̄ event is called all-hadronic if both the W+- and W−-bosons decay into quarks. The probability
for this to happen is roughly 2

3 ·
2
3 = 4

9 which makes the all-jets channel the dominant tt̄ decay
channel and proves very advantageous in terms of statistics. Allhadronic events are characterised
by six jets in the final state: four light-quark jets and two b-jets. This does not only make it very
hard to distinguish them from QCD multijet events, the dominant source of background in this
channel, it also renders the reconstruction of the top quarks a challenging task because the large jet
multiplicity makes it hard to correctly identify the jets from each top quark. A further drawback of
this channel is the large jet-energy scale (JES) dependence, the uncertainty on the JES being one
of the dominant sources of systematic uncertainty on the top-quark mass.

Dileptonic/Dilepton Channel

If both W-bosons decay leptonically, which happens with a probability of roughly 1
3 ·

1
3 = 1

9 , the event
is classified as dileptonic. The small branching fraction for this channel results in low statistics
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3.2. Top-Quark Decay

which is a significant drawback for early analyses based on small amounts of data but becomes
less significant the more data are taken. The detector signature - two b-quark jets, two isolated,
oppositely charged leptons and large missing transverse energy from the two neutrinos - facilitates
the identification of dileptonic events and the efficient rejection of background processes such as
the QCD multijet background with its large cross section. Hence the overall signal purity in this
decay channel is high. The main background stems from events with one Z boson and additional
jets in the final state. The reconstruction of the event kinematics, however, is a challenging task
because the presence of two undetected particles, the two neutrinos, introduces six unknowns, the
three momentum components of each neutrino. Five of these can be determined by using additional
constraints such as the requirement that the sum of the transverse momenta of all particle in
the event has to be zero. Without the top-quark mass as an additional constraint, however, the
kinematics of the decay remains undetermined and more sophisticated approaches like matrix
element or template methods are needed in order to determine the top-quark mass.

Semileptonic/Lepton + Jets Channel

A tt̄ event in which one W-boson decays into leptons and the other into quarks is classified as
semileptonic. The corresponding branching ratio in the above approximation is 2 · 1

3 ·
2
3 = 4

9
and therefore comparable to that of the allhadronic channel. The decay W→ τντ is normally
omitted in semileptonic analyses for two reasons: Firstly, τ -leptons constitute an additional source
of missing energy because they decay via the weak interaction according to τ →W + ντ . Secondly,
the W-boson arising from the τ decay has, as stated before, a probability of roughly 2

3 to decay into
quarks, thus giving rise to additional jets that further complicate event reconstruction. The detector
signature of a semileptonic event, excluding W-boson decays into τ leptons, is characterised by
four jets - two light-quark jets and two b-jets -, one isolated charged lepton and missing transverse
energy from the neutrino. The main background stems from events with one (leptonically decaying)
W-boson and additional jets in the final state. The semileptonic decay channel is often called the
golden channel for top-quark analyses because, apart from having a reasonably large branching
fraction and therefore providing sufficient statistics, the leptonic branch can be used to identify
(tag) the signal events while the hadronic branch allows a full reconstruction of the respective
top quark which can then be used to measure (probe) properties such as its mass.

(a) (b)

Figure 3.7.: Top-pair decay channels and their respective branching fractions [26]
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4. The Large Hadron Collider and the ATLAS
Experiment

The huge mass of the top quark implies that considerable amounts of energy are needed for both
single-top and top-pair production. These can only be provided by powerful particle colliders
where the kinetic energy of highly-accelerated particles can be used to create new, massive particles
according to A. Einstein’s energy-mass equivalence principle E = m.1

For top-pair production - the nominal production mechanism for this and most other top-quark
analyses - the centre-of-mass energy of the inital-state particles needs to equal or exceed twice the
top-quark mass which is roughly 350 GeV. At hadron colliders such as the TeVatron and the LHC,
the initial-state partons carry only a fraction xi of the total energy of the hadron. The effective
centre-of-mass energy squared ŝ = E2

cm of the parton system is therefore reduced by a factor of
xa · xb compared to the centre-of-mass energy

√
s of the colliding hadron beams. The threshold

condition for top-pair production at hadron colliders is given by

ŝ = xa · xb · s ≥ 4 ·m2
t (4.1)

where the energy fractions xa and xb of the partons vary between 0 and 1. The probability of
finding a parton with energy fraction xi is determined by the parton distribution functions (PDFs)
of the respective hadron and generally decreases for larger xi. This implies that most top pairs are
created close to the production threshold and consequently with low momentum. It also implies that
since most partons are likely to have small energies, the centre-of-mass energy of the collider needs
to be considerably higher than the energy threshold of 350 GeV in order to provide a sufficiently
large number of events for precision measurements.2

Up to date, only two machines powerful enough to produce top quarks have ever been constructed
on earth: The TeVatron at Fermilab near Chicago in the United States which operated as a
proton-anti-proton collider at a maximum centre-of-mass energy

√
s = 1.96 TeV and the Large

Hadron Collider (LHC).

4.1. The Large Hadron Collider

The Large Hadron Collider is a proton-proton collider at the European Organisation for Nuclear
Research (CERN3) near Geneva in Switzerland. It has been designed to achieve an eventual
centre-of-mass energy

√
s = 14 TeV and instantaneous luminosity of 1034 cm−1 s−1 [35] and is

currently operating at 7 TeV.4

1This is given in natural units.
2Assuming, for example, that xa = xb = 0.1, the centre-of-mass energy required to produce a tt̄ pair is Ecm =√

s = 2mt
0.1 ≈ 3.5 TeV.

3 The acronym stands for “Conseil Européen pour la Recherche Nucléaire”, the French name for the provisional
council set up by the 12 original member countries in 1952 in order to pave the way for the European research
organisation which was founded in 1954 under the name “Organisation Européenne pour la Recherche Nucléaire”
but kept the original acronym by which it is commonly known.

4This applies to the 2010 and 2011 data-taking periods. From March 2012, the centre-of-mass energy will be
increased to 8 TeV.
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4. The Large Hadron Collider and the ATLAS Experiment

The LHC has been built into the (approximately) circular tunnel previously used by the Large
Electron-Positron Collider (LEP) which was in operation until 2001. The tunnel lies between 50
and 175 m below the Franco-Swiss border and has a circumference of roughly 27 km (see Figure
4.1).

(a) (b)

Figure 4.1.: The Large Hadron Collider (LHC) near Geneva, Switzerland: (a) aerial and (b) schematic
view [36]

The protons are obtained from the ionisation of hydrogen gas and pass a series of pre-accelerators
formed by older, previously independent experiments that have been integrated into the present
LHC acceleration chain: Linac2, the Proton Synchrotron Booster (PSB), the Proton Synchrotron
(PS) and the Super Proton Synchrotron (SPS) (see Figure 4.2). The pre-accelerated protons are
then injected into the LHC with an initial energy of 450 GeV and are further accelerated to reach
their peak energy of currently 3.5 TeV per beam. Superconducting dipole and quadrupole magnets,
cooled by superfluid helium to below 2 K and designed to operate at fields with a peak strengths
above 8 TeV, are used to guide and focus the proton beams [37]. The protons in each beam are
separated into bunches of about 1011 particles with a bunch spacing of 50 ns.5

The beams are brought to collision at four points along the LHC tunnel where the four detectors
Alice, ATLAS, CMS and LHCb are situated. The Alice6 detector was specially developed to
record heavy-ion collisions and probe the quark-gluon plasma while LHCb7 focuses on heavy-flavour
physics, in particular on CP violation. ATLAS8 and CMS9 have both been designed as all-purpose
detectors with the potential to discover new particles such as the Higgs boson or supersymmetric
particles but also to probe Standard Model phenomena and perform precision measurements of
Standard Model parameters. The fact that there are two independent experiments with similar
aims is important because it allows cross-checks between the results, in particular with regard to
potential discoveries.

5This applies to the data-taking period up to the end of 2011. Test runs with a reduced bunch-spacing of 25 ns
have also been performed during that year.

6A Large Ion Collider Experiment.
7LHC beauty.
8A Toroidal LHC ApparatuS.
9Compact Muon Solenoid.
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Figure 4.2.: The LHC acceleration chain [36]

4.2. The ATLAS Detector

The ATLAS detector was designed to meet a number of requirements that were dictated by the aim
to construct an all-purpose detector which is to work efficiently at a high-energy, high-luminosity
hadron collider: The highly-energetic decay products emerging from the beam-collision point into
all spatial directions must not escape undetected. Hence an ideal detector must provide a full
4π-coverage around the collision point. In reality, this is not entirely possible since the beam
pipe transverses the detector and particles emerging in the direction of the beam pipe are hard to
impossible to detect.
The complexity of the interaction and the resulting high particle multiplicity - a direct consequence
of the proton being a composite particle - require efficient methods to identify and distinguish
between different kinds of particles such as pions and kaons. Moreover, precision measurements call
for high-resolution detector components because they rely on an accurate knowledge of the energies
and momenta of the particles of interest.
Finally, the high luminosity and resultingly high event rates require fast read-out electronics as
well as an efficient trigger system that rejects unwanted hadronic background efficiently and filters
out only the events that are of interest for further analyses.

These requirements have led to the construction of a barrel-shaped, left-right symmetric multi-layer
detector (see Figure 4.3) centered around the collision point.

With its huge size - 44m in length and 25m in diameter - ATLAS is the biggest of the four detectors
at the LHC10.

10It is not, however, the heaviest with “only” 7,000 tons; this title goes to CMS with a weight of 12,500 tons.
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Figure 4.3.: Overview of the ATLAS detector [36]

4.2.1. The ATLAS Coordinate System

The barrel-shape detector geometry, mainly dictated by the traversing beam-pipe which marks the
symmetry axis, implies the introduction of a specially adapted polar coordinate system that is used
when it comes to defining measureable quantities such as particle momenta and reconstructing
physics objects (see Section 5):

h
F

(a) (b)

Figure 4.4.: The ATLAS coordinate system: (a) modified polar coordinates (η, φ) and (b) pseudorapidity
η [38]

The collision point of the two proton beams marks the origin of the coordinate system and the
z-axis is defined to be in the direction of the beam axis. The x-axis points inwards towards the
centre of the LHC ring and the y-axis is perpendicular to the surface, pointing upwards. The
azimutal angle φ and the polar angle θ are defined, as usual, as the angle in the x-y plane and
the angle from the beam axis, respectively (see Figure 4.4 (a)). However, the angle θ is commonly
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replaced by the so-called pseudorapidity η:

η = −ln[tan
(
θ

2

)
] (4.2)

The introduction of this quantity is motivated by the fact that for massless particles11 the pseudo-
rapidity equals the Lorentz invariant quantity rapidity y which in high-energy physics is defined
as

y = 1
2 ln

(
E + pz
E − pz

)
(4.3)

where E stands for the total energy and pz for the z-component of the particle momentum.
Figure 4.4 (b) illustrates some values of the pseudorapidity: η is zero in the direction perpendicular
to the z-axis, has small values in the central region and diverges rapidly in the proximity of the
beam axis. Hard-scattering processes of interest tend to result in particles with high transverse
momentum and, therefore, low |η| whereas unwanted background effects, for example from the
beam remnant, dominate in the high-|η| which is therefore often excluded from the analysis. The
replacement of the angle θ by the pseudorapidity η takes these facts into account by providing a
high resolution of the central detector region. A further advantage is the invariance of the difference
∆η = η1 − η2 under Lorentz boosts along the z-axis.

Distances between two particles i and j in the detector coordinate system are measured using the
distance parameter

∆Ri,j =
√

(ηi − ηj)2 + (φi − φj)2) (4.4)

The momentum ~p of a particle in this coordinate system is generally characterised by its component
perpendicular to the beam axis, p⊥ = (px, py, 0) = sin(θ) · ~p and the angles η and φ instead of its
cartesian components (px, py, pz). The preference of the transverse values of energies or momenta
over the respective total values is due to the fact that in a hadron collider the exact values of the
momenta of the initial-state partons in the direction of the beam axis are unknown since each parton
carries only a fraction x of the total proton momentum. The exact value of x cannot be predicted
for a particular event, only its probability can be given in the form the PDFs of the respective
hadron. While the total event dynamics in the z-direction is underconstrained due to insufficient
knowledge about the exact initial-state kinematics in the z-direction, it can be assumed that the
transverse momenta of the initial-state partons and therefore those of the final-state particles add
up to zero which means that the dynamics in the transverse plane is well-determined.

The ATLAS detector consists of various layers of sensitive material each of which is forward-
backward symmetric and can be divided into a cylindrical barrel and a wheel-shaped end-cap
region. Each layer is specially designed for the measurement of a different set of quantities. The
combination of the measurements from all the individual components yields the detector signature
for a particular event which - somewhat similar to a finger-print - allows the reconstruction and
identification of this unique event.
In the following, the different detector layers shall be introduced briefly. The technical details and
numerical values can be found in [35] and [39].

11This approximation applies to most particles produced at the LHC because due to the high centre-of-mass energy
their kinetic energy by far exceeds their rest energy/mass. Notable exceptions are the top quark and - for many
purposes - also the bottom quark.
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4.2.2. The Inner Detector

The inner detector (Figure 4.5) has a length of 7 m and a radius of 1.15 m. It is contained within
a solenoidal magnetic field of 2 T which bends the tracks of charged particles thus allowing the
determination of the particle momentum from the curvature of its track in the magnetic field.
The inner detector consists of three sub-components: The Silicon Pixel Detector, closest to the
interaction point, and the surrounding Semiconductor Tracker (SCT) allow the determination
of charged particle tracks with high resolution due to their fine granularity. They are mainly
used for momentum measurement and the reconstruction of primary and secondary vertices, the
precise determination of which is important in order to distinguish between multiple interactions
that can occur within the same bunch-crossing or to tag b-quark jets (see also Section 5.6). The
outermost part of the inner detector, the Transition Radiation Tracker (TRT) consists of
(mainly Xenon-filled) straw-tubes. It provides additional tracking information and can, for example,
be used to distinguish between electrons and pions.

Figure 4.5.: The Inner Detector [36]

4.2.3. The Electromagnetic and Hadronic Calorimeter

The purpose of the Calorimeter System (Figure 4.6) is the determination of the energy of electrons,
positrons and photons (Electromagnetic Calorimeter) and that of hadronic particles (Hadronic
Calorimeter). An incident particle triggers a shower of secondary particles either via the emission
of bremsstrahlung and electron-positron pair production and annihilation in the case of electrons,
positrons and photons, or via inelastic scattering with the nuclei of the calorimeter material which
leads to the creation of other hadronic particles, predominantly pions. While the charged pions
π± can trigger further hadronic cascades, the neutral pions π0 almost immediately decay into
two photons that can give rise to electromagnetic sub-showers within the hadronic shower. These
decays are problematic because they can lead to the mis-identification of a hadronic jet as an
electromagnetic one, a so-called “fake electron” (see Section 6.1.5).

Apart from providing a way to measure the energy of the incident particle, the direction and profile
of the shower in the calorimeter provide additional information about the momentum and the
identity of the particle that triggered the jet.
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In order to absorb all particles within the calorimeter, despite their high energies resulting from the
high centre-of-mass energy of the collision, purely absorbing layers of material have been introduced
between the sensitive ones that are used for the actual energy measurement: The Electromagnetic
Calorimeter combines sensitive layers of liquid argon (LAr) with lead absorbers both in the barrel
and the end-cap region while the Hadronic Calorimeter uses scintillator plates and iron absorbers
in the central and a combination of liquid-argon layers and copper plates in the end-cap region.

Figure 4.6.: The Calorimeter System [36]

The Calorimeter system has an outer radius of 4.25 m and a length of 12.20 m. It is designed to
absorb all particles except for muons and neutrinos. While the latter leave the detector undetected,
the muon properties are measured in the outermost component of the ATLAS detector.

4.2.4. The Muon Spectrometer

The Muon Spectrometer (Figure 4.7) has been designed to allow for stand-alone muon reconstruction
(see Section 5.3). It consists of three layers of Monitored Drift Tube (MDT) Chambers
combined with Cathode Strip Chambers (CSCs) at large pseudorapidities. The MDT chambers
are made up of aluminium tubes with a central W-Re wire and filled with a mixture of 93 % argon
and 7 % CO2. They are arranged within a magnetic field of three air-core toroids in the barrel
region and allow for a precise stand-alone reconstruction of the muon momenta (see Section 5.3 for
details).

In addition, Resistive Plate Chambers (RPCs) and Thin Gap Chambers (TGCs), installed
in the barrel and end-cap region, respectively, provide fast hardware-based trigger systems with high
time-resolution that are, for example, used to identify and distinguish between bunch-crossings.
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Figure 4.7.: The Muon Spectrometer [36]

4.2.5. The Trigger System

The wealth of information that is generated by the various detector components for each event,
together with the high collision rates at the LHC, make it impossible to even temporarily store
the information about each event. For the current bunch-spacing of 50 ns, there are 20 million
bunch crossings per second. The average number of interactions per bunch crossing for the 2011
data-taking periods varies between 10 and 30 (for details consult [40]). Assuming 20 interactions per
bunch crossing on average, this makes 400 million interactions per second. Once the bunch-spacing
is decreased to its nominal value of 25 ns, the bunch-crossing rate will double to 40 MHz.
Only a small fraction of the events measured in the detector are of interest to physics analyses and
deserve to be stored permanently. To pick out these events and thereby reduce the flood of data
produced by the detector, a multi-level trigger system has been installed (Figure 4.8; for further
details consult [39]):

The Level-1 (L1) Trigger: The first stage of the trigger system, the L1 trigger, is entirely
hardware-based. It searches for high transverse-momentum muons, using the aforementioned RPCs
and TGCs in the Muon Spectrometer, as well as high transverse-momentum electrons and jets
and large missing transverse energy using reduced-granularity information from all calorimeter
components. Based on this information, so-called Regions-of-Interest (RoIs) around interesting
objects like the ones mentioned above are defined. The processing time per event at this stage is
around 2.5 µs and the event rate is reduced to around 75 kHz. The selected events are stored in
the Read-Out-Drivers (RODs) until the trigger decision is made at the next stage.

The Level-2 (L2) Trigger: At the next trigger stage, the software-based L2 trigger, all available
detector information about the RoI defined by the L1 trigger is evaluated, making use of the full
detector granularity and precision. The L2 selection reduces the event rate to approximately 3.5
kHz with an average processing time per event of roughly 40 ms.
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Figure 4.8.: The Trigger System (based on [35])

The Event Filter (EF): The final stage of the trigger chain is the Event Filter (EF). This event-
selection process is based on a preliminary reconstruction of physics objects such as muons or jets
with an average selection time per event of around 4 seconds. The EF reduces the event rate to
roughly 200 Hz. The events that pass this final selection stage are written to permanent storage.
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4.3. The Worldwide LHC Computing Grid (WLCG)

Despite the trigger system, the ATLAS as well as the other experiments produce huge amounts of
raw data that need to be stored and processed. Moreover, extensive Monte Carlo simulations of
physics processes and detector components are necessary to complement, cross-check and interpret
the real-data output. To provide these services to an international community of particle physicists
working at different institutes on serveral continents, theWorldwide LHCComputingGrid (WLCG)
has been developed. This computing network is formed by interconnected computing centres in
different countries (the “nodes” of the network) that share their storage and processing resources
and are hierarchically organised into different levels, called Tiers (see Figure 4.9 (a)): The CERN
Computing Center (see image in Figure 4.9 (b)) forms the Tier-0. A copy of all raw datasets
is kept there for storage and reconstruction. Backup copies are held at eleven major computing
centres around the world that form the Tier-1. The German Tier-1 centre is the GridKa at the
Karlsruhe Institute of Technology (KIT). The Tier-2 sites, which are typically located at larger
universities and research institutes, are allocated further copies of selected datasets by the Tier-1
sites and participate in event reconstruction and further analysis tasks as well as the production of
Monte Carlo samples.

(a) (b)

Figure 4.9.: (a) Schematic overview of the WLCH [41] and (b) a view of the CERN Computing Center
during the installation of the processors [36]

Analysis and simulation jobs by individual researchers are processed directly at one or several of
the computing sites that are chosen by a brokerage system on the basis of various criteria such as
the availability of the requested dataset and the current workload at a particular site thus making
the transfer of huge datasets to local computers obsolete and allowing fast parallel processing of
computing jobs.
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A single event such as the production and decay of a pair of top and anti-top quark gives rise
to a unique and complex detector signature. The signals from the various detector components
(see Section 4.2) need to be combined in order to reconstruct and identify the final-state particles.
Only then is it possible to distinguish and select the events of interest to a particular analysis
(see Section 6 on Event Selection) and to reconstruct the complete physics process including the
four-momenta and masses of the final-state particles such as the top quark (see Section 8 on Event
Reconstruction).
This section deals with the first step in the reconstruction chain, the Reconstruction of Physics
Objects.

5.1. General Event Topology

In order to correctly reconstruct the physics objects in a particular event, one needs to take into
account the complex event topology in high-luminosity hadron colliders such as the LHC:

The hard-scattering processes1 that are of interest to most physics analyses generally cannot
be observed isolated but are superimposed by a number of (usually) softer processes which are
commonly summarised under the term Underlying Event (UE)2. These processes may either be
related to the so-called Beam-Remnant (BR), which consists of all partons that do not actively
take part in the hard interaction but are colour-connected with the partons that do,3 or they arise
from additional interactions between other partons from the same pair of protons (Multiple Parton
Interactions (MPI)). Both contributions are a direct result of the complex composite nature of the
proton.

Moreover, additional elastic, diffractive or hard interactions between other protons of the same
bunch may occur during a single bunch-crossing. These processes are commonly denoted as in-time
pile-up. Finally, the signatures of interactions from subsequent bunch-crossings may overlap in the
detector due to the limited read-out time of the detector electronics. This is known as out-of-time
pile-up. Pile-up is directly related to the high luminosity of the LHC and its contribution is
expected to increase with the luminosity, for example when the bunch-spacing is reduced from the
current 50 ns to 25 ns.

These additional interactions complicate the identification of the hard-scattering process as well as,
for example, the measurement of electron and jet energies because they lead to additional energy
deposits in the calorimeter system that need to be taken into account during reconstruction.

