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Abstract

In the context of this Master’s thesis, a new method for measuring the top quark
mass with the ATLAS Experiment, using the lepton+jets tt̄ decay, is introduced.
The extraordinary high mass of the top quark, which is approximately 35 times the
mass of its weak isospin partner, the bottom quark, raises questions and could give
hints to possible new physics. Therefore, a precise knowledge of the top quark mass
is important on the one hand to check the consistency of the Standard Model and
on the other hand to check for signs of physics beyond the Standard Model.

Current measurements are already limited by systematic uncertainties and statis-
tical uncertainties become less and less important because of the increasing size of
datasets, in particular due to the ”top factory” LHC. Therefore, a greater precision
of the top quark mass measurement can only be achieved by either improving the
understanding of the systematic uncertainties or by reducing the dependence of the
top quark mass measurement on these uncertainties. One of the most dominant
systematic uncertainty in the top quark mass measurement is the systematic uncer-
tainty on the absolute Jet Energy Scale. It is difficult to determine the Jet Energy
Scale experimentally. An approach to reduce this uncertainty is to make the top
quark mass measurement as independent as possible on this contribution.
The analysis presented in this Master’s thesis relies on the measurement of jet an-
gles