1These are processes in which the colliding partons exchange a large four-momentum.
2It should be noted that in this analysis initial- and final-state radiation are not considered as part of the UE.
3This is another consequence of confinement (see Section 2.1.2): While the proton as a whole does not carry any

colour, the constituent partons that participate in the hard-scattering do. Due to colour-charge conservation, the
overall system remains colourless and confinement dictates that the scattered partons remain colour-connected
with the remaining partons. For illustration see also the remarks on colour flux in the context of the string model
introduced in Section 2.1.2.
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5.2. Electrons

Electrons are reconstructed using the information from the Inner Detector (ID) and the Electro-
magnetic Calorimeter (EC): They deposit all their energy in the EC through the formation of
electromagnetic showers and, due to their electric charge, leave a curved track in the magnetic field
of the ID which helps to distinguish them from photons which also give rise to electromagnetic
showers in the EC but have no associated track in the ID (see for example Figure 5.1).

Figure 5.1.: Overview of the detector signatures of different particles [42]

In order to distinguish signal electrons (i.e. electrons from the primary decay) from background
electrons that may arise through secondary processes such as photon conversion or Dalitz decays and
from jets that may fake an electron-like signature, a number of quality requirements is imposed on
the electron candidates. Depending on the choice of these quality cuts, the reconstructed electrons
fall into three categories:

• Loose: Only shower-shape variables from the EC as well as information about a possible
leakage of the shower into the Hadronic Calorimeter (HC) is used for the reconstruction.

• Medium: In addition to the requirements for loose electrons, an ID track matching the
electromagnetic cluster in the EC is required. Both the ID track and the EC shower have to
fulfil a set of additional quality criteria.

• Tight: Electrons in this category have to fulfil all the requirements for medium electrons
but tighter quality criteria are imposed on the ID tracks and EC clusters as well as on the
track-cluster matching and information from additional detector components such as the TRT
is used to further improve the background rejection rate.

Tighter quality requirements result in a better rejection rate for background electrons but also
a correspondingly lower selection efficiency for signal electrons. For further details on electron
reconstruction see [43].
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The choice of the reconstruction algorithms and the quality criteria as well as the application of
additional quality cuts on the reconstructed objects depends heavily on the aims and requirements
of the particular physics analysis and therefore differs between the various analysis groups at
ATLAS.

The object definitions for electrons developed by the Top Working Group for Athena Release 16.6.5
and used throughout this analysis shall be outlined in the following. For further details see either
Appendix 5.2 or the official Top Group Twiki page [44].

• Electron candidates must fulfil the quality requirements of the tight category.

• The reconstruction algorithm starts from seeds of calorimeter cells to form calorimeter
clusters.4

• Electron candidates must have a transverse energy E⊥ > 25 GeV and a pseudorapidity
|ηEC_Cluster| < 2.47, excluding the crack region5 1.37 < |ηEC_Cluster| < 1.52. These cuts
ensure that only electron candidates from detector regions with a sufficiently high resolution
are used, thus allowing precision measurements of energies and momenta.

• To reject electrons that arise from weak decays inside hadronic jets (in particular b-jets),
electrons are required to be isolated: The total energy deposit in the calorimeter cells within
a cone of radius ∆R < 0.20 around the electron candidate must be less than 3.5 GeV (exluding
the energy deposit from the electron itself). Moreover, if there are one or more jets within the
cone of radius ∆R < 0.20 around an accepted electron, i.e. an electron that fulfils all quality
criteria, the jet closest to the electron is removed (electron-jet overlap removal).

• Additional object-quality cuts are applied to exclude regions with dead or damaged detector
material.

5.3. Muons

Muons interact considerably less with the detector material than electrons - a consequence of
their 200 times greater mass. This means that they pass the ID and Calorimeter System almost
unhampered and can therefore be detected in the outermost layer of the ATLAS detector, the
Muon Spectrometer (MS). The MS has been designed to allow for stand-alone muon reconstruction
but the use of additional information from the other detector parts generally leads to a better muon
identification efficiency. Reconstructed muons can therefore be grouped into three categories:

• Stand-Alone Muons: Only information from the MS is used for the reconstruction. The
tracks are reconstructed using either the Muonboy or Moore algorithm and are then extrapo-
lated to the beam line.

• Combined Muons: Stand-alone muons found in the MS are matched to ID tracks using
either the Staco or the MuID algorithm. The muon properties are then evaluated combining
the information from both detector components.

• Tagged Muons: The reconstruction starts from suitable ID tracks which are extrapolated
to the MS. The algorithms MuTag or MuGirl are then applied to search for hits in nearby
MS segments.

4Alternative reconstruction algorithms may start with ID tracks.
5The crack region is the transition region between the barrel and end-cap part of the detector.
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For further information on muon reconstruction see, for example, [45].

As in the case of electrons, analysis-specific quality cuts are then applied to the muon candidates
to reject background muons such as muons arising from weak decays inside jets. The guidelines
developed by the Top Working Group and used throughout this analysis are outlined in the
following:

• Muons are reconstructed as combined muons using the MuID algorithm.

• Muon candidates are required to have a transverse momentum p⊥ > 20 GeV and lie
within the central detector region (|ηEC_Cluster| < 2.5) where the momentum resolution
is highest.

• Further quality criteria are applied to the ID tracks. For details see Appendix 5.3.

• Muon candidates must fulfil a number of isolation criteria, similar to those for electrons.
Additionally, a muon-jet overlap removal is performed by removing muon candidates for
which there is a jet with p⊥ > 20 GeV within ∆R < 0.4 (before jet-electron overlap-removal).
This procedure aims at rejecting secondary muons that may result from weak decays inside
hadronic jets.

5.4. Jets

While electrons and muons may give rise to cascades of secondary particles when they interact
with the detector material and their reconstruction from the raw data is everything but trivial,
the interpretation of their detector signatures is facilitated by the fact that they are long-lived
elementary particles that can in principle be observed freely. Thus the reconstructed electron and
muon objects can be much more readily related to the elementary electrons and muons in the final
state of a hard-scattering process.
The reconstruction of coloured final-state particles such as quarks and gluons is more complicated
because they are subject to confinement: As explained in Section 2.1.2, these particles trigger
parton showers via gluon radiation or gluons splitting into pairs of quarks and anti-quarks which
then form colourless bound-states, the hadrons. It is only these hadron showers that are observed
in the detector: Charged hadrons like protons or π± leave tracks in the ID while neutral hadrons
pass this detector layer unseen. Finally, all hadrons are absorbed within the Hadronic Calorimeter,
depositing all their energy in clusters of calorimeter cells. The different stages of this process are
illustrated in Figure 5.2.

In order to reconstruct the four-momentum of the original parton and, if possible, identify its
flavour, the constituents of these hadronic showers or jets have to be identified. For this purpose,
various jet algorithms have been developed, an overview of which shall be given in the following
sections.

5.4.1. Jet Constituents

Jets can be reconstructed at different stages of their evolution process. Depending on the objects
used as input to the jet algorithm, different classes of jets can be defined: At detector level, there can
be either track jets, reconstructed from the tracks of charged particles in the ID, or calorimeter
jets, formed by groups of calorimeter cells. The latter fall into two categories: Tower jets are
formed by radial towers of calorimeter cells with a standard area of ∆η ×∆φ = 0.1× 0.1 in the
η−φ -plane. Topological jets, which are used for this analysis, are built from topological clusters
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Figure 5.2.: The evolution of hadronic jets from final-state partons (adapted from [26])

of calorimeter cells that are constructed by a clustering algorithm starting from a seed cell with a
signal-to-noise ratio above a certain threshold. A more detailed description of clustering algorithms
and calorimeter jets in general can be found in [46].
At Monte-Carlo level, so called truth jets are formed from stable particles6 exluding muons and
neutrinos. These can be compared to jets at detector level in order to study the influence of detector
effects on the reconstruction of jets.

5.4.2. Recombination Schemes

For each jet algorithm, a recombination scheme has to be chosen that defines in which way the
four-momenta of the constituent particles are to be combined to yield the four-momentum of the
jet. In the simplest recombination scheme, often denoted as the E-scheme, the jet four-momentum
is given by the sum of the four-momenta of its constituents. This scheme is used throughout this
analysis. For alternative recombination schemes consult [46].
One particularly important feature of the E-scheme is that jets aquire a mass even though their
constituents may be massless. To illustrate this, consider the case of two massless particles with
four-momenta p1 and p2 that are to be combined to form a (proto-) jet using the E-scheme. Since
p2

1,2 = m2
1,2 = 0, the invariant mass M of the proto jet is given by

M2 = (p1 + p2)2 = m2
1 +m2

2 + 2 · (E1 · E2 − ~p1 · ~p2) = 2 · E1 · E2 · [1− cos(α12)] (5.1)

where α12 denotes the angle between the three-momenta of the two particles. Non-zero angles
between the jet constituents therefore result in a non-zero mass M despite the fact that the jet
constituents themselves as well as the original parton are (approximately) massless.

6“Stable” in this context refers to all particles with a lifetime τ > 10ps.
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The invariant mass distribution for the selected jets in the non-allhadronic tt̄ sample7 is shown in
Figure 5.3. Jet masses in the E-scheme typically range between 5 and 10 GeV.
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Figure 5.3.: Invariant mass distribution of the selected jets in the non-allhadronic tt̄ sample

5.4.3. Jet Algorithms

There are various ways to build jets from a given set of input particles using a particular recombina-
tion scheme. The shape and multiplicity of the jets found in the same event may differ significantly
between the different jet algorithms. Although it is tempting to think of a jet as a well-defined,
more or less collimated bundle of particles with a common origin that reflects the properties of
the orginal final-state parton, it is important to always keep this model dependence in mind when
talking about jets as physical objects. Therefore, the jet algorithms and their parameters have to
be chosen with care and should fulfil a few general requirements:

Infrared Safety: The presence or absence of soft gluons between jets should not alter the jet
multiplicity of the event by causing the two jets to be combined into one as shown in Figure 5.4.

Figure 5.4.: The recombination of two jets into one in the presence of a soft gluon [38]

Collinear Safety: The splitting of a constituent particle into two highly-energetic, almost collinear
particles should not lead to the splitting of the jet into two which would lead to a wrong jet
multiplicity in the event.

7For details on this sample and the event-selection process see Section 6.
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Order Independence: The result of the jet formation should be the same at different stages of
the jet evolution, i.e. at parton, hadron and detector level.

Ideally, there should be no significant dependence on the Underlying Event or pile-up conditions
or - when applied to simulated events - on the hadronisation model used by the respective Monte
Carlo generator.

Out of the variety of jet algorithms used in physics analyses at ATLAS - an overview of which can
be found in [47] - only the kT and the anti-kT algorithm shall be introduced here in detail. Both
algorithms proceed in a similar way to reconstruct jets from a given set of input particles8:

Clustering procedure

1. For all pairs of input particles (i, j) the distance parameter

di,j = min(k2p
T,i, k

2p
T,j)

(∆R)2
i,j

R2

is calculated where kT,i denotes the transverse momentum of the ith particle and

(∆R)2
i,j = (yi − yj)2 + (φi − φj)2.

is a measure of the geometric distance in the coordinate system of the detector.9 Moreover,
for each particle i the distance parameter

di,B = k2p
T,i

with respect to the beam axis is evaluated. The parameters p and R characterise the jet
algorithm as explained below.

2. The smallest distance parameter is chosen among the di,j and di,B . If it is one of the di,j , the
respective particles are combined into a new object according to the chosen recombination
scheme. If the smallest distance parameter is one of the di,B, the object i is considered a
finished jet and removed from the list of objects.

3. The procedure is iterated with the updated list of particles until either all the particles have
been absorbed into jets or all the distance parameters have values larger than some predefined
cut value dcut.

The anti-kT algorithm

The anti-kT algorithm, defined by the condition p = −1, is currently the standard algorithm for
jet reconstruction at ATLAS. The parameter R that determines the jet size can be chosen to fit
the needs of a specific analysis task. Common values are R = 0.6 or R = 0.4 which is the value
chosen by the Top Working Group and applied in this analysis. The negative value of p implies
that the algorithm clusters nearby particles with high transverse momentum first. The algorithm
stops when all particles have been absorbed into jets.

8The term “particle” in this context applies to all objects that can be used as an input to a jet algorithm, such as
partons, hadrons or calorimeter cells.

9Note that here the rapidity y is used in the calculation of the distance parameter instead of the pseudorapidity η
used in Equation (4.4). For massless particles, however, there is no difference between the two definitions.
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The kT algorithm

The case p = 1 corresponds to the inclusive kT algorithm: The di,j are smallest for nearby low-pT
particles which are therefore clustered first. Hence the kT algorithm can be said to reverse the
QCD showering process which is ordered in Q2, starting from hard (large-Q2) parton emissions at
large angles and evolving towards soft (small-Q2) emissions at smaller angles. For more information
on momentum and angular ordering in parton shower evolution see, for example, [48] and [49].
The kT algorithm can also be used in the exlusive mode which differs from the inclusive one in
two aspects: Firstly, when a di,B is found to be the smallest distance parameter, the corresponding
particle is not declared to be an individual jet but considered a part of the beam remnant and
removed from the list. Secondly, an additional cut-off parameter dcut is introduced: The clustering
process is terminated if at some point all the di,j and di,B are larger than dcut and all remaining
particles are declared as jets. For small values of dcut more jets are reconstructed than for large
values. This allows to probe the substructure of jets by varying the value of dcut.
In both the inclusive and the exclusive mode R is commonly set to 1.

Comparison of different algorithms and clustering parameters

Figure 5.5 shows how the choice of jet algorithms and their respective parameters influences the
number and shape of the reconstructed jets: The four sub-plots show the pT distribution in the
η − φ plane for the stable final-state particles10 of the same semileptonic tt̄ event which has been
generated with MC@NLO interfaced with Herwig+Jimmy for the simulation of the hadronisation
and the Underlying Event. The detector simulation has not been applied at this stage, hence all
reconstructed jets are truth jets. The FastJet [50] software, which provides an implementation of
various jet algorithms, has been used for the jet reconstruction. Jets are coloured in the order of
descending pT as red, green, blue, yellow, magenta, etc. and particles not associated to any jet are
shown in grey.

The upper two plots show the jets reconstructed with the kT algorithm in the exclusive mode with
R = 1. The dcut parameter is 400.0 GeV2 in the left plot and 300 GeV2 in the right plot. In the
latter case, five jets are reconstructed with two distinct but close-by high-pT jets at η ≈ 2 (red and
yellow jets in the upper right plot). In the case of the higher dcut value where the clustering is
terminated at a later stage, these two jets have been merged into one (red jet), thus reducing the
jet multiplicity in the event to four.
The two lower plots show the jet topology of the same event, this time reconstructed with the
anti-kT algorithm with a value of R = 0.4 (left plot) and R = 0.6 (right plot), respectively. In the
latter case, a single high-pT jet (red) is reconstructed from the particles at η ≈ 2 while the cluster
is resolved into two jets for R = 0.4.
These examples illustrate how much the jet shape and multiplicity of an event and therefore the
outcome of the entire analysis depend on the choice of the jet algorithm and its parameters. In
this context, Monte Carlo studies are essential because the truth information about the original
hard-scattering process can be used to evaluate how far the properties of the reconstructed jets
reflect the dynamics at parton level.

5.4.4. The Jet Energy Scale (JES)

The calorimeter jets that are used in most physics analyses, including the one presented in this
thesis, are reconstructed by the chosen jet algorithm from energy depositions in the calorimeter

10Muons and neutrinos are not considered here in accordance with the conventions for truth jets.
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(a) kT algorithm: dcut = 400.0 GeV
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(b) kT algorithm: dcut = 300.0 GeV
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(c) anti-kT algorithm: R = 0.4
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(d) anti-kT algorithm: R = 0.6

Figure 5.5.: Comparison of jet topology for the same event reconstructed with different jet algorithms
using FastJet

systems. These energies, however, cannot be related directly to the energy of the original parton
but need to be corrected for various systematic effects:

• The calorimeter system has been calibrated to the so-called Electromagnetic (EM) Energy
Scale which is established via test-beam and cosmic-ray measurements. For details on the
calibration see [46]. It accounts correctly for energy depositions from electrons and photons
but underestimates the energy deposited by hadronic showers.

• Energy losses may occur in regions with dead or damaged detector material or when highly-
energetic particles are not fully absorbed in the calorimeter system (leakage).

• Moreover, it can happen that not all energy deposits in the calorimeter stemming from
the same hadronic shower are also included in the corresponding calorimeter jet by the
reconstruction algorithm.

• Multiple proton-proton interactions within the same bunch crossing (in-time pile-up) may
lead to additional energy deposits in the jet area and thus to an overestimation of the jet
energy while multiple interactions from a preceeding bunch-crossing (out-of-time pile-up) have
the opposite effect.
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To compensate for these and other effects and to retrieve the Jet-Energy Scale (JES) at which
the energy of the jet is supposed to reflect that of the original parton, corrections must be applied to
the energy of each reconstructed jet. This is done using Monte Carlo simulations in which the truth
jet corresponding to a particular calorimeter jet can be retrieved and an energy-scale correction
factor can be derived from the comparison of the truth-jet energy and that of the calorimeter jet.
Various jet-energy calibration schemes exist (for details see [46]), among which the simplest is the
so-called EM+JES scheme which is the calibration scheme currently recommended by the Top
Working Group. In this scheme two types of corrections are applied to jets reconstructed at the
EM scale:

1. Vertex correction: The four-momentum of the jet which has been reconstructed with
respect to the origin of the detector coordinate system is corrected so that the jet now
originates from the primary vertex of the event.

2. JES calibration (including pile-up effects): For each pair of matched truth and calorime-
ter jets a response function RjetEM (ηdet, EjetEM ) = Ejet

EM

Ejet
truth

is derived where EjetEM denotes the
jet energy at the EM scale after the application of the aforementioned corrections. The
Monte-Carlo samples in this context include a simulation of pile-up effects.11 From this
response function energy- and pseudorapidity-dependent correction factors F(EjetEM )|ηdet

are
calculated which are then used to determine the energy of each jet at the EM+JES scale:

EjetEM+JES = EjetEM

F(EjetEM )|ηdet

. (5.2)

The determination of the jet-energy scale is a challening task due to the multitude of effects that
have to be taken into account and that contribute to the overall JES uncertainty, which - like
the JES calibration factor itself - is a function of the transverse energy and the pseudorapidity
of the respective jet. Among the contributions to the JES uncertainty are uncertainties related
to the Monte-Carlo model that is used to derive the JES correction factors, for example on the
modelling of the parton shower or the underlying event. Further effects that influence the measured
energy of a jet such as the pile-up conditions or the presence of close-by jets have to be taken
into account as well. For details on the determination of the JES uncertainty consult [46]. The
current12 official values of the maximum fractional JES uncertainty for the anti-kT algorithm with
R = 0.4 in the EM+JES calibration scheme are summarised in Table 5.1. It is expected that these
uncertainties will be reduced as more data are taken and a better understanding of detector effects
will be achieved over time. Currently, in-situ measurements are being performed with the aim of
determining the jet-energy scale at a greater accuracy: These measurements use, for example, the
momentum balance in two-body decays with a single quark and a photon in the final-state in order
to determine the momentum of the quark-induced hadronic jet from that of the photon as measured
with the electromagnetic calorimeter.

At this point, it is also worth noting that the jet structure and therefore Jet Energy Scale is flavour
dependent: For example, weak decays involving neutrinos, which lead to an underestimation of
the jet energy measured in the calorimeter, tend to occur more often in b-jets than in light-quark
jets. Hence, the jet-energy scale is different for light-quark jets and b-quark jets. This has to
be taken into account by introducing an additional bJES uncertainty that needs to be added
in quadrature to the JES uncertainty to obtain the overall JES uncertainty for b-jets. Table 5.2
summarises the current13 values of the bJES uncertainty for different pT -ranges.

11It is also possible to apply a direct pile-up correction before the vertex correction as follows: Based on the number of
primary vertices reconstructed in the event, the additional energy deposit stemming from multiple proton-proton
interactions in the same bunch crossing is estimated and subtracted from the measured jet energy.

12December 2011.
13As of February 2012.
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Table 5.1.: Overview of the maximum fractional JES uncertainties for the anti-kT algorithm with R = 0.4
in the EM+JES calibration scheme [46]

pT range [GeV] 20 - 40 40 - 80 80 - 210 210 - 600 > 600

Maximum fractional bJES uncertainty 2.5 % 2.0 % 1.7 % 1.1 % 0.76 %

Table 5.2.: Overview of the maximum fractional bJES uncertainties for the anti-kT algorithm with R = 0.4
in the EM+JES calibration scheme [51]

A precise knowledge of the JES and bJES is essential for precision measurements at hadron colliders
that rely on the reconstruction of the final-state partons from the hadronic signatures in the detector.
This is the case for the top-mass measurement in the semileptonic decay channel (and even more so
in the allhadronic channel) where the JES uncertainty constitutes one of the dominant sources of
systematic uncertainty on the top-quark mass.

5.5. Missing Transverse Energy (MET)

Once all the physics objects like electrons, muons and jets have been reconstructed, the Missing
Transverse Energy (MET, /ET ) can be calculated: As explained in Section 4.2.1, the transverse
momenta of all the particles produced in an event sum up to zero because the momentum components
of the initial-state partons orthogonal to the beam axis can be assumed to be zero and momentum
is conserved in each direction.

However, the sum of transverse momenta measured in the detector may take non-zero values for
two reasons:

• Weakly interacting particles may escape the detector without leaving any measurable signature.
This is the case for Standard Model processes with at least one neutrino in the final-state
like the semileptonic top-quark decays that are the object of this thesis. Moreover, some
Beyond-the-Standard-Model (BSM) theories predict the existence of new particles like the
Lightest Supersymmetric Particle (LSP) which only interact weakly and would therefore lead
to large MET in the detector.

• Energy losses in inactive regions or dead cells that are not properly compensated for during
re-calibration may also lead to a transverse momentum imbalance, the so-called fake Missing
Transverse Momentum /p

fake
T

.

49



5. Definition of Physics Objects

It is essential, in particular with regard to searches for BSM physics, to minimise or compensate for
the effects that lead to /pfakeT

. An overview of the various approaches to reconstruct and calibrate
the Missing Transverse Energy can be found in [52] and [53]. A short explanation of the /ET scheme
used for this analysis can be found in Appendix C.4.

5.6. B-Tagging

The identification of jets originating from bottom quarks, the so-called b-tagging, is of particular
importance for analyses involving top quarks because these almost exclusively decay into a W-boson
and a bottom quark (see Section 3.2). In the analysis presented in this thesis, b-tagging serves a
twofold purpose: During event selection, it can be used to suppress background processes with only
light quarks in the final-state, thus increasing the purity of the tt̄ sample (see Section 6). Moreover,
it facilitates the event reconstruction for which the two light-quark jets from the hadronically
decaying W-boson decay need to be distinguished from the b-jets stemming from the decay of the
two top quarks (see Section 8).

Various b-tagging algorithms have been developed, all of which exploit one or several characteristic
properties of b-jets: After hadronisation, the bottom quark is contained within a b-hadron that still
carries about 70 % of the momentum of the original quark [52] and has a comparatively high mass14
of more than 5 GeV. Consequently, its decay products tend to have large momenta transverse to
the jet axis. Most important for b-tagging, though, is the fact that the lifetime τ of b-hadrons
is relatively long - typically of the order of 1.5 ps - because their decay is governed by the weak
interaction. This implies that b-hadrons traverse a measurable distance 〈l〉 = βγcτ in the detector
before they decay: Under the above assumptions, the decay length 〈l〉 of a b-hadron inside a jet
with a momentum of, for example, 50 GeV can be estimated to be roughly 3 mm.

This implies that the ID tracks associated to charged decay products of the b-hadron cannot be
extrapolated back to the primary vertex of the event but have a non-zero impact parameter as
illustrated in Figure 5.6.

Figure 5.6.: Secondary vertex and decay length in a jet stemming from a bottom quark [54]

These tracks can be used to reconstruct the vertex associated to the b-hadron decay, the so-called

14Its mass is high compared to typical masses of hadrons formed of light quarks.
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secondary vertex (SV), and measure its distance from the primary event vertex, the decay
length L and, more importantly, its significance L

σ(L) . A jet is tagged as a b-jet if it has a
secondary vertex with an associated decay-length significance above a certain threshold. Choosing
a high cut value for the decay-length significance implies a high rejection rate ruds,c for light-quark
(uds) and c-jets

ruds,c = N(true uds,c jets)
N(true uds,c jets tagged by the algorithm)

or, in other words, a lower fraction of light jets accidentally tagged as b-jets. This, in turn, means
a higher purity

πb = N(true b jets tagged by the algorithm)
N(all jets tagged by the algorithm)

of true b-jets in the b-tagged sample but it also implies a reduced b-tagging efficiency

εb = N(true b jets tagged by the algorithm)
N(true b jets)

because true b-jets that happen to have a lower decay-length significance are not tagged. The choice
of the b-tagging threshold is therefore a trade-off between the requirement of a high purity/high
rejection rate for non-b-jets and a high b-tagging efficiency.
In this analysis, the SV0 algorithm, which relies on the secondary-vertex b-tagging scheme
outlined above, is used with a threshold value of the SV0 weight of > 5.85. An overview of the
b-tagging performance at this cut value is given in Table 5.3. A more detailed description of the

SV0 cut εb πb ruds rc

> 5.85 50.1 % 93.9 % 271 9

Table 5.3.: Performance of the SV0 algorithm for a cut value of 5.85 [55]

SV0 algorithm as well as an overview over alternative approaches can be found in [52]. For details
on the performance of the SV0 algorithm see either [54] or [55].
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6. Event Selection and Physical Background

Once the individual physics objects like electrons and jets have been reconstructed from the detector
readings, they can be used to select the physics processes of interest. Semileptonic top-pair decays
can be identified by the presence of a charged lepton with large transverse momentum, large Missing
Transverse Energy and at least four highly energetic jets in the final state, two of which are b-jets.
In this analysis, a cut-based approach is used to separate the semileptonic signal from the various
background contributions.

6.1. Physical Background

The physical background to the semileptonic signal comprises all physics processes that may lead
to a detector signature similar to that from a semileptonic top-pair decay. An overview of the
dominant contributions to the physical background is given in this section.

6.1.1. Single Top

Single-top production has already been discussed in Section 3.1.1. Despite their comparatively small
cross section of roughly 76 pb, these processes form an important part of the physical background
because the presence of a top quark in the final state leads to considerable topological and kinematic
similarities between single-top and tt̄ semileptonic final-states. Hence these processes are most likely
to pass the selection and cleaning cuts. (For a definition of the latter see Section 8.4). Figure 6.1
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Figure 6.1.: Comparison of semileptonic (a) and single-top (b) final states

illustrates the similarities between the final-states of a semileptonic top-pair decay and a single-top
process in the Wt-channel where the W decays leptonically, the top quark hadronically, and an
additional jet arising from initial-state radiation is misidentified as a b-quark jet.
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6.1.2. W + jets

The main contribution to the physical background in the semileptonic decay channel stems from
events in which a W-boson is produced together with a number of strongly interacting partons
that lead to hadronic jets. These processes are particulary important due to their comparatively
large cross section and because the leptonic W decays may result in charged leptons with high
transverse momentum as well as large Missing Transverse Energy which, in association with at
least four additional hadronic jets, leads to detector signatures similar to that from semileptonic
top-pair decays. This is illustrated in Figure 6.2a. B-tagging is particularly useful to reduce this
background contribution, as will be shown in Section 6.3, because the fraction of b-jets among the
additional jets in the event is small due to the high mass of the bottom quark.

6.1.3. Z + jets

Similarly, processes with a leptonically decaying Z boson and associated hadronic jets (Figure 6.2b)
may fake a semileptonic signal, for example if one of the charged leptons from the Z decay is not
reconstructed because it is emitted in a direction too close to the beam axis.
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Figure 6.2.: Examples of W+jets and Z+jets background processes

6.1.4. Diboson

Diboson processes can be categorised into processes with two W-bosons (WW), two Z-bosons (ZZ)
or a W- and a Z-boson (WZ) in the final state. These processes may fake detector signatures of
semileptonic top-pair decays if one boson decays leptonically, the other hadronically and additional
jets occur in the event as illustrated in Figure 6.3a. However, due to their comparatively small
cross section, dibosonic processes rank among the less significant background contributions in the
semileptonic channel.

6.1.5. QCD Multijet

QCD multijet events, like the one illustrated in Figure 6.3b, are characterised by hard-scattering
final states that contain only strongly interacting particles, i.e. quarks and gluons, but no leptons.
There are, however, two processes that may lead to leptonic signatures in the detector:
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Figure 6.3.: Examples of diboson and QCD multijet background processes

• Jets may be misidentified as electrons if the energy deposits in the electromagnetic calorimeter,
for example from neutral-pion decays (π0 → γγ), are unusually high. These jets are called
fake electrons.

• Secondary, so called non-prompt, leptons may arise from weak hadron decays inside
hadronic jets. If their momentum transverse to the jet axis is large, which is most likely to
be the case for b-jets due to the high mass of b-hadrons, these leptons may pass the lepton
isolation criteria (see Sections 5.2 and 5.3) and be identified as individual objects.

With a rate of approximately 1‰, both processes are extremely rare. Their significance for physics
analyses at hadron colliders lies mainly in the huge cross section for QCD multijet events, which
exceeds that of tt̄ by several orders of magnitude.

Still, the QCD multijet background is among the minor contributions to the physical background
in the semileptonic tt̄ decay channel if appropriate selection cuts requiring both a charged lepton
with high transverse momentum (Cut 2 in Section 6.2) and large MET (Cuts 8 and 9 in Section
6.2) are applied: Both the occurence of fake high-pT leptons and large fake MET (see Section C.4)
in QCD multijet events are relatively rare. For a QCD multijet event to pass the selection cuts,
both (uncorrelated) processes have to coincide which is unlikely to happen frequently.

The QCD multijet contribution, in particular that of fake electrons, is hard to simulate and is
therefore commonly estimated from data. By the end of 2011, no official tools for a data-driven
estimate on a dataset larger than 1 fb−1 were available. Therefore, this background contribution is
not included in the following analysis.

6.2. Selection Cuts

In the following, the selection cuts used to separate the semileptonic signal from the various
background processes are presented: In this standard cut-based selection process, all events that
might potentially be signal events are tested as to whether they fulfil a number of successively
stricter conditions that have been optimised so that they should ideally be met by signal events
only. At each stage, only events that pass a particular condition or cut are kept and passed on to
the next stage while all other events are rejected. Only events that pass this so-called cut-flow are
considered for further analysis.

While electrons, muons and taus occur with roughly equal probabilities in the leptonic branch of
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semileptonic top-pair decays, only events with an electron (e+jets channel) or muon (µ+ jets
channel) in the final state are selected for further analysis because they are significantly easier
to identify and to reconstruct than events involving τ -leptons which are short-lived and decay via
τ → ντW while still within the detector. The identification and reconstruction of these decays is
problematic, firstly because they involve at least one neutrino, i.e. another source of Missing Energy,
and secondly because, in roughly 65% of the cases [3], they decay hadronically and therefore give
rise to additional jets.
Therefore, most analyses of semileptonic top-pair decays focus on the e+jets and µ+jets channels.
These two channels have to be treated separately because the different final-states require a slightly
different set of selection cuts. The results presented in this thesis have been obtained in the µ+jets
channel.

The cut flow presented in this section is the official Top Working Group cut flow for ATHENA
Release 16.6.5; for further details see [56]. Two additional cuts (Cut 15 and Cut 16) have been
added to fit the particular requirements of this analysis.

• Cut 0: Single-Lepton Trigger1

Keep only events with a leptonic detector signature, i.e. events which have passed the chosen
event-filter trigger:

– e+jets: EF_e20_medium, i.e. there is at least one electron candidate with pT > 20 GeV

– µ+jets: EF_mu18, i.e. there is at least one muon candidate with pT > 18 GeV

• Cut 1: Vertex quality requirement

The reconstructed primary event vertex must have at least 4 associated tracks.

• Cut 2

– e+jets: Require at least one electron with ET > 25 GeV

– µ+jets: Require at least one muon with pT > 20 GeV

Here and in the following, only isolated electrons and muons are considered that have been
reconstructed according to the object definitions introduced in the previous chapter (see
Sections 5.2 and 5.3).

• Cut 32

– e+jets: Require exactly one electron with ET > 25 GeV

– µ+jets: Require exactly one muon with pT > 20 GeV

• Cut 4

– e+jets: No muon with pT > 20 GeV

– µ+jets: No electron with ET > 25 GeV

1On data, the Good Runs List (GRL) is to be applied before Cut 0.
2The successively stricter cuts on the lepton numbers have been introduced to gain a better understanding of the
lepton multiplicity in the various background contributions and to allow detailed cut-flow comparisons between
the different working groups.
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• Cut 5: Trigger Matching

The selected lepton matches the corresponding trigger object within a cone of ∆R < 0.15.
For details on the trigger matching for electrons and muons consult [44].

• Cut 6: Electron-Muon Overlap Removal

Remove events which contain an electron and a muon that have been reconstructed with the
same ID track.

• Cut 7: Jet Cleaning (data only)

Remove events in which at least one jet with pT > 20 GeV is tagged as bad according to the
loose jet-quality criterion. This cut is introduced to remove events with fake/background jets
that may arise, for example, from calorimeter noise. For details on jet-quality criteria see [46].

• Cut 8: MET Cut

In semileptonic events, the presence of one neutrino from the leptonic W-boson decay leads
to Missing Transverse Energy (MET). To distinguish these signal events from QCD-multijet
events in which fake MET may arise from calorimeter effects (see Section C.4), the MET in
the selected events is required to lie above a certain threshold:

– e+jets: MET > 35 GeV

– µ+jets: MET > 20 GeV

• Cut 9: W-boson Transverse Mass Cut

– e+jets: MT
W > 25 GeV

– µ+jets: MET + MT
W > 60 GeV (Triangular Cut)

MT
W stands for the transverse invariant mass of the leptonically decaying W-boson which is

defined as

(MT
W )2 = (pMET + pl)2

where pMET and pl are the four-vectors of the MET object and the charged lepton (which is
assumed to be massless), respectively.

Like the MET cut, this cut primarily aims at rejecting QCD-multijet background.

• Cut 10

Require at least two jets with ET > 25 GeV and |η| < 2.5

• Cut 113

Require at least three jets with ET > 25 GeV and |η| < 2.5

3As is the case of the cuts on the lepton number (Cuts 2 and 3), the successively stricter cuts on the jet number have
been introduced to gain a better understanding of the jet multiplicity in the various background contributions
and to allow detailed cut-flow comparisons between the different working groups.
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• Cut 12

Require at least four jets with ET > 25 GeV and |η| < 2.5

• Cut 13: At least 1 b-tag

Require at least one of the jets with ET > 25 GeV and |η| < 2.5 has an SV0 weight > 5.85

• Cut 14: LAr flag cut4

Remove events in which noise bursts occurred in the LAr calorimeter.

• Cut 15: At least 1 b-tag and at least two non-b-tagged jets

Require at least two non-b-tagged jets. This is important for the reconstruction of the hadronic
branch (see Section 8) where the two light-quark jets from the hadronic W decay need to
be identified. Events for which one of these jets has not been reconstructed or accidentally
tagged as a b-jet are therefore rejected during the selection process.

• Cut 16: Exactly 2 b-tags

Require that exactly two of the jets with ET > 25 GeV and |η| < 2.5 have an SV0 weight > 5.85

Figure 6.4 shows the cut-flow histograms with the different signal and background contributions
(excluding the QCD multijet background). All samples here and in the following, unless stated
otherwise, have been normalised to an integrated luminosity of 5.0 fb−1. For details on the Monte
Carlo samples used in this study see Appendix D.

The upper plot with a linear scale on the y-axis serves to illustrate the overall efficiency of the
individual cuts as well as the fact that the background is dominated by the W+jets processes. In
the lower plot, a logarithmic scale has been chosen for the y-axis in order to resolve the smaller
background components such as single-top or diboson processes and to illustrate the increasing
signal purity, in particular after Cuts 12 and 16. A quantitative discussion of the cut-flow is given
in the next Section.

4This cut is only relevant for data from Period E onwards. It has only been included here for the sake of completeness
and to allow a full comparison with the official Top Working Group event selection.
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Figure 6.4.: Cut-flow histogram for signal and background events with (a) linear scale and (b) logarithmic
scale on the y-axis
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6.3. Evaluation of the Selection Cuts

It is not possible to entirely separate the semileptonic signal from the various background processes:
Even if very tight selection cuts are applied, there may still be some background events with a
detector signature similar enough to that of semileptonic top-pair decays (see Section 6.1) to pass
the selection cuts. In order to quantify these “impurities” stemming from remaining background
events, the concept of signal purity πS has been introduced as the fraction of signal events after
a particular cut:

πsignal = N(signal events)
N(signal events) +N(all background events) (6.1)

Similarly, the fractions of background events can be calculated in order to evaluate the effect of a
cut on a particular background process.

In principle, the signal purity can be increased by applying stricter cuts that remove more background
events. However, each cut generally also removes some signal events: This may, for example, happen
if not all of the jets from a semileptonic top-pair decay have been reconstructed, either because
jets are too close to the beam axis or because jets stemming from the decays of highly-boosted
particles are so close together that they are reconstructed as a single jet. Moreover, not all jets in
semileptonic events may pass the minimum pT threshold of 25 GeV. In these cases, signal events
may be rejected by Cuts 10, 11 or 12. Hence, stricter cuts always lead to a reduction of the number
of events available for further analysis which implies larger statistical errors on measured quantities
such as the top-quark mass. To estimate the effect of cuts on the number of signal events, the
signal efficiency

εS = N(signal events after Cut X)
N(signal events before all cuts) (6.2)

defined here with respect to the number of signal events before the cut-flow, can be calculated. The
efficiencies for the individual background contributions are defined accordingly.5

Choosing and optimising a set of selection cuts therefore always means finding a compromise
between a high signal purity on the one hand and a high signal efficiency on the other.

Table 6.1 summarises the efficiencies of selected cuts for the signal and the different background
components with respect to the respective numbers of events before the cut-flow. The corresponding
fractions of the signal and background contributions are given in Table 6.2 where the first line
corresponds to the signal purity defined in Equation 6.1. The cuts have been chosen to illustrate
the effect of b-tagging on the signal efficiency and purity: After Cut 12, the selected events fulfil all
requirements of the semileptonic events selection except for the fact that b-tagging has not been
used in the selection process yet. Cut 15 corresponds to the case where at least one jet is required
to be b-tagged, Cut 16 stands for the stricter requirement that there are exactly two b-tagged jets
in the event.

These numbers clearly illustrate the importance of b-tagging for the event selection: Requiring at
least one b-tag reduces the fraction of W+jets background events from 69.3% after Cut 12 to 15.7%

5Throughout this thesis, all efficiencies and purities as well as their uncertainties are calculated according to the
formulas in Appendix A which take into account the fact that the tt̄ and single-top samples, generated with
MC@NLO, contain events with both positive and negative weights of absolute value 1.
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after Cut 12 after Cut 15 after Cut 16

(no b-tagging) (1 b-tag) (2 b-tags)

tt̄ (non-allhadronic) (8.75± 0.04)% (6.35± 0.04)% (2.03± 0.02)%

single top (1.42± 0.03)% (0.87± 0.02)% (0.20± 0.01)%

W + jets (7.18± 0.02) · 10−2% (3.46± 0.05) · 10−3% (2.2± 0.1) · 10−4%

Z + jets (6.0± 0.1) · 10−3% (3.3± 0.1) · 10−3% (2.9± 0.4) · 10−4%

diboson (0.83± 0.03)% (7± 1) · 10−2% (6± 2) · 10−3%

Table 6.1.: Signal and background efficiencies of selected cuts evaluated with respect to the respective
number of events before all cuts (see Equation 6.2)

before all cuts after Cut 12 after Cut 15 after Cut 16

(no b-tagging) (1 b-tag) (2 b-tags)

tt̄ (non-allhadronic) (0.2452± 0.0004)% (22.9± 0.1)% (78.1± 0.2)% (92.0± 0.3)%

single top (0.1025± 0.0002)% (1.55± 0.03)% (4.5± 0.1)% (3.7± 0.2)%

W + jets (90.651± 0.002)% (69.3± 0.1)% (15.7± 0.2)% (3.7± 0.2)%

Z + jets (8.936± 0.002)% (5.7± 0.1)% (1.5± 0.1)% (0.5± 0.1)%

diboson (0.0654± 0.0002)% (0.58± 0.01)% (0.24± 0.03)% (0.08± 0.03)%

Table 6.2.: Signal purity and fractions of background events after selected cuts evaluated with respect to
the total number of events after the respective cut (see Equation 6.1)

after Cut 15 and to only 3.7% if exactly two b-tags are required (Cut 16). A similar reduction
can be observed in the number of Z+jets events. At the same time, the signal purity increases
from 22.9% without b-tagging (after Cut 12) to 78.1% if one b-tag is required (Cut 15) and to even
92.0% if only events with exactly two b-tags are required.

It should also be noted that, as mentioned in Section 6.1, the fraction of single-top events even
increases slightly during the event selection process because these events tend to be more similar to
semileptonic tt̄ events and are therefore more likely to pass the stricter cuts on the jet numbers and
the b-tagging than W+jets or Z+jets events.
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7. Estimators for the Top-Quark Mass

In the semileptonic decay channel, the top-quark mass is commonly determined from the properties
of the decay products of the hadronically decaying top quark: the two light-quark jets from the
W-boson decay and the corresponding b-quark jet.1 There are various approaches to calculating the
mass of the top quark from the measured properties of the three jets which may differ significantly
in their dependence on the different sources of systematic uncertainty such as the jet-energy scale
(JES). In this section, three estimators for the top-quark mass are introduced: The invariant
three-jet mass m3jet and the two improved estimators mtop, ratio and mtop, angle which have been
specifically designed to yield a reduced JES dependence of the top-quark mass.

7.1. The Invariant Three-Jet Mass

The most straight-forward approach to determining the mass of the top quark is to calculate the
invariant mass m3jet of its three decay products which, due to energy and momentum conservation,
equals the top-quark mass:

m3jet =

√√√√√ 3∑
jet=1

Ejet

2

−

 3∑
jet=1

~pjet

2

(7.1)

As Equation (7.1) clearly illustrates, this mass estimator exclusively relies on the measurement of
the energies and momenta of the three jets and is therefore expected to be extremely sensitive to
variations of the JES:

Assuming, for simplicity, a global JES factor, i.e. a re-scaling of all measured jet energies and
momenta by a constant factor j that is applied to all jets in an event independent of their transverse
momenta and pseudorapidities2

Ejet −→ j · Ejet (7.2)
~pjet −→ j · ~pjet, (7.3)

the invariant three-jet mass turns out to be directly proportional to that scale factor:

1It should be noted that it is also possible to use the leptonic branch for a mass measurement despite the fact
that the presence of a neutrino in the final state of the leptonic W-boson decay renders the system of kinematic
equations underconstrained. For details see [57].

2In this simplified model, the scale factor j essentially replaces the energy- and pseudorapidity-dependent correction
factor F−1(EjetEM )|ηdet introduced in Equation (5.2).
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m3jet −→ m′3jet =

√√√√√ 3∑
jet=1

j · Ejet

2

−

 3∑
jet=1

j · ~pjet

2

= j ·m3jet (7.4)

and hence the JES uncertainty directly translates into a systematic uncertainty on m3jet.

7.2. The 3-to-2-Jet Invariant Mass Ratio

On the basis of the considerations concerning the JES dependence of m3jet in the previous section,
an improved mass estimator mtop, ratio with a reduced JES dependence has been introduced (see
[58]):

Instead of taking the top-quark mass to be the invariant mass of its three decay products, the latter
is divided by the invariant mass m2jet of the two jets from the W-boson decay and this ratio is
re-scaled by the W-boson massmPDG

W as stated by the Particle Data Group (mPDG
W = 80.399±0.023

GeV [3]) to yield the top-quark mass.

mtop, ratio = m3jet

m2jet
·mPDG

W (7.5)

This mass estimator has the advantage that any global JES factors will cancel out between the
numerator and the denominator

mtop, ratio −→ m′top, ratio = j ·m3jet

j ·m2jet
·mPDG

W = mtop, ratio. (7.6)

Although the assumption of a global JES factor is a simplification of Equation (5.2) which takes
into account the transverse-momentum and pseudorapidity dependence of the JES, it can be shown
(see again [58] and Section 9.2) that the top-quark mass determined with this estimator has a
reduced JES dependence compared to the top-quark mass determined with the estimator m3jet .

7.3. The Determination of the Top-Quark Mass from the Angles
between Jets

The two mass estimators introduced in the previous sections both exclusively rely on the measurement
of the energies and momenta of the three jets from the top-quark decay. The determination of
these quantities is intimately related to that of the jet-energy scale and its uncertainty which, as
outlined in Section 5.4.4, is a challenging task due to the multitude of effects that have to be taken
into account.

This calls for an alternative approach to determining the invariant mass of the top quark. The
introduction of the new mass estimator described in this section is motivated by the fact that
angles between jets can be measured much more accurately than their energies and momenta and
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that it is therefore advantageous to express the top-quark mass in terms of the angles between
its decay products only. This can be achieved by using the kinematic properties of the decay in
the restframe of the top quark. In this frame, momentum conservation dictates that the b-quark
and the W-boson from the top-quark decay are emitted back-to-back which implies that the three
momentum vectors ~jb, ~j1 and ~j2 of the b-quark jet and the two light-quark jets, respectively, lie in
the same plane. This is illustrated in Figure 7.1.

~j1

~j2

~jb

φ12

Figure 7.1.: Momentum vectors of the two light-quark jets ~j1 and ~j2 and the b-quark jet ~jb in the restframe
of the hadronically decaying top quark

The kinematics of the decay in this plane, given by the shape of the triangle that is formed by
the ends of the three momentum vectors, is then - up to a global scale factor - uniquely determined
by the angles φ12, φ1b and φ2b between the three jets in this plane. The energy scale, given by
the size of the triangle, is fixed by introducing the W-boson mass mPDG

W as a reference point,
similar to the re-scaling of the 3-to-2 jet invariant-mass ratio in the previous section.

The resulting expression for the mass estimator mtop, angle is then given by the following equation:

(
mW

mtop, angle

)2
= 2 · sin(φ1b) · sin(φ2b) · [1− cos (φ12)]

[sin(φ12) + sin(φ1b) + sin(φ2b)]2
. (7.7)

The details of the analytical derivation of this equation can be found in Appendix E.

It should be noted that Equation (7.7) does not contain any explicit dependence on measured jet
energies or momenta: The dimensionless ratio of the two invariant masses - mtop, angle which is to
be measured, and mPDG

W which has been determined to great accuracy by previous experiments - is
expressed in terms of the angles φ12, φ1b and φ2b only.

These angles, however, cannot be measured directly because they are defined in the restframe of
the top quark which is, in general, boosted with respect to the laboratory frame in which
all quantities are measured. In order to determine the angles on the right-hand side of Equation
(7.7) it is therefore necessary to measure the Lorentz boost of the hadronically-decaying top quark
which, in turn, requires a measurement of the energies and momenta of the jets from its decay.
Hence, the new mass estimator is expected not to be completely independent of the jet-energy scale.
Its JES dependence is evaluated and compared to that of the other two mass estimators in Section
9.2.
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8. Event Reconstruction and Combinatorial
Background

Once the semileptonic events have been selected, the hadronically-decaying top quark needs to be
reconstructed from its decay products. This means that among the four or more jets in the event
the two light-quark jets from the decay of the corresponding W-boson as well as the b-quark jet
from the hadronic branch have to be identified.

Events for which both the b-quark jet from the hadronic decay and the corresponding W-boson have
been reconstructed correctly are called signal events. All other events form the combinatorial
background. For a discussion of the combinatorial background see Section 8.1.

Various reconstruction strategies that rely on topological and/or kinematic properties of the
semileptonic top-pair decays have been developed, an overview of which can be found in [59] and
[60]. In Sections 8.3 and 8.4, two of the most promising strategies as well as a number of cleaning
cuts, which can be applied to reduce the combinatorial background, are introduced and compared
with particular regard to their suitability for a measurement of the top-quark mass with the three
mass estimators introduced in Section 7.

All studies involving the combinatorial background are performed on a sub-sample of the non-
allhadronic signal Monte-Carlo sample for which all decay products of the top and anti-top quarks
can be matched to a reconstructed object at detector level such as an electron or jet, thus allowing to
test whether the top quark has been reconstructed correctly. The method of jet-parton matching
is described in Section 8.2.

Section 8.5 summarises the effects of the chosen cleaning cuts on the complete set of signal and
physical-background samples with particular regard to the overall signal efficiency and purity.

Throughout this chapter, two sets of selected events are analysed and compared: The first set
consists of events with at least one b-tagged jet which are selected by applying the selection cuts
up to and including Cut 15 (see Section 6.2). This set will be referred to as the 1 b-tag case.
The second set, referred to as the 2 b-tags case, comprises only events that fulfil the stricter
requirement of containing exactly two b-tagged jets, which means that these events have passed all
selection cuts up to and including Cut 16.

8.1. Combinatorial Background

The classification of the selected semileptonic events as either signal or combinatorial background
events crucially depends on the requirements of the particular method that is chosen for the
measurement of the top-quark mass: In the simplest case where the top-quark mass is taken to
be the invariant mass of the three jets from the hadronic top-quark decay, m3jet, it is sufficient to
choose the three right jets out of the four or more jets in the event without having to distinguish
between the b-quark jet and the two light-quark jets. The two more sophisticated mass estimators,
mtop, ratio and mtop, angle as introduced in Section 7, however, require the identification of the two
light-quark jets among the three jets from the hadronically-decaying top quark, i.e. the additional
reconstruction of the hadronically-decaying W-boson. Therefore, in the following, only events in
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8. Event Reconstruction and Combinatorial Background

which both the top quark from the hadronic branch and the corresponding W-boson have been
correctly reconstructed are called signal events while all other events are classified as combinatorial
background.

In an event with exactly four jets and no b-tagging information there are six possibilites to choose
the two light-quark jets and another two possibilites to choose the b-quark jet belonging to the
hadronic branch from the two remaining jets. Hence there are twelve possibilites to completely
reconstruct the hadronic branch if all jets are chosen randomly, i.e. without using any additional
geometric or kinematic properties of the semileptonic decays. Only one of these twelve possible
assignments is correct which means that the fraction of correctly reconstructed events, the signal
purity, is expected to be roughly 8%.

The situation is complicated further by the presence of additional jets in the event, for example
from initial- or final-state radiation (see Section 3.1.2 for an overview of 2→3 processes). With only
one additional jet and no b-tagging information available, the number of possibilities to reconstruct
the hadronic branch rises to 30 and the signal purity is accordingly expected to drop to about
3%.

It is possible in principle to reduce the combinatorial background by selecting only semileptonic
events with exactly four jets in the final state for the mass measurement. However, this additional
selection cut results in a considerable loss of statistics since more than half of the events that remain
after the event selection process presented in Section 6.2 have more than four jets in the final state
(see Figure 8.1). It will also be shown in Section 8.5 that, for the purpose of this analysis, cutting
on the number of jets does not yield any considerable advantage. Therefore, no upper bound on
the jet multiplicity is used in the following analysis.

Figure 8.1.: Jet multiplicity in tt̄ signal and physical background events after selection cuts (1 b-tag case)

B-tagging turns out to be extremely useful in order to restrict the number of possibilites of choosing
a wrong combination of jets, thereby reducing the combinatorial background: If in a four-jet event
one of the b-jets is tagged, there are only three possibilities to choose the two light-quark jets
among the three non-b-tagged jets and therefore only six possbilities to reconstruct the hadronic
top-quark decay. If both b-jets are tagged, the two non-b-tagged jets are automatically assigned to
the hadronically-decaying W-boson, leaving only two possibilities to identify the right b-jets among
the two tagged jets. In an event with five jets, the number of possible jet assignments is reduced
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from 30 to 18 in the case of 1 b-tag and to only six if two jets are b-tagged. Hence b-tagging is not
only a valuable tool for reducing the physical background in the event selection process, as shown
in the previous section, but also for minimising the combinatorial background that arises from the
reconstruction of the hadronic top-quark decay.

8.2. Jet-Parton Matching

In order to test whether the right jets have been assigned to the hadronically-decaying top
quark and to evaluate and compare the different reconstruction algorithms, the jets in the event
need to be identified with the final-state partons. The information about the latter, the so-
called truth information, is contained in the Monte-Carlo samples. The procedure of assigning
the reconstructed jets to the final-state partons is called jet-parton matching and has been
implemented as follows:

1. Firstly, for each event, the complete information about the tt̄ final state is retrieved from the
Monte-Carlo sample. The latter contains a list of all the simulated particles that occur in
an event, including information about their flavour, their four-momentum and their decay
product(s). This information can be used to identify the six particles from the decays of the
top and the anti-top quark in the non-allhadronic signal sample, i.e. the two b-quarks and
the four particles from the decays of the two W-bosons.

It should be noted that the parton-level information contained in the Monte-Carlo samples
can be used to identify the dileptonic events in the non-allhadronic signal sample that pass the
selection cuts. In both the 1 b-tag and the 2 b-tags case, the fraction of remaining dileptonic
events is roughly 13 %. The fact that the additional cut on the number of b-jets has no
effect on the fraction of remaining dileptonic events is not suprising because dileptonic and
semileptonic final-states only differ in the decay of one W-boson but contain the same number
of b-quarks.

This procedure further reveals that in the majority of these dileptonic events, one of the
W-bosons decays into a τ -lepton which in turn decays hadronically, thus giving rise to a
detector signature similar to that of semileptonic top-pair decays.

2. Secondly, only events for which the four truth quarks and the charged truth lepton fulfil the
requirements |η| < 2.5 and pT > 0.5 GeV are considered in the jet-parton matching. These
cuts are introduced in order to obtain a realistic matching efficiency: Since only jets with
a pseudorapidity |ηjet| < 2.5 are selected for the analysis, the same requirement should be
placed on the partons to which they are to be matched. The cut on the minimum transverse
momentum of the jet (pT,jet > 25 GeV) cannot directly be applied to partons because,
as outlined in Section 5.4.4, the relation between the momenta at jet and parton level is
non-trivial. Therefore, it is common practice to require the partons to only fulfil the minimal
transverse momentum condition pT > 0.5 GeV which is the threshold above which particles
can be detected by ATLAS.

3. The matching of jets to partons is performed on the basis of the geomentric distance parameter
∆R =

√
(∆η)2 + (∆φ)2:

• A hadronic jet is assigned to a truth quark if and only if ∆R(jet, quark) < 0.3 and there
is no other jet within a cone of ∆R < 0.3 around the truth quark.

• A reconstructed electron or muon is assigned to the corresponding truth particle if
∆R(reconstructed lepton, truth lepton) < 0.1. The distance requirement for leptons is
stricter than the one for hadronic jets because, as explained in Section 5.4.4, the fact
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that leptons are colourless particles and therefore not subject to confinement allows
the reconstructed electrons and muons to be related more directly to the original truth
particle.

4. The jet-parton matching is considered complete if the four final-state quarks as well as the
charged lepton have been uniquely matched to the hadronic jets or to the reconstructed
charged lepton at detector level, respectively.

The efficiency of the jet-parton matching εJPM is commonly evaluated with respect to the number
of events that are selected for matching in step 2 of the above procedure:

εJPM = N(semileptonic events with complete jet-parton matching)
N(semileptonic events selected for matching according to step 2) . (8.1)

Table 8.1 summarises the values of εJPM as well as, for completeness, the jet-parton matching
efficiency with respect to the complete non-allhadronic sample after event selection

ε′JPM = N(semileptonic events with complete jet-parton matching)
N(non-allhadronic events after selection cuts) . (8.2)

both for the 1 b-tag and the 2 b-tags case.

1 b-tag 2 b-tags

εJPM (25.9± 0.1)% (29.1± 0.1)%

ε′JPM (19.4± 0.1)% (22.7± 0.1)%

Table 8.1.: Jet-parton matching efficiencies εJPM and ε′JPM for the 1 b-tag and the 2 b-tags case

These values demonstrate that only in a minority of events all four quarks as well as the charged
lepton can be uniquely identified with a corresponding object at detector level. Various effects may
lead to an incomplete jet-parton matching:

For example, the two light-quark jets from a highly boosted W-boson may be collimated in the
direction of the momentum vector of the original W-boson and be therefore so close together
that each lies within the ∆R < 0.3 - cone around the truth quark corresponding to the other jet.
Similarly, additional jets, in particular those from final-state radiation may lie close to a quark jet
from the hard-scattering process. In both cases, the jet corresponding to the truth parton cannot be
uniquely identified. It is also possible that the momentum direction of a jet is significantly altered
by the emission of final-state radiation so that it does not lie within the ∆R < 0.3 - cone around
the original quark. Moreover, it may happen that one of the jets stemming from a quark from the
hard process is not reconstructed, for instance because it is too close to the beam axis, and that
instead an additional jet, for example one arising from initial- or final-state radiation, passes the
selection cuts. This also explains the fact that the matching efficiencies are slightly higher in the 2
b-tags case because the stricter selection cut ensures that only events in which both b-quark jets
have been reconstructed are considered for the matching.

It is important to keep these matching efficiencies in mind because it is only on this limited subset
of the non-allhadronic signal sample that the reconstruction methods, cleaning cuts and the shape
of the combinatorial background can be evaluated. The latter is of particular importance for the
determination of the function which is to be fitted to the top-mass distribution in order to determine
the top-quark mass. For further details on the fit see Section 9.1.
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8.3. Reconstruction Algorithms

Various geometric and kinematic properties of the top-quark decay can be exploited in order
to assign the right jets to the hadronically-decaying top quark and the corresponding W-boson.
A comprehensive overview can be found in [59]. In the following, two of the most promising
reconstruction methods are introduced and compared with particular regard to their suitability for
the new mass estimator, mtop, angle, introduced in Section 7.3.

8.3.1. The ∆R-method

The ∆R-method is a reconstruction algorithm that relies solely on the geometric-distance measure
∆R =

√
(∆η)2 + (∆φ)2. It was originally developed for the early data-taking period at the LHC

because it does not use jet energies and momenta or any related quantities such as invariant masses
and is therefore particularly suited for measurements performed with a not yet fully calibrated
calorimeter and correspondingly large uncertainties on the jet-energy scale.

The basic idea behind this reconstruction method is that, since the top and anti-top quark are
emitted back to back in their centre-of-mass frame, the decay products of the hadronically-decaying
top quark should on average be closer to each other than to those of the corresponding anti-quark.
A similar argument applies to the decay products of the hadronically-decaying W-boson, the two
light-quark jets, which are on average closer to each other than to the b-quark of the hadronic
branch. Of course, the situation is complicated by the fact that, in general, the top-anti-top
pair is boosted with respect to the laboratory frame which results in the decay products being
collimated in the direction of the boost. Monte-Carlo studies, however, show that despite this fact
the ∆R-method constitutes a suitable reconstruction method (see again [59] as well as the results
shown in this section).

The ∆R-algorithm has been implemented as follows:

1. The distance parameters ∆Ri,j for all pairs of jets (i, j) are calculated.

2. The pair of non-b-tagged jets with the smallest value of ∆Ri,j is chosen to be the two
light-quark jets from the hadronic W-boson decay.

3. The (not necessarily b-tagged) jet closest to the reconstructed W-boson is taken to be the
b-quark jet from the hadronic branch.

4. If there is a second b-tagged jet in the event, it is defined to be the b-quark jet from the
leptonic branch.

8.3.2. The χ2-method

Another possibility to reconstruct the hadronic branch is to perform a χ2-fit that takes the W-boson
mass mfit

W and width σfitW , obtained from a fit to the respective Monte-Carlo signal distribution, as
input variables in order to identify the two light-quark jets from the W-boson decay. The b-quark
jet is then chosen exactly like in the ∆R-method.

The χ2-algorithm is implemented similarly to the ∆R-algorithm:

1. The χ2-values for all pairs of jets (i, j) are calculated as follows:
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χ2
i,j =

(
mi,j −mfit

W

σfitW

)2

where mi,j stands for the invariant mass of the two jets i and j.

2. The pair of non-b-tagged jets with the smallest value of χ2
i,j is chosen to be the two light-quark

jets from the hadronic W-boson decay.

3. The (not necessarily b-tagged) jet which, in terms of ∆R, is closest to the reconstructed
W-boson is taken to be the b-quark jet from the hadronic branch.

4. If there is a second b-tagged jet in the event, it is defined to be the b-quark jet from the
leptonic branch.

This kinematic fit has the advantage that it relies on Lorentz-invariant quantities to reconstruct
the W-boson and that therefore the actual boost of the top quark, which varies from event to
event, does not have an influence on this reconstruction step. Moreover, this method can be easily
extended to include further input variables, such as the energy distributions of the two jets from
the W-boson decay which allows a simultaneous determination of the jet-energy scale. For details
see again [59].

8.3.3. Comparison of the Reconstruction Algorithms

Table 8.2 summarises the signal purities

πsignal = N(signal events)
N(signal events) +N(combinatorial-background events)

for the two reconstruction methods both for the 1 b-tag and the 2 b-tag case. As expected, the
purities in the latter case are considerably higher due to the extra constraints on the combinatorics
introduced by the use of two b-tags. Moreover, in both cases the χ2-algorithm yields higher purities
than the ∆R-algorithm.

1 b-tag 2 b-tags

∆R-method (28.6± 0.1)% (40.8± 0.2)%

χ2-method (34.3± 0.1)% (47.5± 0.2)%

Table 8.2.: Signal purities for the ∆R-method and the χ2-method in the 1 b-tag and the 2 b-tags case

It should be noted, however, that for a measurement of the top-quark mass it is not just the overall
signal purity but also the shape of the combinatorial-background distribution that is important,
because the signal and background distributions have to be fitted in order to determine the top-quark
mass. Ideally, the signal peak should be located on top of a flat or at least sufficiently smooth
(combinatorial) background that can be described by a function that is as simple, i.e. has as few
parameters, as possible.

Figures 8.2 and 8.3 show the signal and combinatorial-background distributions for the three
mass estimators m3jet, mtop, ratio and mtop, angle in the 1 b-tag and 2 b-tags, respectively. The
distributions in the left columns of each figure correspond to the ∆R-method, those in the right
columns to the χ2-method.
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The combinatorial-background shapes of mtop, ratio and mtop, angle are very similar to each other
but they differ significantly from that of m3jet: Most notably, in the 2 b-tags case, the combinatorial
background for m3jet peaks in the signal region (see upper two plots in Figure 8.3). The reason
for this behaviour lies in the specific way events are classified as either signal or combinatorial-
background events: As described in the previous section, an event for which the right three jets
have been assigned to the hadronically-decaying top quark but the wrong two out of these three jets
have been chosen to form the W-boson is classified as a combinatorial-background event because the
estimators mtop, ratio and mtop, angle rely on the additional reconstruction of the W-boson. However,
these events still yield the correct invariant three-jet mass which causes the background distribution
to peak in the signal region. This effect is not visible in the 1 b-tag case because the overall number
of combinatorial-background events below the signal peak is higher as a result of the less stringent
b-tagging constraints.

It should also be noted that the combinatorial background is generally flatter if the reconstruction
has been performed using the ∆R-method (left column on both figures) rather than the χ2-method
(right columns): In the latter case, the kinematic constraint that the invariant two-jet mass should
be close to the W-boson mass suppresses combinations with larger two-jet masses (see Figure 8.5 in
the next section for illustration) and hence also larger top-quark masses, causing the distribution
to decay more rapidly towards higher values of the reconstructed top-quark masses.

The main problem with the combinatorial-background distributions presented so far is that, with
the exception of the χ2-method in the 1 b-tag case, they differ considerably between mtop, ratio and
mtop, angle on the one hand and m3jet on the other. With regard to fitting the distributions and
comparing the different mass estimators and their uncertainties it would, however, be preferable if
the distributions could be described with the same set of functions. This can indeed be achieved by
the application of so-called cleaning cuts as will be shown in the next section.
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(b) χ2-method, m3jet
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(c) ∆R-method, mtop, ratio

 [GeV] top, ratiom

0 50 100 150 200 250 300

E
nt

rie
s/

 8
 G

eV

0

2000

4000

6000

8000

10000

12000

14000 Signal

Combinatorial Background

(d) χ2-method, mtop, ratio
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(e) ∆R-method, mtop, angle
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Figure 8.2.: Signal and combinatorial-background distributions of the three top-mass estimators for events
reconstructed with the ∆R-method and the χ2-method in the 1 b-tag case
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(a) ∆R-method, m3jet
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(b) χ2-method, m3jet
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(c) ∆R-method, mtop, ratio
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(e) ∆R-method, mtop, angle

 [GeV] top, anglem

0 50 100 150 200 250 300

E
nt

rie
s/

 8
 G

eV

0

1000

2000

3000

4000

5000

6000 Signal

Combinatorial Background

(f) χ2-method, mtop, angle

Figure 8.3.: Signal and combinatorial-background distributions of the three top-mass estimators for events
reconstructed with the ∆R-method and the χ2-method in the 2 b-tags case
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8. Event Reconstruction and Combinatorial Background

8.4. Application of Cleaning Cuts

After the reconstruction of the hadronically-decaying top quark further cuts, the so-called pu-
rification or cleaning cuts, can be applied in order to reduce the combinatorial background
and thereby increase the signal purity. The cleaning cuts also serve as an important means to
influence the shape of the combinatorial background which, as mentioned in the last section, is of
particular significance with regard to the necessity of finding appropriate functions to fit the signal
and background distributions of the three mass estimators. All these aspects have to be considered
when choosing an appropriate set of cuts.

8.4.1. Cleaning Cut 1 (CC1)

Like the reconstruction algorithms, cleaning cuts rely on geometric or kinematic properties of
the decay to select correctly reconstructed events and reject those with wrong jet combinations.
A commonly used cut, which can be applied in both the 1 b-tag and the 2 b-tags case, aims at
rejecting events in which the hadronically-decaying W-boson has not been correctly reconstructed:
The invariant-mass distribution of the two light-quark jets, mj1+j2, peaks at the known value for
the W-boson mass, i.e. around 80 GeV, if both jets have been chosen correctly. It is customary
to keep only events that lie within a mass window defined by twice the width of the distribution
around that peak:

• Cleaning Cut 1 (CC1): Require |mj1+j2 −mpeak, fit
2jet | < 2 · σfit2jet.

Both the peak value mpeak, fit
2jet and the width σfit2jet are obtained by fitting a Crystal-Ball function1

to the signal distribution as shown in Figure 8.4 for the 1 b-tag case.
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Figure 8.4.: Fit of a crystal-ball function to the 2-jet invariant-mass distributions for correctly reconstructed
W-bosons using the ∆R-method (a) and the χ2-method (b) in the 1 b-tag case

The efficiencies2 and purities for this cut are summarised in the first two columns of Tables 8.3 and
8.4, both for the ∆R- and the χ2-method in the 1 b-tag and the 2 b-tags case.

1For a discussion of this function see Section 9.1. A formal definition can be found in Appendix B.
2The efficiencies are evaluated with respect to the number of events with complete jet-parton matching before and
after the respective cut.
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8.4. Application of Cleaning Cuts

after CC1 after CC1 after (CC1+CC2+CC3)

(1 b-tag) (2 b-tags) (2 b-tags)

∆R-method (56.1± 0.1)% (64.1± 0.2)% (32.4± 0.2)%

χ2-method (93.8± 0.1)% (90.0± 0.1)% (40.6± 0.2)%

Table 8.3.: Efficiencies of the various cleaning cuts for the ∆R-method and the χ2-method in the 1 b-tag
and the 2 b-tags case

after CC1 after CC1 after (CC1+CC2+CC3)

(1 b-tag) (2 b-tags) (2 b-tags)

∆R-method (46.6± 0.2)% (57.7± 0.3)% (79.6± 0.3)%

χ2-method (34.7± 0.1)% (49.0± 0.2)% (72.7± 0.3)%

Table 8.4.: Purities of the various cleaning cuts for ∆R-method and the χ2-method in the 1 b-tag and the
2 b-tags case

The differences between the two reconstruction methods with respect to this cut are striking: While
the signal purites are increased from 28.6% to 46.6.% (1 b-tag) and from 40.8% to 57.7% (2 b-tags)
for the ∆R-method, they remain almost the same for the χ2-method. At the same time, the signal
effiencies drop to 56% (1 b-tag) and 64% (2 b-tags) for the ∆R-method, while high signal efficencies
of more than 90% are retained for the χ2-method.

These effects are a direct result of the different approaches to the reconstruction of the W-boson
used in the ∆R- and the χ2-methods, respectively, because they lead to fundamentally different
shapes of the combinatorial-background distribution of the cut parameter mj1+j2 as illustrated in
Figure 8.5.
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(a) ∆R-method
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Figure 8.5.: Signal and combinatorial-background distributions for the mass of the reconstructed W-boson
in the 1 b-tag case using (a) the ∆R-method and (b) the χ2-method. The black vertical lines mark the
boundaries of the mass window selected by cleaning cut CC1.

In the ∆R-case, the distribution decreases monotonously towards increasing masses, reflecting the
fact that jets with low transverse momenta occur more frequently than jets with high transverse
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8. Event Reconstruction and Combinatorial Background

momenta, while in the χ2-case the combinatorial background peaks at around 80 GeV - just like
the signal distribution. This is a direct consequence of the fact that in the latter case the W-boson
mass is already used as a kinematic constraint during the reconstruction process, which may result
in wrong light-quark jet combinations being chosen because their invariant mass is close to the
W-boson mass, thus forcing the combinatorial background into signal shape. Accordingly, the
cleaning cut CC1 is not suited to remove much of the combinatorial background in this case, while
it effectively rejects wrong jet combinations, in particular those with small invariant masses in the
∆R-case.

The corresponding distributions of signal and combinatorial background are shown in Figure 8.6
for the 1 b-tag case and in Figure 8.7 for the 2 b-tags case.

As expected, the effect of the cleaning cut CC1 on the shape of the combinatorial background is
very small for the χ2-method (see plots in the right columns of Figures 8.6 and 8.7) with the only
exception of the m3jet-distribution in the 2 b-tags case, where the cut effectively removes the peak
of the combinatorial background below the signal peak.

The most notable conclusion to be drawn from Figures 8.6 and 8.7 is that after the application of
cleaning cut CC1, the combinatorial background has a similar shape for all three mass estimators
and can therefore potentially be fitted with the same type of function. As discussed in Section
8.3.3, this is due to the fact that the shape differences between the estimators mtop, ratio and
mtop, angle on the one hand and m3jet on the other before the cleaning cut are mostly caused
by events with incorrectly reconstructed W-bosons which lead to incorrect masses for mtop, ratio
and mtop, angle but not necessarily for m3jet as long as the three right jets have been chosen for
the hadronically-decaying top quark. Cleaning cut CC1 has been specifically designed to remove
events with incorrect two-jet combinations, i.e. exactly those events for which the mass estimators
potentially differ.
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(a) ∆R-method, m3jet
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(b) χ2-method, m3jet

 [GeV] top, ratiom

0 50 100 150 200 250 300

E
nt

rie
s/

 8
 G

eV

0

2000

4000

6000

8000

10000 Signal

Combinatorial Background

(c) ∆R-method, mtop, ratio
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(e) ∆R-method, mtop, angle
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(f) χ2-method, mtop, angle

Figure 8.6.: Signal and combinatorial-background distributions after cleaning cut CC1 in the 1 b-tag case
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(a) ∆R-method, m3jet
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(b) χ2-method, m3jet
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(c) ∆R-method, mtop, ratio
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(e) ∆R-method, mtop, angle
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Figure 8.7.: Signal and combinatorial-background distributions after cleaning cut CC1 in the 2 b-tags case
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8.4.2. Cleaning Cut 2 (CC2)

For events with two b-tagged jets where one is used in the reconstruction of the hadronic branch
and the other is then automatically identified as the b-jet from the leptonic branch, two more
cleaning cuts can be applied. They both aim at removing events where at least one of the two
b-jets has been incorrectly reconstructed.

The first additional cleaning cut aims at removing events in which the two b-jets have mistakenly
been interchanged. If this is the case, the invariant mass mj1+j2,bl of the (correctly reconstructed)
hadronically-decaying W-boson (j1+j2) and what is assumed to be the b-jet from the leptonic
branch (bl) should peak at the top-quark mass, i.e. around 170 GeV. Since the top-quark mass is
the quantity that is to be measured, it is not possible to directly cut on this parameter. Instead, a
threshold value below which all events are rejected is derived from a comparison of the signal and
background distributions of mj1+j2,bl as shown in Figure 8.8.

The cleaning cut is accordingly defined as follows:

• Cleaning Cut 2 (CC2): Require mj1+j2,bl > 200 GeV.
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Figure 8.8.: Signal and combinatorial-background distributions for mj1+j2,bl. The black line marks the
cut value chosen for cleaning cut CC2.

8.4.3. Cleaning Cut 3 (CC3)

Another cleaning cut involving the leptonic branch can be applied. Due to four-momentum
conservation, the invariant mass of the sum of the four-vectors of the neutrino, the charged lepton,
and the corresponding b-quark jet must equal the top-quark mass. Accordingly, the invariant
mass ml,bl of the charged lepton and the b-quark jet (bl) alone has to be below the expected
top-quark mass of roughly 170 GeV because the neutrino is not taken into account. The signal and
combinatorial-background distributions (Figure 8.9) imply a cut value of 150 GeV on ml,bl:

• Cleaning Cut 3 (CC3): Require ml,bl < 150 GeV.
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Figure 8.9.: Signal and combinatorial-background distributions for ml,bl. The black line marks the cut
value chosen for cleaning cut CC3.

8.4.4. Combination of Cleaning Cuts CC1+CC2+CC3 for the 2 B-Tags Case

The combined effect of all cleaning cuts (CC1+CC2+CC3) on the mass distributions for events with
exactly 2 b-tags is shown in Figure 8.10, the corresponding efficiencies and purities can be found in
the last column of Tables 8.3 and 8.4: The additional cleaning cuts lead to a considerable increase
of the signal purity compared to the situation after CC1: For the ∆R-method, it rises from 58% to
80% and for the χ2-method from 49% to 73%. At the same time, however, the overall efficiency is
halved from 64% to 32% for the ∆R-method and from 90% to 40% for the χ2-method.

Moreover, in all cases, the combinatorial background, though considerably reduced and relatively
flat, is now centered below the signal region. This is a consequence of the stricter cuts that are only
passed by background events that are sufficiently signal-like and hence are likely to yield masses
close to the top-quark mass. These background events are particularly problematic because the
larger the curvature of the background below the signal peak, the more difficult it is to exactly
determine the peak position. Therefore, looser cleaning cuts should be preferred over stricter
ones.
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(a) ∆R-method, m3jet
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(b) χ2-method, m3jet
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(c) ∆R-method, mtop, ratio
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(e) ∆R-method, mtop, angle
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Figure 8.10.: Signal and combinatorial-background distributions after cleaning cuts CC1+CC2+CC3 in
the 2 b-tags case
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8. Event Reconstruction and Combinatorial Background

8.5. Final Evaluation of the Reconstruction Methods and
Cleaning Cuts

In the previous sections two different reconstruction methods for the hadronically-decaying top
quark in semileptonic tt̄ events, the ∆R-method and the χ2-method, have been introduced and
compared with respect to different sets of cleaning cuts for both the 1 b-tag and the 2 b-tags case.

The choice of an optimal combination of reconstruction methods and selection/cleaning cuts is
subject to various criteria: Firstly, it is desirable to achieve a high signal purity while also
retaining a sufficiently high signal efficiency to provide sufficient statistics in order to keep
the statistical uncertainties low. For a measurement of the top-quark mass with different mass
estimators, however, the shape of the combinatorial background is equally important: The
distribution must be smooth and simple enough to be described by a fit function with few parameters
and, ideally, it should be flat in the signal region so that small uncertainties in the description
of the background do not lead to considerable shifts of the signal peak. Finally, the background
distributions for the different mass estimators should preferentially lend themselves to a description
with the same type of fit function to allow for a more consistent comparison of the different
estimators.

It has been demonstrated in Section 8.4.1 that the latter requirement can only be met if at least
cleaning cut CC1 is applied to the samples. The application of further cleaning cuts in the 2 b-tags
case leads to higher signal purities but also considerably lower efficiencies as shown in Section 8.4.4.
Moreover, the corresponding background distributions, although being relatively flat, are centered
below the signal peak which, as explained in Section 8.4.4, might potentially be problematic with
regard to the determination of the exact position of the latter.

Therefore, in the following analysis, only cleaning cut CC1 is to be applied to the sample with the
∆R-method as the preferred choice for the reconstruction because it leads to a considerably flatter
combinatorial-background distribution compared to the χ2-method (see Figures 8.6 and 8.7).

As for the choice of selection cuts, the 2 b-tags case is preferred over the case where only one b-tag
is required: In the latter case, the distribution of the combinatorial background is steeper and its
peak is located at around 150 GeV and hence closer to the signal peak than in the 1 b-tag case
where it peaks at roughly 140 GeV (see left columns of Figures 8.6 and 8.7).

Selection cuts C1 - C16 (2 b-tags)

Reconstruction algorithm ∆R-method

Cleaning cut CC1

Table 8.5.: Summary of the selection and reconstruction methods that have been chosen for the following
measurement of the top-quark mass

For completeness, it should be noted that with this choice of reconstruction algorithm and cleaning
cuts no additional selection cuts to restrict the jet multiplicity in the events are required: As shown
in Figure 8.11, a restriction of the jet number to five only leads to an overall loss of statistics
(smaller number of entries in Figure 8.11b compared to Figure 8.11a) but no significant improvement
of the signal purity, and the shape of the combinatorial background remains essentially the same.
The effect is the same if the jet number is restricted to four (not shown here). The loss of statistics
in this case is even bigger as is to be expected on the basis of the jet-multiplicity distribution in
Figure 8.1.
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(a) no upper bound on the jet number
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Figure 8.11.: Signal and combinatorial-background distributions for the ∆R-method with cleaning cut
CC1 in the 2 b-tags case and different selection cuts on the jet multiplicity

All studies in the previous sections were performed on the subsample of the non-allhadronic signal
sample for which a complete jet-parton matching is possible because this allows to study the
combinatorial background and the way it is influenced by the reconstruction methods and cleaning
cuts. In the final analysis, however, the cleaning cuts are applied to all events that pass the event
selection process, i.e. all events that pass selection cuts C15 (1 b-tag case) and C16 (2 b-tags case),
respectively. The efficiencies and purities/fractions of the various cleaning cuts with respect to
the complete set of signal and background samples are summarised in Tables 8.7 and 8.6 for the
∆R-algorithm.

The cleaning cuts lead to a further slight increase of the overall purity of non-allhadronic events
with respect to the various background processes as is to be expected since they introduce additional
kinematic constraints such as that on the invariant mass of the W-boson (CC1) which are more
likely to be met by semileptonic events. It should also be noted that after the application of one
or more cleaning cuts, the single-top background is the dominant background contribution in the
2 b-tags case (see second and third columns in Table 8.6). This is to be expected because the
cleaning cuts aim at very specific kinematic properties of the top-quark and W-boson decay which
are most likely to be met by events that actually contain a top quark in the final state.

after CC1 after CC1 after (CC1+CC2+CC3)

(1 b-tag) (2 b-tags) (2 b-tags)

tt̄ (non-allhadronic) (81.9± 0.4)% (93.8± 0.4) % (95.3± 0.5) %

single top (4.7± 0.2)% (3.4± 0.3) % (3.2± 0.4) %

W + jets (11.9± 0.3)% (2.4± 0.3) % (1.4± 0.3) %

Z + jets (1.2± 0.1)% (0.3± 0.1) % (0.2± 0.1) %

diboson (0.19± 0.04)% (0.06± 0.04)% -

Table 8.6.: Signal purity and fractions of background events after the cleaning cuts for the ∆R-algorithm
in the 1 b-tag and the 2 b-tags case. An empty cell indicates that the respective number is not significant
because the statistical uncertainty exceeds the value of the purity.

It should also be noted that the efficiencies with respect to the complete non-allhadronic sample
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are lower than the corresponding efficiencies that are evaluated with respect to the subsample with
complete jet-parton matching (Table 8.3). This can be explained by the fact that the subsample
with complete jet-parton matching constitutes, in a sense, an idealised subset of events because
the requirement that the jet-parton matching be complete excludes, for example, events in which
not all the jets from the hadronic top-quark decay have been reconstructed. Therefore, a larger
fraction of events in this subsample passes the cleaning cuts, thus leading to higher cut efficiencies
compared to the complete non-allhadronic sample.

after CC1 after CC1 after (CC1+CC2+CC3)

(1 b-tag) (2 b-tags) (2 b-tags)

tt̄ (non-allhadronic) (46.6± 0.4)% (51± 1)% (25± 1)%

single top (41.0± 0.1)% (36± 3)% (17± 2)%

W + jets (30± 1)% (26± 2)% (7± 1)%

Z + jets (35± 2)% (30± 10)% (9± 5)%

diboson (32± 5)% (30± 20)% -

Table 8.7.: Signal and background efficiencies of the cleaning cuts for the ∆R-algorithm in the 1 b-tag
and the 2 b-tags case. The efficiencies in the 1 b-tag case are evaluated with respect to the number of
events of each sample after selection cut C15, and in the 2 b-tags case with respect to the number of events
of each sample after selection cut C16. An empty cell indicates that the respective number is not significant
because the statistical uncertainty exceeds the value of the efficiency.

The high purity of the event sample after the application of cleaning cut CC1 is most impressively
illustrated by the resulting mass distribution for the estimator m3jet which is shown in Figure 8.12.
The distribution corresponds to the set of selection and reconstruction methods summarised in
Table 8.5 which is to be used throughout the following analysis.3
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Figure 8.12.: Distribution of m3jet for the complete non-allhadronic tt̄ and the physical background
samples after cleaning cut CC1 in the 2 b-tags case

3The only exception is the βγ method introduced in Section 9.4.
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9. Comparison of the Mass Estimators

In the following chapter, the three estimators for the top-quark mass introduced in Section 7 are
compared with particular regard to their JES and bJES dependence. To this end, the respective
distributions are fitted with an appropriate set of functions to determine the position of the mass
peak for each estimator. The details of the fit are explained in Section 9.1. The effect of a variation
of the jet-energy scale and the b-jet energy scale on the fitted peak values is studied in Sections
9.2.1 and 9.2.2, respectively. The results are used to determine the corresponding systematic
uncertainties on the different mass estimators. It turns out that the exact choice of the cut on
the invariant mass of the W-boson (cleaning cut CC1, see Section 8.4) has a considerable impact on
the JES and bJES dependence of the estimators. This effect is studied in Section 9.2.3. In Section
9.3, the calibration curves for the three mass estimators are presented. Finally, a method to
further reduce the JES dependence of the improved estimators mtop, ratio and mtop, angle
is introduced in Section 9.4.

All studies presented in this chapter, except for those in Section 9.4, are performed on the full set
of signal and background samples and all distributions are normalised to an integrated luminosity
of 5 fb−1 unless stated otherwise.

9.1. Fitting the Mass Distributions

To determine the exact position of the mass peak for each estimator, it is necessary to choose
appropriate functions to describe the signal as well as the combinatorial- and physical-background
distributions. Ideally, these functions should be as simple as possible, meaning that they should
contain only a small number of parameters that are varied during the fitting procedure. This
renders the fit more stable1 under variations of the JES and bJES as well as under variations of the
input value for the top-quark mass that is used in the Monte-Carlo generator.

All fits presented in this chapter are performed using the χ2-minimisation algorithm implemented
in the MINUIT [61] package within the ROOT [62] framework.

The studies of the signal and combinatorial-background shape carried out in the previous chapter
on the subsample with complete jet-parton matching are a suitable starting point for choosing a fit
function for the mass distribution shown in Figure 8.122 because they provide an opportunity for
testing different fit functions separately on the signal and background distributions. These functions
are then added to yield the fit function for the complete mass distribution. In the following, this
procedure is demonstrated in detail for the distribution of m3jet. The results obtained thereby can
be directly applied to mtop, ratio and mtop, angle because, as explained in the previous section, the
application of cleaning cut CC1 on the events reconstructed with the ∆R-method in the 2 b-tags
case results in similarly shaped signal and combinatorial-background distributions for all mass
estimators.

1A fit is regarded as stable if the parameters of the fit function vary continuously under a variation of the parameters
that determine the shape of the distributions such as, for example, the generator value of the top-quark mass.

2This applies similarly to the corresponding distributions of mtop, ratio and mtop, angle.
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9. Comparison of the Mass Estimators

The common choice of a fit function for the signal peak of a mass distribution is a Gaussian
function which can be described by a mere three parameters: its mean/peak position, its width
and its scale. However, as illustrated in Figure 9.1a, this simple function does not describe the
signal distribution satisfactorily: particularly in the lower mass regime there is an excess of events
that is not described by the fit function, and the function peak seems to slightly underestimate the
true peak value. This excess of events at the lower end of the distribution may be attributed to
final-state radiation3 which has a lowering effect on the momenta of the decay products from which
the top quark is reconstructed, thus leading to an underestimation of the top-quark mass.

A much better fit result is obtained by restricting the fit range to values above 120 GeV and choosing
a Crystal Ball function as a fit function. This is illustrated in Figure 9.1b. The Crystal Ball function
is essentially a modified Gaussian function with an exponential correction factor below or above a
certain value of the parameter α. The shape of this function is described by five parameters, one of
which is kept fixed during the fit.4 For positive values of α, the exponential correction factor is
applied to the lower tail of the Gaussian which allows for a much better description of the excess
of events in this region and also yields a better result for the peak position. It should be noted
that neither a fit with a Gaussian function in a restricted fit range nor the choice of a Crystal Ball
function for the complete range yield comparably precise fits.
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(a) Gaussian fit function
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(b) Crystal Ball fit function

Figure 9.1.: Fit of the signal distribution of m3jet using a Gaussian function over the complete mass range
(a) and a Crystal Ball function with lower cut-off at 120 GeV (b)

The preferred choice for the fit of the combinatorial background distribution would be a Landau
function because it has only three parameters. As shown in Figure 9.2a, this function fits the
distribution very poorly, in particular in the region below the signal peak (between roughly 130
GeV and 200 GeV) where a precise description of the background is essential. It turns out that
again a Crystal Ball function, this time with a considerably larger width and a negative value of α,
describes the combinatorial background very well if the fit range is restricted to mass values above
120 GeV.

It should be noted that the choice of the fit range and function of the combinatorial-background
distribution is primarily dictated by the requirement that the fit function describes the shape of
the background in the signal region as precisely and with as few parameters as possible. There are,
a priori, no preditions for the functional shape of the background based on physical models. As
shown in the previous chapter, this shape is primarily influenced by the choice of the reconstruction
method and the cleaning cuts.

3This may be hadronic final-state radiation, for example of gluons radiated off either of the three quarks from the
top-quark decay, or electromagnetic radiation off the W-boson.

4For details see Appendix B.
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(a) Landau fit function

 / ndf 2χ   17.9 / 21
Prob   0.6555
peak (comb. bkgr.)  3.3± 144.8 
width (comb. bkgr.)  4.11± 42.66 
alpha (comb. bkgr.)  0.121± -1.032 
scale (comb. bkgr.)  1.39± 43.64 

 [GeV] 3jetm

0 50 100 150 200 250 300

E
nt

rie
s/

 8
 G

eV

0

10

20

30

40

50
 / ndf 2χ   17.9 / 21

Prob   0.6555
peak (comb. bkgr.)  3.3± 144.8 
width (comb. bkgr.)  4.11± 42.66 
alpha (comb. bkgr.)  0.121± -1.032 
scale (comb. bkgr.)  1.39± 43.64 

(b) Crystal Ball fit function

Figure 9.2.: Fit of the combinatorial-background distribution of m3jet using a Landau function over the
complete mass range (a) and a Crystal Ball function with lower cut-off at 120 GeV (b)

The sum of the two Crystal Ball functions is then used to fit the stacked distribution of the signal
and combinatorial-background events in the subsample with complete jet-parton matching.
This is shown in Figure 9.3a. When fitting a signal and a background distribution with the same
type of function, it is important to make sure that the fit function for the background distribution
does not propagate into the signal region, i.e. does not describe part of the signal distribution,
because this would lead to a wrong result for the fitted value of the signal peak. A way to avoid this
is to use the parameter values obtained from the separate fits of the two distributions as starting
values for the fit of the stacked distribution. Moreover, the input values, in particular those of the
width and the parameter α, differ significantly between the two functions. A comparison of Figure
9.3 with Figures 9.1b and 9.2 shows that the shape of the fit function and in particular the position
of the peaks do not change significantly during the combined fit.
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(a) Subsample with complete jet-parton matching
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(b) Complete non-allhadronic tt̄ sample

Figure 9.3.: Fit of (a) the stacked signal and combinatorial background distributions on the subsample
with complete jet-parton matching and (b) the complete non-allhadronic tt̄ signal sample; in both cases the
fit function is the sum of the two Crystal Ball functions and the parameters obtained from the separate fits
to the signal and combinatorial background distribution are taken as an input to the combined fit

Next, the sum of the two Crystal Ball functions is used to fit the invariant-mass distribution for
the complete non-allhadronic tt̄ sample, see Figure 9.3b. The parameter values obtained from
the fit to the stacked distributions for the subsample with complete jet-parton matching are used
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as input values in this fit and it turns out that here again the peak values of the two functions do
not deviate significantly from those of the individual fits. This is remarkable because, as discussed
in Section 8.2, the subsample on which the shape of the signal and combinatorial-background
distributions are studied comprises only about 20% of the complete non-allhadronic sample (see
Table 8.1). Moreover, this subsample by definition contains only events for which all jets from the
hadronic top-quark decay have been reconstructed. It can therefore be regarded as an idealised
subsample of the complete non-allhadronic tt̄ sample. This fact is reflected in the slight increase
in the width and the relative height of the Crystal Ball function that models the combinatorial
background in Figure 9.3b compared to that in Figure 9.3a.5

Finally, the mass distribution for the physical background6 is fitted with a Landau function
(Figure 9.4a) and the parameters from this fit as well as those from the fit of the complete non-
allhadronic signal sample are used as input values in the fit of the complete mass distribution
with a sum of two Crystal Ball functions and a Landau function (Figure 9.4b). A comparison of
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(a) Physical background
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(b) Fit of the complete distribution

Figure 9.4.: Fit of the physical background with a Landau function (a) and fit of the complete mass
distribution (non-allhadronic signal and physical-background samples) with a sum of two Crystal Ball
functions and a Landau function (b). The distribution on the right-hand side is identical to the one in
Figure 8.12.

Figure 9.4b and Figure 9.1b shows that despite the fact that the fit to the complete distribution
involves the variation of eleven free parameters, the fitted values for the top-quark mass peak
do not differ significantly between the simple case where only the signal distribution is fitted
(mpeak

top = 172.1± 0.4 GeV) and the fit of the complete mass distribution (mtop
peak = 171.8± 0.3

GeV) if the fitting procedure is carried out as described above with the parameters from previous
fits being used as input parameters in the following fit.

The same fitting procedure is applied to the mass distributions for the estimators mtop, ratio and
mtop, angle. The results are shown in Figure 9.5b and Figure 9.6b. In addition, the results for the
fit of the stacked signal and combinatorial-background distributions are given in Figure 9.5a and
Figure 9.6a in order to illustrate that the combinatorial background is well-described in both cases.

5Due to the relatively large errors on these parameters in the latter case, however, this increase is not significant.
6The physical background distribution is the stacked distribution of all physical background samples used in this
analysis (see Section 6.1).
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(a) Fit of the subsample with complete jet-parton matching
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(b) Fit of the complete distribution

Figure 9.5.: Fit of the stacked signal and combinatorial background distributions on the subsample with
complete jet-parton matching using a sum of two Crystal Ball functions (a) and of the complete mass
distribution (complete non-allhadronic signal and physical-background samples) with a sum of two Crystal
Ball functions and a Landau function (b)
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(a) Fit of the subsample with complete jet-parton matching
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(b) Fit of the complete distribution

Figure 9.6.: Fit of the stacked signal and combinatorial background distributions on the subsample with
complete jet-parton matching using a sum of two Crystal Ball functions (a) and of the complete mass
distribution (complete non-allhadronic signal and physical-background samples) with a sum of two Crystal
Ball functions and a Landau function (b)

The fitted peak values for the three mass estimators and their statistical errors are summarised in
Table 9.6. The uncertainties on the peak values for mtop, ratio and mtop, angle have been re-scaled
by a factor

S =
√

χ2

ndf− 1

in accordance with the recommendations of the Particle Data Group [3] for χ2-fits where the value
of χ2 divided by the number of the degrees of freedom (ndf) is larger but not significantly larger
than one. This is the case for the two improved mass estimators (see Figure 9.5b and Figure 9.6b).
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m3jet (171.8± 0.3) GeV

mtop, ratio (165.7± 0.3) GeV

mtop, angle (167.0± 0.3) GeV

Table 9.1.: Overview of the fitted values of the top-quark mass peak and their statistical errors for the
three mass estimators

All of these values for the reconstructed top-quark masses deviate from the simulated value of
172.5 GeV of the Monte-Carlo samples. This may have various reasons such as an incorrectly
calibrated JES or bJES (see also the next two sections for details) or biases introduced by the
selection process, the event reconstruction or the fit. The small values of the reconstructed masses
for the two estimators mtop, ratio and mtop, angle, which both rely on a measurement of the ratio
mtop, ratio/angle/mPDG

W , may, for example, be traced back to an over-estimation of the W-boson
mass as illustrated in Figure 8.4: The fitted peak value mfit, peak

2jet ≈ 83 GeV deviates from that of
mPDG

W = 80.4 GeV by almost 3 GeV.7

To account for these effects and obtain the true top-quark mass mtop, truth from the reconstructed
masses mtop, reco, a calibration curve for each estimator is derived by reconstructing the top-quark
mass for different simulated masses. For further details see Section 9.3.

Finally, it should be noted that the introduction of a lower limit for the fit range, the choice of
which is to a certain extent arbitrary, yields an additional source of systematic uncertainty. The
latter can be assessed by varying the cut-off value by ±10 GeV. It turns out that the systematic
uncertainties for the different estimators related to the choice of the lower cut-off value are below
0.5 GeV and therefore in the order of the statistical uncertainties.

7This shift may be a result of the specific choice of jet algorithm: The anti-kT algorithm with parameter R = 0.4
introduces a minimum distance which leads to a suppression of smaller reconstructed two-jet masses.
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9.2. Evaluation of the Systematic Uncertainties

In this section, the JES and bJES dependences of the three mass estimators are studied. The
results are used to determine the respective systematic uncertainties on the top-quark mass under
the assumption of a JES uncertainty of 5% and a bJES uncertainty of 2.5%.

9.2.1. JES Dependence

In order to compare the three mass estimators with respect to their JES dependence, a global JES
factor j is applied to the energies and momenta of all jets (including the b-quark jets) in the
event8 according to Equation 7.2. This factor can be used to vary the energies and momenta of the
jets in the range of ±10% in steps of 5%. The reconstructed top-quark masses mtop, reco for the
three estimators m3jet, mtop, ratio and mtop, angle are plotted against the values of the JES factor j
(Figure 9.7a-c).

The reconstructed top-quark masses for each estimator can be fitted with a linear function, the
slope p1 of which is used to determine the corresponding systematic uncertainty for a given JES
uncertainty as follows: According to the selection criteria for jets presented in Section 6.2, all jets
used in this analysis have a transverse energy ET > 25 GeV and a pseudorapidity |η| < 2.5. Based
on the current values for the JES uncertainty listed in Table 5.1, a maximum JES uncertainty of 5%
is assumed. The corresponding systematic uncertainty on the top-quark mass is then taken to be
the variation ∆mJES

top, reco of the reconstructed mass mtop, reco over a JES interval of width 0.05:

∆mJES
top, reco = 0.05 · p1.

The resulting systematic uncertainties for the different mass estimators obtained from Figure 9.7
are listed in Table 9.2. The errors are obtained by scaling the errors on the slope by 0.05.

∆mJES
3jet (7.7± 0.1) GeV

∆mJES
top, ratio (0.8± 0.1) GeV

∆mJES
top, angle (0.8± 0.1) GeV

Table 9.2.: Systematic uncertainties and their errors for the three mass estimators assuming a global
uncertainty of 5% on the JES

The differences in the systematic uncertainties for the three mass estimators are striking: The
replacement of the simple estimator m3jet by either of the improved mass estimators mtop, ratio
or mtop, angle leads to a reduction of the systematic uncertainty from 7.7 GeV to a mere 0.8 GeV.
Hence the improved estimators, which have been specifically designed with the aim of reducing
the JES dependence of the top-quark mass (see Section 7 for details), do indeed yield a significant
reduction of the systematic uncertainty related to a global JES factor.

The model used to derive these systematic uncertainties on the top-quark mass is, of course, a
simplified one because it relies on the assumption of global, i.e. pT - and η-independent, JES
factors with global uncertainties for all jets. As explained in Section 5.4.4, the JES factors to
be applied to the measured jet energies, however, depend on the transverse momentum and the
pseudorapidity of each jet. The same applies to the uncertainties on these local JES factors. The pT -

8This is done before the event selection in order to take into account the slight changes in the efficiencies of the
selection cuts, in particular those on the transverse momenta of the jets.
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(a) m3jet
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(b) mtop, ratio
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(c) mtop, angle
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(d) Comparison of the estimators

Figure 9.7.: JES dependence of the three mass estimators; the reconstructed masses mtop, reco are plotted
against the global JES factor and a linear function is used to fit the mass points (a - c); (d) is a combination
of the three subplots that serves to illustrate the remarkable differences in the JES dependence of the three
mass estimators. The black horizontal line marks the generator mass mtop, truth = 172.5 GeV.

and η-dependence of the JES factors has already been taken into account during the reconstruction
of the jets in the context of the full detector simulation which is part of the Monte-Carlo samples
used in this analysis. In the context of this refined model, the systematic uncertainties on the
top-quark mass would then need to be derived from the local JES uncertainties for each jet via
error propagation. The same applies to the bJES-related uncertainties discussed in the following
section.
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9.2. Evaluation of the Systematic Uncertainties

9.2.2. bJES Dependence

The bJES dependence of the three mass estimators is evaluated in complete analogy to the JES
dependence in the previous section. This time, the Monte-Carlo truth information about the jet
flavour is used to apply a scaling factor jb to all (true) b-quark jets in the events before the selection
process. The scaling factor jb is chosen to model the additional uncertainty on the energy of
b-quark jets (see Section 5.4.4 for details). In the simplified model with global scaling factors used
throughout this thesis, the measured energies and momenta of u-, d-, s-, c-quark jets are re-scaled
with the factor j only,

Eu,d,s,c −→ j · Eu,d,s,c,

while the energies and momenta of b-quark jets are re-scaled with both j and jb,

Eb −→ j · jb · Eb,

i.e. jb is taken to be an additional (smaller) correction factor for b-quark jets.

To study the bJES dependence of the different estimators, jb is varied in a range of ±5% in steps
of 2.5% while j is kept at a constant value of 1. The functional dependence of mtop, reco on the
bJES factor jb is illustrated in Figure 9.8.
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(a) m3jet
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(b) mtop, ratio
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(c) mtop, angle
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(d) Comparison of the estimators

Figure 9.8.: bJES dependence of the three mass estimators; the reconstructed masses mtop, reco are plotted
against the global bJES factor and a linear function is used to fit the mass points (a - c); (d) is a combination
of the three subplots (a - c) to allow for a better comparison of the estimators. The black horizontal line
marks the generator mass mtop, truth = 172.5 GeV.
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9. Comparison of the Mass Estimators

The corresponding systematic uncertainties on the top-quark mass are evaluated under the assump-
tion of a bJES uncertainty of 2.5% (based on the values stated in Table 5.2). Their values are
summarised in Table 9.3.

∆mbJES
3jet (1.6± 0.1) GeV

∆mbJES
top, ratio (1.5± 0.1) GeV

∆mbJES
top, angle (1.6± 0.1) GeV

Table 9.3.: Systematic uncertainties and their errors for the three mass estimators assuming a global
uncertainty of 2.5% on the bJES

All three mass estimators show a comparable bJES dependence. In the case of the mass estimators
m3jet and mtop, ratio, this can straight-forwardly be explained by a comparison of Equations (7.1)
and (7.5). The estimators differ only by a factor mP DG

W

m2jet
which does not depend on the bJES. In

other words, if the energies and momenta of all b-jets are re-scaled by j · jb and by a factor of j in
the case of all other jets, the JES factors j in the numerator and the denominator of m3jet

m2jet
cancel

out whereas the bJES factors do not because they only appear in the numerator:

m3jet

m2jet
=

√(∑2
jet=1Ejet + Ebjet

)2
−
(∑2

jet=1 ~pjet + ~pbjet

)2

√(∑2
jet=1Ejet

)2
−
(∑2

jet=1 ~pjet

)2

j·jb−−→

√(∑2
jet=1 j · Ejet + j · jb · Ebjet

)2
−
(∑2

jet=1 j · ~pjet + j · jb · ~pbjet
)2

√(∑2
jet=1 j · Ejet

)2
−
(∑2

jet=1 j · ~pjet
)2

=

√(∑2
jet=1Ejet + jb · Ebjet

)2
−
(∑2

jet=1 ~pjet + jb · ~pbjet
)2

√(∑2
jet=1Ejet

)2
−
(∑2

jet=1 ~pjet

)2

The bJES dependence of mtop, angle can be explained geometrically: A change of the JES factor j
which is applied to all three jets independently neither changes the orientation of the plane defined
by the ends of the corresponding momentum vectors in the top-quark restframe nor the angles of
the triangle defined by the vectors in this plane (see Figure 7.1). It simply re-scales the overall size
of the triangle. Hence, the right-hand side of Equation (7.7) does not change under variations of j.
It is, however, not invariant under jb because this factor is applied to only one of the jets, thus
changing both the orientation of the plane, obtained by the Lorentz boost back to the restframe of
the top quark, as well as the shape of the triangle within it.
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9.2. Evaluation of the Systematic Uncertainties

9.2.3. Impact of the Choice of Cleaning Cut CC1 on the Systematic
Uncertainties

The studies of the JES and bJES dependence of the mass estimators presented in the two previous
sections have been performed on a sample of events that have passed cleaning cut CC1 after
reconstruction: Only events for which the invariant mass of the reconstructed W-boson lies within
a specified range around the fitted W-boson mass peak mpeak, fit

2jet are considered for further analysis
(see Section 8.4.1). The width of this mass window is determined by a multiple of the width σfit2jet of
the distribution. The standard choice for the cut value is to require |mj1+j2 −mpeak, fit

2jet | < 2 · σfit2jet
because, as illustrated in Figure 8.5, this allows to keep the majority of the events for which the
W-boson has been reconstructed correctly. The exact choice of the cut value x · σfit2jet, however, is
to some extend arbitrary: Instead of setting x = 2, slightly different values could be chosen, for
example x = 1.8 or x = 2.2, or the purity of the sample could be increased further at the cost of a
lower efficiency by choosing a significantly smaller mass window, for example x = 1.

It turns out that the exact choice of the value of x has a considerable effect on the JES dependence
of the mass estimators and hence on the systematic uncertainty of the measurement: Table 9.4
summarises the values of the systematic uncertainties of the three mass estimators for different
choices of x. As before, a JES uncertainty of 5% is assumed.

x = 1 x = 1.5 x = 2

∆mJES
3jet (5.9± 0.1) GeV (7.0± 0.1) GeV (7.7± 0.1) GeV

∆mJES
top, ratio (2.3± 0.1) GeV (1.4± 0.1) GeV (0.8± 0.1) GeV

∆mJES
top, angle (2.4± 0.1) GeV (1.5± 0.1) GeV (0.8± 0.1) GeV

Table 9.4.: Systematic uncertainties ∆mJES
top, reco and their errors for the three mass estimators assuming a

global uncertainty of 5% on the JES

Again, the uncertainties for the estimators mtop, ratio and mtop, angle are comparable to each other
and both are significantly smaller than that for m3jet. However, this difference decreases with
decreasing value of x, i.e. with decreasing width of the mass window for the cut: Narrower mass
windows correspond to smaller uncertainties for m3jet but larger uncertainties for mtop, ratio and
mtop, angle.

The effect of a variation of the cut value on the bJES-related uncertainties is negligible (see Table
9.5). This is to be expected because cleaning cut CC1 relies exclusively on the properties of the
light-quark jets from the W-boson decay, hence a variation of the energies of the b-quark jets in the
event does not have any effect.

x = 1 x = 1.5 x = 2

∆mJES
3jet (1.6± 0.1) GeV (1.6± 0.1) GeV (1.6± 0.1) GeV

∆mJES
top, ratio (1.6± 0.1) GeV (1.5± 0.1) GeV (1.5± 0.1) GeV

∆mJES
top, angle (1.6± 0.1) GeV (1.6± 0.1) GeV (1.6± 0.1) GeV

Table 9.5.: Systematic uncertainties ∆mbJES
top, reco and their errors for the three mass estimators assuming a

global uncertainty of 2.5% on the bJES

These observations are an artefact of the analysis: They result from the interplay between the
variation of the JES factor and the choice of a fixed cut value for the cleaning cut CC1. A global
variation of the JES causes the signal peak of the two-jet invariant mass distribution m2jet to shift
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9. Comparison of the Mass Estimators

partly out of the mass window for CC1. This is illustrated schematically in Figure 9.9 for the two
values x = 1 (solid green lines) and x = 2 (solid blue lines), respectively. The average W-boson
mass measured in the respective mass windows is shifted in the direction of the peak but to a lesser
extent since events are cut at the boundary. For smaller mass windows fewer events contribute and
hence the average value of m2jet (dashed green line) lies closer to the peak position of the unshifted
distribution (solid black line) than the corresponding value for a larger window (dashed blue line).
Hence, stricter cuts lead to smaller variations of m2jet and consequently also of m3jet under a
variation of the JES. The effect is just reversed for the two improved estimators mtop, ratio and
mtop, angle where smaller W-boson masses in the denominator lead to larger top-quark masses.

Figure 9.9.: Schematic representation of the effect of different choices for the values of the parameter x
on the average reconstructed W-boson mass m2jet: The solid green and blue lines represent the boundaries
of the mass windows for x = 1 and x = 2, respectively. Both mass windows are centered around the fitted
peak value of m2jet for a JES factor of 1.00. The dashed grey curve represents the signal distribution of
m2jet for a JES factor smaller than 1.00. The dashed green line marks the mean value of this distribution
within the mass window for x = 1 (green shaded area under the curve) and the dashed blue line stands for
corresponding mean value of the distribution in the larger mass window for x = 1.

The observations described in this section are an important reminder that the choice of cuts applied
during the analysis may have a profound influence on the JES-related systematic uncertainties on
the top-quark mass. This does not only apply to the simplified model of a global JES uncertainty
discussed in Section 9.2.1 but has also to be taken into account in a future refined model in which
the systematic uncertainty on the top-quark mass is derived from the local JES uncertainties via
error propagation. It is imperative to ensure that the introduction of selection or cleaning cuts
does not lead to an overestimation of the systematic uncertainty on the top-quark mass.
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9.3. Calibration Curves

9.3. Calibration Curves

As explained in Section 9.1, the fitted peak values for the top-quark mass need to be re-calibrated in
order to determine the true top-quark mass. To obtain the calibration curves, various Monte-Carlo
samples with different simulated top-quark masses (160 GeV, 170 GeV, 180 GeV and 190 GeV) are
used. For each estimator, the reconstructed masses mtop, reco are plotted against the corresponding
simulated values of mtop, truth as shown in Figure 9.10 for m3jet. In addition, the JES factor is
varied for each value of the simulated mass to show that the JES dependence of the mass estimator
is linear for any choice of the input mass.
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Figure 9.10.: Calibration curve for m3jet obtained from a linear fit to the reconstructed mass points for
different simulated mass points

The functional dependence between mtop, reco and mtop, truth can be parametrised by a linear
function

mtop, reco[GeV] = p1 · (mtop, truth[GeV]− 172.5) + p0, (9.1)

which can be solved for mtop, truth.

The parameters p[0] (offset) and p1 (slope) are obtained from a linear fit to the mass points for a
JES factor of 1 (black points in Figure 9.10).9

The calibration curves for the estimators mtop, ratio and mtop, angle (Figure 9.11) are obtained in a
similar fashion.

9It should be noted that in order to obtain the final calibration curve, all systematic uncertainties on the reconstructed
masses and their correlations need to be taken into account. This can, however, only be done at the final stage of
any analysis when all the additional systematic uncertainties, for example those from ISR and FSR, have been
studied as well.
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Figure 9.11.: Calibration curves obtained from a linear fit to the reconstructed mass points for different
simulated mass points for mtop, ratio (a) and mtop, angle (b)

Equation (9.3) is then solved for mtop, truth to derive the re-calibrated top-quark masses from the
fitted peak values stated in Table 9.6. The statistical uncertainties on the re-calibrated values are
obtained from simple error propagation. The results are summarised in Table 9.6. The top-quark
masses for all three estimators are now in agreement with the generated mass value of 172.5 GeV.

m3jet (172.2± 0.3) GeV

mtop, ratio (172.6± 0.3) GeV

mtop, angle (172.4± 0.3) GeV

Table 9.6.: Overview of the fitted values of the top-quark mass peak and their statistical errors for the
three mass estimators

9.4. Improvement of the Angles Method

As shown in Section 9.2.1, the new estimator for the top-quark mass, mtop, angle, introduced in this
thesis, yields a significantly reduced JES dependence compared to the commonly used estimator
m3jet. However, a small dependence on the jet-energy scale remains even for this improved
mass estimator. For a precision measurement of the top-quark mass it would be preferable to
further reduce or even eliminate this remaining JES dependence and the corresponding systematic
uncertainty.

In this context, it is important to understand the reason for the remaining JES dependence of
mtop, angle: As has already been noted in Section 7.3, the mathematical expression for this estimator,
given in Equation (7.7), does not depend explicitly on the energies and momenta of the three jets
from the top-quark decay and therefore not on the jet-energy scale. The angles on the right-hand
side of the equation, however, are defined in the restframe of the (hadronically-decaying) top quark
and cannot be measured directly in the detector because the top quarks are, in general, boosted
with respect to the laboratory frame.
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9.4. Improvement of the Angles Method

In order to determine the angles between the jets in Equation (7.7), it is necessary to perform a
Lorentz transformation from the laboratory frame to the restframe for which the determination of
the boost of the top quark from the measured four-vectors of its decay products is required. This
leads to an indirect JES dependence of mtop, angle.

In the light of these considerations, it would be preferable to select top quarks that are produced
with a negligible Lorentz boost, i.e. top quarks that decay while at rest within the detector. In
that case, the angles between the jets could be measured directly, rendering the measurement of
the four-vectors of the jets unnecessary.

The boost of the top quarks is expressed as the product βγ where γ = (1−β2)− 1
2 and β = ±|~v| = ± |~p|E

are the common Lorentz factors of Special Relativity and the product βγ has been chosen because
it is proportional to the energy E of the particle. The sign of β and βγ, respectively, is positive if
the momentum ~p of the top quark has a positive z-component and negative if it has a negative z-
component. Figure 9.12 shows the distribution of the Lorentz boost βγ of the hadronically-decaying
top quarks that have been correctly reconstructed using the ∆R-algorithm.10

Here, as well as in all other histograms in this section, all events that pass selection cut C15
(1 b-tag case, see Section 6.2) are considered, and no additional cleaning cuts have been applied to
the sample. The reason for choosing this looser set of cuts is to provide sufficient statistics for the
procedure described further below.
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Figure 9.12.: Distribution of the Lorentz boost βγ of the hadronically-decaying top quarks reconstructed
with the ∆R-algorithm after selection cut C15; negative values of βγ indicate that the component of the
top-quark momentum in the direction of the beam axis is negative

The distribution peaks at values of |βγ| between roughly 1 and 2 and decreases monotonously
towards larger values of |βγ| as is to be expected due to the smaller differential cross section for

10The slight asymmetry of the distribution is probably a result of the way the hard-scattering process is modelled
in the Monte-Carlo generator: The first initial-state parton is chosen randomly among the partons of the first
proton; the second parton is then picked from the proton with opposite momentum along the beam axis and only
events in which the two partons have sufficiently large momenta to create a tt̄ pair are kept. Since it is more
likely to pick a parton with low momentum from the first proton, the events with a top-anti-top pair in the final
state are more likely to be those in which the second parton has a considerably higher energy, thus leading to the
observed asymmetry in the boost of the top quarks in the final state.
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the production of top-anti-top pairs with large momentum. The most important conclusion to be
drawn from Figure 9.12, however, is that events containing top quarks with small Lorentz boost
(|βγ| < 0.5) are extremely rare. This is a consequence of the application of the selection cuts, in
particular those on the minimum transverse jet momentum (C10 - C12 in Section 6.2): These cuts
disfavour events with small values of |βγ| because the decay products of a top quark with small
Lorentz boost tend to have smaller momenta than those from highly boosted top quarks and are
therefore less likely to pass the selection cuts.

Hence, instead of focussing on the comparatively few top quarks with small values of |βγ| for the
mass measurement, a different approach is chosen: The idea is to evaluate the top-quark mass
mtop, angle for different values of the Lorentz boost βγ and then derive its value at βγ = 0 by
interpolation.

Figure 9.13 shows the distribution of the estimator mtop, angle plotted against the Lorentz boost βγ
for correctly reconstructed top quarks.
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Figure 9.13.: Distribution of mtop, angle plotted against the Lorentz boost βγ of the hadronically-decaying
top quark; events are required to have passed selection cut C15 (1 b-tag) and only correctly reconstructed
top quarks are considered

The signal distribution of mtop, angle in each slice in βγ is fitted with a Crystal Ball function11 to
determine the peak values mpeak

top, angle(βγ) which are then plotted against βγ as shown in Figure
9.14. For the interpolation to the mass value at βγ = 0, two linear functions are chosen to fit
the mass points for βγ < 0 and βγ > 0, respectively. The requirement that these two functions
must intersect at the same mass value p[0] for βγ = 0 imposes an extra constraint on the fit which
renders it more stable under statistical fluctuations of the mass points mpeak

top, angle(βγ) on either
side, thus allowing for a more precise determination of p[0] = mtop, angle(βγ = 0).

11Due to the looser set of selection cuts, the shape of the signal distributions in each slice (compare Figure ??)
cannot a priori be assumed to be the same as the one in Figure 9.1. Several functions have been tested on the
distributions read out of the individual slices, and the Crystal Ball function has been found to yield again the
best fit results.
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Figure 9.14.: Values of mpeak
top, angle(βγ), obtained from fitting each slice in βγ individually, plotted against

the Lorentz boost βγ

The fit is not perfect: While the assumption of a linear functional dependence mpeak
top, angle(βγ) clearly

seems justified for the mass points in the range 0.5 < |βγ| < 3, the two central points as well as
the mass points for values of |βγ| > 3 systematically deviate from the linear curve towards larger
mass values. A comparison with Figures 9.12 and 9.13 indicates that this behaviour may be a
consequence of the low statistics in the corresponding βγ-slices. For the bins with 0.5 < |βγ|, it
may be a result of the selection cuts on the minimum transverse momentum of the jets. These cuts
disfavour events in the lower tail of the top-quark mass peak, in particular in the case of top quarks
with small Lorentz boost. Hence the peak position determined in the fit is systematically shifted
towards larger masses, an effect similar to that described in the context of cleaning cut CC1 in
Section 9.2.3.

To ensure that the particular shape of the distribution in Figure 9.14 is not simply a result of
systematic biases introduced by the fit of the distributions in these slices, the mean values mmean

top, angle
of the mass distributions are additionally evaluated for each slice and plotted against βγ. The
result is shown in Figure 9.15. The distribution of the mass points is very similar to that in Figure
9.14. In particular the deviation from the linear fit function towards larger mass values in the bins
with lower statistics is clearly visible. This shows that this effect is not just a result of an imperfect
fit of the distributions in these slices. A more detailed study of the functional dependence between
βγ and mpeak

top, angle will be possible as soon as larger Monte-Carlo samples become available.

The central mass point p[0] = mpeak
top, angle(βγ) derived from the interpolation corresponds to top

quarks that are (approximately) at rest in the laboratory frame. Based on the considerations at the
beginning of this section, p[0] should therefore be taken as an improved estimator for the top-quark
mass.
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Figure 9.15.: Mean values mmean
top, angle(βγ) of each slice in βγ plotted against the Lorentz boost βγ

Its JES-related systematic uncertainty is studied by varying the energies and momenta of all jets in
the event by a global JES factor j as described in detail in Section 9.2.1. The resulting βγ-plots
of the mass points mpeak

top, angle including the respective interpolation functions are shown in Figure
9.16 for JES factors of 0.90, 0.95, 1.05 and 1.10.
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Figure 9.16.: Values of mpeak
top, angle(βγ) plotted against βγ for JES factors of 0.90, 0.95, 1.05 and 1.10
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9.4. Improvement of the Angles Method

These plots clearly illustrate that the central mass point remains constant (within the limits of its
statistical uncertainty) under global variations of the JES. The JES-related systematic uncertainty
on the estimator p[0] is therefore negligible.

The βγ interpolation method introduced in this section can, of course, be applied to the other
three estimators as well by replacing mtop, angle in Figure 9.13 by mtop, ratio or m3jet and fitting
the resulting distributions with Crystal Ball functions to obtain the βγ-mpeak

top, reco plots. These can
be found in Appendix G.2.

The JES dependence of the central mass points mpeak
top, reco(βγ = 0) for each of the three estimators

is studied as described above and the results are shown in Figure 9.17.
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Figure 9.17.: JES dependence of the central mass points mpeak
top, reco(βγ = 0) for the three estimators

m3jet,mtop, ratio and mtop, angle obtained with the βγ method. The black horizontal line marks the generator
mass mtop, truth = 172.5 GeV.

The corresponding systematic uncertainties are stated in Table 9.7: With 8.3 GeV the value of
the systematic uncertainty on m3jet(βγ = 0) is slightly bigger than the uncertainty obtained with
the standard approach in Section 9.2.1 (see Table 9.2). For the improved estimators, however,
the slope of the linear fit functions (blue and green lines in Figure 9.17) turns out to be smaller
than its uncertainty. Hence, the JES-related systematic uncertainties on mpeak

top, ratio(βγ = 0) and
mpeak

top, angle(βγ = 0) are negligible.

∆mJES
3jet (βγ = 0) (8.3± 0.1) GeV

∆mJES
top, ratio(βγ = 0) < 0.2 GeV

∆mJES
top, angle(βγ = 0) < 0.1 GeV

Table 9.7.: Systematic uncertainties and their errors for the three mass estimators evaluated with the
βγ-method assuming a global uncertainty of 5% on the JES

In the light of Section 9.2.3, one might argue that these observations are simply a result of the looser
set of cuts applied to the sample studied in this section, in particular of the fact that cleaning cut
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9. Comparison of the Mass Estimators

CC1 has not been applied here. First studies of the JES dependence of the three mass estimators
that have been performed on the same sample that has been used in this section but without
applying the βγ-interpolation method, however, yield systematic uncertainties of roughly 0.5 GeV
for mtop, ratio and mtop, angle. This implies that the independence of the jet-energy scale observed
with the βγ-method is indeed a result of the interpolation approach.

Finally, the bJES dependence of mpeak
top, reco(βγ = 0) is studied by applying a global bJES factor

in full analogy to the approach in Section 9.2.2. The results for the central mass points for the
three estimators are illustrated in Figure 9.18 and the corresponding systematic uncertainties are
summarised in Table 9.8.
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Figure 9.18.: Values of mpeak
top, angle(βγ) plotted against βγ for bJES factors of 0.950, 0.975, 1.025 and 1.050

The corresponding uncertainties do not differ significantly from the values derived with the standard
approach in Section 9.2.2 (see Table 9.3). The bJES dependence observed for the central mass
point, even for the angles method, is probably a result of the fact that a variation of the energies
and momenta of the b-quark jets does not only change the absolute value of the reconstructed
top-quark momentum - as does a re-scaling applied to all jets in the case of the JES variation - but
also its direction. This may lead to an incorrect determination of the central mass point depending
on the value of the bJES.

∆mbJES
3jet (βγ = 0) (1.5± 0.1) GeV

∆mbJES
top, ratio(βγ = 0) (1.5± 0.2) GeV

∆mbJES
top, angle(βγ = 0) (1.4± 0.2) GeV

Table 9.8.: Systematic uncertainties and their errors for the three mass estimators evaluated with the
βγ-method assuming a global uncertainty of 2.5% on the bJES. The black horizontal line marks the
generator mass mtop, truth = 172.5 GeV.

Further studies of the interpolation method and its JES and bJES dependence will be possible as
soon as larger Monte-Carlo samples become available.
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10. Summary and Outlook

In this thesis, a new estimator for the measurement of the top-quark mass in the semileptonic
decay channel, mtop, angle, has been introduced with the aim of reducing the JES-related systematic
uncertainty on the top-quark mass. In this context, it has been shown that the mass of the top
quark can be determined solely from the angles between the three jets from its hadronic decay
evaluated in the restframe of the top quark. These angles can be measured much more accurately
than the energies and momenta of the corresponding jets.

The new mass estimator has been compared to the two already established estimators, the invariant
three-jet mass m3jet and the 3-to-2-jet invariant mass ratio mratio, with particular regard to the JES
and bJES dependence. To this end, two reconstruction methods, the ∆R- and the χ2-method, have
been tested in combination with different sets of cleaning cuts for both the 1 b-tag and the 2 b-tags
case with the aim of obtaining similar shapes for the combinatorial-background distributions of the
three mass estimators. This allows the respective mass distributions to be fitted with the same set
of functions, thus providing a coherent basis for the comparison of the JES and bJES dependence
of the fitted peak values. It turns out that a combination of the ∆R-method with a cut on the
invariant mass of the reconstructed W-boson in the 2 b-tags case meets these requirements best.
The resulting distributions are fitted with the sum of two Crystal Ball and a Landau function.

The JES dependence of the three mass estimators is evaluated by scaling the energies and momenta
of all jets in an event by a global, i.e. pT - and η-independent, scale factor that is varied by 10% up
and down in steps of 5%. The systematic uncertainties of the different estimators are obtained from
the resulting variations of the respective reconstructed masses under the assumption of a global
JES uncertainty of 5%.

The bJES dependence is studied similar to the JES dependence by scaling the energies and momenta
of all (true) b-jets by a global scale factor. This factor can be regarded as an additional, smaller
energy correction for b-quark jets. The systematic uncertainties on the different estimators are
evaluated under the assumption of a global bJES uncertainty of 2.5%.

The resulting systematic uncertainties for the three mass estimators are summarised in Table
10.1.

∆mJES
top, reco ∆mbJES

top, reco

m3jet (7.7± 0.1) GeV (1.6± 0.1) GeV

mtop, ratio (0.8± 0.1) GeV (1.5± 0.1) GeV

mtop, angle (0.8± 0.1) GeV (1.6± 0.1) GeV

Table 10.1.: Systematic uncertainties and their errors for the three mass estimators assuming a global
uncertainty of 5% on the JES and of 2.5% on the bJES

The new estimator mtop, angle yields a significantly reduced JES dependence compared to the
standard estimator m3jet. Its JES dependence is equal to that of the improved estimator mtop, ratio.
The bJES-related systematic uncertainties are approximately the same for all three estimators.

First studies performed on the signal sample of correctly reconstructed tt̄ events indicate that

107



10. Summary and Outlook

a further reduction of the JES-related uncertainty of the new mass estimator mtop, angle can be
achieved by evaluating it for top quarks with small Lorentz boost βγ with respect to the laboratory
frame. For these events, the angles between the decay products can be measured directly in the
laboratory frame without having to perform a Lorentz boost back to the top-quark restframe which
requires a measurement of the four-momenta of the decay products and hence introduces a JES
dependence into the measurement. To account for the fact that the selection cuts disfavour top
quarks with small boosts, the fitted peak values of mtop, angle are plotted against βγ and two linear
fit functions are used to interpolate to the central mass point at βγ = 0.

The JES and bJES dependence of this interpolation point is studied as before by applying global
scale factors to the jet energies and momenta. The resulting systematic uncertainties are summarised
in Table 10.2.

∆mJES
top, reco(βγ = 0) ∆mbJES

top, reco(βγ = 0)

m3jet (8.3± 0.1) GeV (1.5± 0.1) GeV

mtop, ratio < 0.2 GeV (1.5± 0.2) GeV

mtop, angle < 0.1 GeV (1.4± 0.2) GeV

Table 10.2.: Systematic uncertainties and their errors for the three mass estimators evaluated with the
βγ-method under the assumption of a global uncertainty of 5% on the JES and of 2.5% on the bJES

These first results obtained with the βγ-method are very promising: The JES dependence for both
of the improved estimators mtop, ratio and mtop, angle is negligible. The corresponding JES-related
systematic uncertainties for a global JES uncertainty of 5% are below 0.2 GeV and 0.1 GeV,
respectively. For a further evaluation of this new method, which must eventually also include
the combinatorial- and physical-background distributions, larger Monte-Carlo samples than those
available at the time of writing are required. This is important in order to study the functional
dependence between mpeak

top, angle and βγ, in particular in the βγ-slices with lower statistics. In the
light of these considerations, the βγ-method can be regarded as a promising new approach for
measuring the top-quark mass at a later stage of the experiment when more data has been taken.

The studies of the JES and bJES dependence of the three mass estimators presented in this thesis
have been performed using global scale factors to vary the energies and momenta of the respective
jets. However, both the JES factors applied during reconstruction to correct the measured energies
of the jets and the JES uncertainty depend on the transverse momentum pT and pseudorapidity
η of each jet. This pT - and η-dependence of the JES factors has already been taken into account
during the reconstruction of the simulated jets in the detector simulation for the Monte-Carlo
samples used in this analysis. In a refined model, the systematic uncertainties on the top-quark
mass would then need to be derived from error propagation after applying pT - and η-dependent
scale factors to vary the jet energies according their local JES uncertainties.

With the methods presented in the scope of this thesis, the JES-related systematic uncertainty of
the top-quark mass can be significantly reduced and possibly even eliminated. It has also been
shown that the bJES-related systematic uncertainty cannot be reduced with any of the estimators
currently used. Further studies should therefore focus on the bJES as another dominant source of
systematic uncertainty and aim at developing methods of reducing the bJES dependence of the
top-quark mass.
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A. Calculation of Efficiencies and their Uncertainties

The Monte-Carlo samples simulated with the generator MC@NLO contain events with both positive
and negative weights of absolute value 1 in order to account for the destructive interference of
higher-order Feynman diagrams (see Section 3.1.2). This has to be taken into account when
calculating efficiencies and their uncertainties for these samples.

Let N+ and N− be the number of events with positive and negative weights before a given cut,
respectively, and let n+ and n− denote the corresponding numbers after the cut.

The overall efficiency ε of the cut can then be calculated as follows:

ε = n+ − n−
N+ −N−

(A.1)

and its uncertainty, obtained from Gaussian error propagation, is given by

∆ε = (N+ −N−)−2
(

[(1− ε+)N+ − (1− ε−)N−]2 · (ε+N+ + ε−N−) (A.2)

+(ε+N+ − ε−N−)2 · [(1− ε+)N+ − (1− ε−)N−]
) 1

2 (A.3)

where ε+ = n+
N+

and ε− = n−
N−

are the efficiencies for the subsamples of events with positive and
negative weights, respectively. For a derivation of these formulas see [57].

For a sample with positive event weights only, these formulas yield the known, simple expressions
for a binomial distribution:

ε = ε+ = n+

N+
(A.4)

and

∆ε =

√
ε+(1− ε+)

N+
. (A.5)
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B. The Crystal Ball function

The Crystal Ball function that is used for fitting the signal and combinatorial background distribu-
tions of the different top-mass estimators is defined as follows:

f(x; x̄, σ, α, n, S) = S ·

{
exp

(
− (x−x̄)2

2σ2

)
, for x−x̄

σ > −α
A ·
(
B − x−x̄

σ

)−n
, for x−x̄

σ ≤ −α
(B.1)

where

A =
(
n

|α|

)n
· exp

(
−|α|

2

n

)
(B.2)

B = n

|α|
− |α| (B.3)

It is essentially a Gaussian function with an exponential correction factor below or above a certain
value of the paramter α: Positive values of α correspond to an exponential correction on the lower,
negative values to a correction on the upper tail of the Gaussian. The parameter n controls the
rate of the decay, see Figure B.1. This parameter is kept fixed at a value of n = 110 in all fits. Both
the function itself and its derivative are continuous.

Figure B.1.: Crystal Ball functions for different values of the parameters α and n [63]

The Crystal Ball function was named after the Crystal Ball detector, initially located at the SPEAR1

accelerator at the Stanford Linear Accelerator Center (SLAC). There it was used in the description
of radiative decays of the Ψ′ and J/Ψ ([64] and [65]).

1This acronym stands for Stanford Positron Electron Asymmetric Rings.
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C. Object Definitions for ATHENA Release 16.6.5

This appendix contains the details of the object definitions used throughout this analysis. These can
also be found on the official Top group Twiki page [44]. A motivation for the various requirements
imposed on the reconstructed objects is given in Section 5.

C.1. Electrons

• Electron category: tight

• Reconstruction algorithm: The reconstruction starts from seeds of calorimeter cells to
form calorimeter clusters, i.e. (author == 1 || author == 3)

• Transverse energy cut: ET ≥ 25 GeV where ET is defined as follows:

ET = EEC_cluster
cosh(ηID_track)

• Pseudorapidity cut: 0 < |ηEC_Cluster| < 2.47 excluding the crack region 1.37 < |ηEC_Cluster| <
1.52

• Electron isolation: pileup-corrected, pT -corrected Etcone20 < 3.5 GeV using the CaloIso-
Correction tool provided by the Top Working Group

• Object quality (OQ) requirements: el_OQ&1446 == 0 to avoid dead calorimeter cells

C.2. Muons

• Muon category: tight

• Reconstruction algorithm: MuID combined, i.e. author == 12

• Transverse momentum cut: offline pT > 20 GeV

• Pseudorapidity cut: |η| < 2.5
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C. Object Definitions for ATHENA Release 16.6.5

• Additional hit requirements:

– (Expect b-layer hit == false) || (Number of b-layer hits > 0)

– (Number of pixel hits + Number of crossed dead pixel sensors) > 1

– (Number of SCT hits + Number of crossed dead SCT sensors) ≥ 6

– (Number of pixel holes + Number of SCT holes) < 3

– Define n = Number of TRT hits + Number of TRT outliers

∗ For |η| < 1.9: Require n > 5 and (Number of TRT outlier)/n < 0.9

∗ For |η| ≥ 1.9: If n > 5, require nTRToutliers/n < 0.9

∗ This means that there is no additional cut for muons with n ≤ 5 and |η| ≥ 1.9

• Rejection of cosmic muons: not applied for analyses in the semileptonic tt̄ channel

• Muon Isolation:

– Etcone30 < 4 GeV

– Ptcone30 < 4 GeV

– Muon-jet overlap-removal:
Remove muons for which there is a jet with pT > 20 GeV within ∆R < 0.4 (before
electron-jet overlap-removal).

C.3. Jets

• Jet type: Calorimeter jets reconstructed from topological clusters

• Recombination Scheme: E scheme

• Jet algorithm: anti-kT algorithm with R = 0.4

• Calibration Scheme: EM+JES

⇒ AntiKt4TopoEMJets collection

• Remove jets with negative energy

• Jet-electron overlap-removal:
Remove jets for which there is a selected electron, i.e. an electron that fulfills the electron
object definition criteria, within a radius ∆R < 0.2. For the overlap removal, the η and φ of
the electron track are used.
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C.4. Missing Transverse Energy (MET)

C.4. Missing Transverse Energy (MET)

• /ET scheme: MET_RefFinal_em_tight

The MET_RefFinal reconstruction and calibration scheme relies on the previous reconstruction
of physics objects such as jets, electrons and muons. Energy depositions in calorimeter cells not
associated with any of these objects are also taken into account as so-called CellOut terms. Each
calorimeter cell is calibrated separately according to a calibration scheme that is specifically adapted
to the respective parent object if there is any. The individual contributions are then combined to
form the MET object. A schematic overview is given in Figure C.1.

Figure C.1.: Overview of the MET_RefFinal reconstruction and calibration scheme [66]

For details on the reconstruction and calibration process see [53]; an overview of the different
MET_RefFinal schemes is given in [66].

C.5. B-tagging

• B-tagging algorithm: SV0

• Tag a jet as b-jet if it has SV0 weight > 5.85 which corresponds to a b-tagging efficiency of
50.1 % and a purity of 93.9 % (see [55])
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D. Monte-Carlo Samples

In the following, a complete list of the Monte-Carlo samples used in this analysis is presented. All
samples are MC10b samples from the official Top Working Group production based on Release
16.6.5 of the ATHENA [67] framework and using Geant4 [68] for the full detector simulation.

The tables contain information about the respective hard-scattering process and decay channel
as well as the Monte-Carlo generator(s) that were used to simulate them. Each sample from
the official production has been assigned a unique DataSet IDentification (DSID) code which is
also stated in the tables. Moreover, the values for the product of cross section and branching
ratio for each decay channel are given. This product has to be multiplied with the k-factor which
parametrises the contributions from higher-order corrections to the cross section.

D.1. tt̄ Samples

For these samples, as for all other samples involving top-quarks, MC@NLO was used to simulate
the hard-scattering processes at next-to-leading order (NLO). It was interfaced with Herwig and
Jimmy for the modelling of the parton/hadron showers for the simulation of the Underlying Event,
respectively.

D.1.1. tt̄ Baseline Sample

The tt̄ baseline sample which is used throughout this analysis, unless stated otherwise, was generated
with a top-mass value mtop = 172.5 GeV.

mtop [GeV] Decay channel Generator DSID σ· BR [pb] k-factor

172.5 non-allhadronic MC@NLO+Herwig/Jimmy 105200 79.99 1.117

Table D.1.: Non-allhadronic tt̄ baseline sample: mtop = 172.5 GeV
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D. Monte-Carlo Samples

D.1.2. tt̄ Mass Variation Samples

In order to test the mass estimators for different input masses and obtain calibration curves, tt̄
mass-variation samples with generator masses mtop = 160 GeV, 170 GeV, 180 GeV and 190 GeV
are used.

mtop [GeV] Decay channel Generator DSID σ· BR [pb] k-factor

160 non-allhadronic MC@NLO+Herwig/Jimmy 106203 117.32 1.12

170 non-allhadronic MC@NLO+Herwig/Jimmy 106201 85.99 1.12

180 non-allhadronic MC@NLO+Herwig/Jimmy 106202 64.18 1.12

190 non-allhadronic MC@NLO+Herwig/Jimmy 106204 48.23 1.12

Table D.2.: Non-allhadronic tt̄ mass variation samples for mtop = 160, 170, 180, 190 GeV
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D.2. Single-Top Samples

D.2. Single-Top Samples

Like the tt̄ samples, all single-top samples were generated with MC@NLO interfaced with Her-
wig/Jimmy.

D.2.1. Single-Top Baseline Samples

The single-top baseline samples, which are used as background samples to the tt̄ baseline sample,
were generated with the same top-mass value mtop = 172.5 GeV.

Production Decay channel Generator DSID σ· BR [pb] k-factor

t-channel e ν MC@NLO+Herwig/Jimmy 108340 7.12 1.00

t-channel µ ν MC@NLO+Herwig/Jimmy 108341 7.12 1.00

t-channel τ ν MC@NLO+Herwig/Jimmy 108342 7.10 1.00

s-channel e ν MC@NLO+Herwig/Jimmy 108343 0.47 1.00

s-channel µ ν MC@NLO+Herwig/Jimmy 108344 0.47 1.00

s-channel τ ν MC@NLO+Herwig/Jimmy 108345 0.47 1.00

Wt-channel inclusive MC@NLO+Herwig/Jimmy 108346 14.59 1.00

Table D.3.: Single-top background samples for mtop = 172.5 GeV
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D. Monte-Carlo Samples

D.2.2. Single-Top Mass Variation Samples

For each mass value of the tt̄ mass-variation samples, a corresponding set of single-top samples
with the same generated top masses was used.

Production Decay channel Generator DSID σ· BR [pb] k-factor

t-channel e ν MC@NLO+Herwig/Jimmy 107960 8.27 1.00

t-channel µ ν MC@NLO+Herwig/Jimmy 107961 7.94 1.00

t-channel τ ν MC@NLO+Herwig/Jimmy 107962 7.95 1.00

s-channel e ν MC@NLO+Herwig/Jimmy 107963 0.63 1.00

s-channel µ ν MC@NLO+Herwig/Jimmy 107964 0.64 1.00

s-channel τ ν MC@NLO+Herwig/Jimmy 107965 0.62 1.00

Wt-channel inclusive MC@NLO+Herwig/Jimmy 107966 18.43 1.00

Table D.4.: Single-top background samples for mtop = 160.0 GeV

Production Decay channel Generator DSID σ· BR [pb] k-factor

t-channel e ν MC@NLO+Herwig/Jimmy 107970 7.23 1.00

t-channel µ ν MC@NLO+Herwig/Jimmy 107971 7.27 1.00

t-channel τ ν MC@NLO+Herwig/Jimmy 107972 7.32 1.00

s-channel e ν MC@NLO+Herwig/Jimmy 107973 0.50 1.00

s-channel µ ν MC@NLO+Herwig/Jimmy 107974 0.50 1.00

s-channel τ ν MC@NLO+Herwig/Jimmy 107975 0.50 1.00

Wt-channel inclusive MC@NLO+Herwig/Jimmy 107976 15.37 1.00

Table D.5.: Single-top background samples for mtop = 170.0 GeV

122



D.2. Single-Top Samples

Production Decay channel Generator DSID σ· BR [pb] k-factor

t-channel e ν MC@NLO+Herwig/Jimmy 107980 6.61 1.00

t-channel µ ν MC@NLO+Herwig/Jimmy 107981 6.55 1.00

t-channel τ ν MC@NLO+Herwig/Jimmy 107982 6.65 1.00

s-channel e ν MC@NLO+Herwig/Jimmy 107983 0.40 1.00

s-channel µ ν MC@NLO+Herwig/Jimmy 107984 0.40 1.00

s-channel τ ν MC@NLO+Herwig/Jimmy 107985 0.40 1.00

Wt-channel inclusive MC@NLO+Herwig/Jimmy 107986 12.81 1.00

Table D.6.: Single-top background samples for mtop = 180.0 GeV

Production Decay channel Generator DSID σ· BR [pb] k-factor

t-channel e ν MC@NLO+Herwig/Jimmy 107990 6.01 1.00

t-channel µ ν MC@NLO+Herwig/Jimmy 107991 6.03 1.00

t-channel τ ν MC@NLO+Herwig/Jimmy 107992 6.06 1.00

s-channel e ν MC@NLO+Herwig/Jimmy 107993 0.32 1.00

s-channel µ ν MC@NLO+Herwig/Jimmy 107994 0.32 1.00

s-channel τ ν MC@NLO+Herwig/Jimmy 107995 0.32 1.00

Wt-channel inclusive MC@NLO+Herwig/Jimmy 107996 10.79 1.00

Table D.7.: Single-top background samples for mtop = 190.0 GeV

123



D. Monte-Carlo Samples

D.3. W+jets Samples

The W+jets background samples were generated using Alpgen for the simulation of the hard-
scattering process interfaced with Herwig/Jimmy to model the parton/hadron shower and the
Underlying Event, respectively. The samples fall into four categories, depending on the final states
of the hard-scattering process (matrix-element level): W + N partons, W + bb + N partons, W +
c + N partons and W + cc + N partons. The different samples overlap in some phase-space regions
because heavy quarks may occur both at matrix-element level and as part of the subsequent parton
shower. To avoid double-counting of events, the Hfor tool [69], provided by the Top Working Group,
is applied to all W+jets samples.

Hard final state W decay Generator DSID σ· BR [pb] k-factor

W + 0 partons e ν Alpgen+Herwig/Jimmy 107680 6921.60 1.20

W + 1 parton e ν Alpgen+Herwig/Jimmy 107681 1304.30 1.20

W + 2 partons e ν Alpgen+Herwig/Jimmy 107682 378.29 1.20

W + 3 partons e ν Alpgen+Herwig/Jimmy 107683 101.43 1.20

W + 4 partons e ν Alpgen+Herwig/Jimmy 107684 25.87 1.20

W + 5 partons e ν Alpgen+Herwig/Jimmy 107685 7.00 1.20

W + 0 partons µ ν Alpgen+Herwig/Jimmy 107690 6919.60 1.20

W + 1 parton µ ν Alpgen+Herwig/Jimmy 107691 1304.20 1.20

W + 2 partons µ ν Alpgen+Herwig/Jimmy 107692 377.83 1.20

W + 3 partons µ ν Alpgen+Herwig/Jimmy 107693 101.88 1.20

W + 4 partons µ ν Alpgen+Herwig/Jimmy 107694 25.75 1.20

W + 5 partons µ ν Alpgen+Herwig/Jimmy 107695 6.92 1.20

W + 0 partons τ ν Alpgen+Herwig/Jimmy 107700 6918.60 1.20

W + 1 parton τ ν Alpgen+Herwig/Jimmy 107701 1303.20 1.20

W + 2 partons τ ν Alpgen+Herwig/Jimmy 107702 378.18 1.20

W + 3 partons τ ν Alpgen+Herwig/Jimmy 107703 101.51 1.20

W + 4 partons τ ν Alpgen+Herwig/Jimmy 107704 25.64 1.20

W + 5 partons τ ν Alpgen+Herwig/Jimmy 107705 7.04 1.20

Table D.8.: W + jets background samples

Hard final state W decay Generator DSID σ· BR [pb] k-factor

W + bb + 0 partons lν (l ∈ e, µ, τ) Alpgen+Herwig/Jimmy 107280 47.32 1.20

W + bb + 1 parton lν (l ∈ e, µ, τ) Alpgen+Herwig/Jimmy 107281 35.77 1.20

W + bb + 2 partons lν (l ∈ e, µ, τ) Alpgen+Herwig/Jimmy 107282 17.34 1.20

W + bb + 3 partons lν (l ∈ e, µ, τ) Alpgen+Herwig/Jimmy 107283 6.63 1.20

Table D.9.: W + bb + jets background samples
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D.3. W+jets Samples

Hard final state W decay Generator DSID σ· BR [pb] k-factor

W + c + 0 partons lν (l ∈ e, µ, τ) Alpgen+Herwig 117293 644.4 1.20

W + c + 1 parton lν (l ∈ e, µ, τ) Alpgen+Herwig 117294 205.0 1.20

W + c + 2 partons lν (l ∈ e, µ, τ) Alpgen+Herwig 117295 50.8 1.20

W + c + 3 partons lν (l ∈ e, µ, τ) Alpgen+Herwig 117296 11.4 1.20

W + c + 4 partons lν (l ∈ e, µ, τ) Alpgen+Herwig 117297 2.8 1.20

Table D.10.: W + c + jets background samples

Hard final state W decay Generator DSID σ· BR [pb] k-factor

W + cc + 0 partons lν (l ∈ e, µ, τ) Alpgen+Herwig/Jimmy 117284 127.53 1.20

W + cc + 1 parton lν (l ∈ e, µ, τ) Alpgen+Herwig/Jimmy 117285 104.68 1.20

W + cc + 2 partons lν (l ∈ e, µ, τ) Alpgen+Herwig/Jimmy 117286 52.08 1.20

W + cc + 3 partons lν (l ∈ e, µ, τ) Alpgen+Herwig/Jimmy 117287 16.96 1.20

Table D.11.: W + cc + jets background samples
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D. Monte-Carlo Samples

D.4. Z+jets Samples

Like the W+jets samples, the Z+jets background samples were generated with Alpgen interfaced
with Herwig/Jimmy. They fall into two categories: Z + N partons and Z + bb + N partons. Again,
the Hfor tool is used to remove heavy-flavour overlap between the different samples.

Hard final state Z decay Generator DSID σ· BR [pb] k-factor

Z + 0 partons e+ e− Alpgen+Herwig/Jimmy 107650 668.32 1.25

Z + 1 parton e+ e− Alpgen+Herwig/Jimmy 107651 134.36 1.25

Z + 2 partons e+ e− Alpgen+Herwig/Jimmy 107652 40.54 1.25

Z + 3 partons e+ e− Alpgen+Herwig/Jimmy 107653 11.16 1.25

Z + 4 partons e+ e− Alpgen+Herwig/Jimmy 107654 2.88 1.25

Z + 5 partons e+ e− Alpgen+Herwig/Jimmy 107655 0.83 1.25

Z + 0 partons µ+ µ− Alpgen+Herwig/Jimmy 107660 668.68 1.25

Z + 1 parton µ+ µ− Alpgen+Herwig/Jimmy 107661 134.14 1.25

Z + 2 partons µ+ µ− Alpgen+Herwig/Jimmy 107662 40.33 1.25

Z + 3 partons µ+ µ− Alpgen+Herwig/Jimmy 107663 11.19 1.25

Z + 4 partons µ+ µ− Alpgen+Herwig/Jimmy 107664 2.75 1.25

Z + 5 partons µ+ µ− Alpgen+Herwig/Jimmy 107665 0.77 1.25

Z + 0 partons τ+ τ− Alpgen+Herwig/Jimmy 107670 668.40 1.25

Z + 1 parton τ+ τ− Alpgen+Herwig/Jimmy 107671 134.81 1.25

Z + 2 partons τ+ τ− Alpgen+Herwig/Jimmy 107672 40.36 1.25

Z + 3 partons τ+ τ− Alpgen+Herwig/Jimmy 107673 11.25 1.25

Z + 4 partons τ+ τ− Alpgen+Herwig/Jimmy 107674 2.79 1.25

Z + 5 partons τ+ τ− Alpgen+Herwig/Jimmy 107675 0.77 1.25

Table D.12.: Z + jets background samples
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D.4. Z+jets Samples

Hard final state Z decay Generator DSID σ· BR [pb] k-factor

Z + bb + 0 partons e+ e− Alpgen+Herwig/Jimmy 109300 6.57 1.25

Z + bb + 1 parton e+ e− Alpgen+Herwig/Jimmy 109301 2.48 1.25

Z + bb + 2 partons e+ e− Alpgen+Herwig/Jimmy 109302 0.89 1.25

Z + bb + 3 partons e+ e− Alpgen+Herwig/Jimmy 109303 0.39 1.25

Z + bb + 0 partons µ+ µ− Alpgen+Herwig/Jimmy 109305 6.56 1.25

Z + bb + 1 parton µ+ µ− Alpgen+Herwig/Jimmy 109306 2.47 1.25

Z + bb + 2 partons µ+ µ− Alpgen+Herwig/Jimmy 109307 0.89 1.25

Z + bb + 3 partons µ+ µ− Alpgen+Herwig/Jimmy 109308 0.39 1.25

Z + bb + 0 partons τ+ τ− Alpgen+Herwig/Jimmy 109310 6.57 1.25

Z + bb + 1 parton τ+ τ− Alpgen+Herwig/Jimmy 109311 2.49 1.25

Z + bb + 2 partons τ+ τ− Alpgen+Herwig/Jimmy 109312 0.89 1.25

Z + bb + 3 partons τ+ τ− Alpgen+Herwig/Jimmy 109313 0.39 1.25

Table D.13.: Z + bb + jets background samples
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D. Monte-Carlo Samples

D.5. Diboson Samples

There are three classes of diboson samples, WW, WZ and ZZ, all of which were simulated using
Herwig for both the hard-scattering process and the parton/hadron shower. The samples were
filtered at generator level so that they contain only events which are likely to pass the rudimentary
selection cuts.

Hard final state Generator DSID σ· BR [pb] k-factor Filter

WW Herwig 105985 11.5003 1.48 1 lepton (pT > 10 GeV, η <2.8)

ZZ Herwig 105986 0.9722 1.30 1 lepton (pT > 10 GeV, η <2.8)

WZ Herwig 105987 3.4641 1.60 1 lepton (pT > 10 GeV, η <2.8)

Table D.14.: Diboson background samples
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E. Derivation of the Analytical Expression for the
Top-Mass Estimator mtop, angle

Consider the hadronic top-quark decay t → b + W where the W-boson decays into two quarks:
W → q1 + q̄′2.

The following calculations are performed in the restframe of the top quark and all quantities are
evaluated in this frame accordingly.

Let p1 and p2 be the four-vectors of the two quarks from the decay of the W-boson and let pb be
the four-vector of the corresponding b-quark in the restframe of the top quark:

pk =

Ek
~jk

 , k ∈ {1, 2, b}. (E.1)

The three quarks from the top-quark decay are assumed to be massless, i.e.

m2
k = p2

k = 0 and Ek = |~jk|, k ∈ {1, 2, b}. (E.2)

The aim of the following calculations is to express the (dimensionless) ratio mW

mtop
of the invariant

masses of the W-boson and the top-quark in terms of the angles between ~j1, ~j2 and ~jb only. To
facilitate these calculations, it is convenient to introduce dimensionless four-vectors by dividing all
energies and momenta by mtop:

xk := Ek
mtop

= |~jk|
mtop

(E.3)

~j′k :=
~jk
mtop

(E.4)

In the restframe of the hadronically decaying top-quark, momentum conservation dictates that the
b-quark and the W-boson are emitted back-to-back and that

~j′1 +~j′2 +~j′b = 0, (E.5)

i.e. the three (re-scaled) momentum vectors ~j′1, ~j′2 and ~j′b lie in the same plane and can therefore
w.l.o.g. be represented in two-dimensional coordinates as follows:

~j′1 =
~j1
mtop

= x1

1

0

 (E.6)

~j′2 =
~j2
mtop

= x2

cos(φ12)

sin(φ12)

 , (E.7)

~j′b =
~jb
mtop

= xb

cos(φ1b)

sin(φ1b)

 = −~j1 −~j2 = −

x1 + x2 cos(φ12)

x2 sin(φ12)

 (E.8)
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E. Derivation of the Analytical Expression for the Top-Mass Estimator mtop, angle

where

cos(φ12) =
~j1 ·~j2
|~j1| |~j2|

(E.9)

cos(φ1b) =
~j1 ·~jb
|~j1| |~jb|

= x1 xb cos(φ1b)
x1 xb

= −x1 + x2 cos(φ12)
1− x1 − x2

(E.10)

cos(φ2b) =
~j2 ·~jb
|~j2| |~jb|

= x2 xb cos(φ2b)
x2 xb

= −x1 cos(φ12) + x2

1− x1 − x2
. (E.11)

Energy conservation yields the additional constraint

x1 + x2 + x3 = 1. (E.12)

x

y

~j1

~j2

~jb

φ12φ2b

φ1b

Figure E.1.: Momentum vectors of the two light-quark jets ~j1 and ~j2 and the b-quark jet ~jb in the
two-dimensional coordinate system defined in (E.5)

Equations (E.5) to (E.12) can be solved for the magnitudes of the momenta, x1, x2 and x3, expressed
in terms of the angles φ12, φ1b and φ2b only:

x1 = sin(φ2b)
sin(φ12) + sin(φ1b) + sin(φ2b)

(E.13)

x2 = sin(φ1b)
sin(φ12) + sin(φ1b) + sin(φ2b)

(E.14)

x3 = sin(φ12)
sin(φ12) + sin(φ1b) + sin(φ2b)

(E.15)

In the dimensionless units introduced in (E.3) the ratio mW

mtop
can be rewritten as follows:

(
mW

mtop

)2
=

x1

~j1

+

x2

~j2

2

=
(
m1

mtop

)2
+
(
m2

mtop

)2
+ 2 (x1x2 −~j1 ·~j2) = 2 x1x2 [1− cos(φ12)]

(E.16)
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where the last step follows from the assumption that the quarks are massless ( mk

mtop
� 1).

Using Equations (E.13) and (E.14), the right-hand side of this equation can be reformulated in
terms of angles only to yield the final expression for the top-quark mass mtop ≡ mtop,angle

(
mW

mtop, angle

)2
= 2 · sin(φ1b) · sin(φ2b) · [1− cos (φ12)]

[sin(φ12) + sin(φ1b) + sin(φ2b)]2
. (E.17)
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F. Systematic Variation of the Lower Fit Limit

The following plots show the effect of a variation of the lower fit limit, chosen to be 120 GeV
throughout the analysis, by ± 10 GeV. The resulting variations of the fitted peak values for the
different mass estimators are listed in Table F.1. The peak values for the fit limits of 110 GeV and
130 GeV are obtained from Figure F.1, those corresponding to a lower limit of 120 GeV are taken
from Figures 9.4, 9.5 and 9.6.

(m110
top, reco −m120

top, reco) (m130
top, reco −m120

top, reco)

m3jet +0.5 GeV +0.1 GeV

mtop, ratio ±0 GeV ±0 GeV

mtop, angle -0.1 GeV +0.4 GeV

Table F.1.: Differences between the fitted peak values for a lower fit limit of 120 GeV and the corresponding
values for 110 GeV (left column) and 130 GeV (right column)

The resulting systematic uncertainties on the top-quark mass are of the order of the statistical
uncertainties.
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(d) mtop, ratio, mlower limit = 130 GeV
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(f) mtop, angle, mlower limit = 130 GeV

Figure F.1.: Fit of the complete mass distributions for the three mass estimators with lower fit limits
chosen to be 110 GeV (left column) and 130 GeV (right column)
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G. Additional Material

G.1. Additional Plots for Section 9.2.3

The plots given in this appendix have been used to derive the values for the JES- and bJES-related
systematic uncertainties for different values of the cut parameter x that are stated in Tables 9.4
and 9.5.
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G. Additional Material

G.1.1. JES dependence for x = 1.5
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Figure G.1.: JES dependence of the three mass estimators for a value of the cut parameter x = 1. The
reconstructed masses mtop, reco are plotted against the global JES factor and a linear function is used to fit
the mass points (a - c); (d) is a combination of the three subplots. The black horizontal line marks the
generator mass mtop, truth = 172.5 GeV
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G.1. Additional Plots for Section 9.2.3

G.1.2. JES dependence for x = 1
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Figure G.2.: JES dependence of the three mass estimators for a value of the cut parameter x = 1.5. The
reconstructed masses mtop, reco are plotted against the global JES factor and a linear function is used to fit
the mass points (a - c); (d) is a combination of the three subplots. The black horizontal line marks the
generator mass mtop, truth = 172.5 GeV
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G. Additional Material

G.1.3. bJES dependence for x = 1
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Figure G.3.: bJES dependence of the three mass estimators for a value of the cut parameter x = 1. The
reconstructed masses mtop, reco are plotted against the global JES factor and a linear function is used to fit
the mass points (a - c); (d) is a combination of the three subplots. The black horizontal line marks the
generator mass mtop, truth = 172.5 GeV
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G.1. Additional Plots for Section 9.2.3

G.1.4. bJES dependence for x = 1.5
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Figure G.4.: bJES dependence of the three mass estimators for a value of the cut parameter x = 1.5. The
reconstructed masses mtop, reco are plotted against the global JES factor and a linear function is used to fit
the mass points (a - c); (d) is a combination of the three subplots. The black horizontal line marks the
generator mass mtop, truth = 172.5 GeV
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G. Additional Material

G.2. Additional Plots for Section 9.4
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Figure G.5.: Values of mpeak
3jet (βγ), obtained from fitting each slice in βγ individually, plotted against the

Lorentz boost βγ
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Figure G.6.: Values of mpeak
top, ratio(βγ), obtained from fitting each slice in βγ individually, plotted against

the Lorentz boost βγ
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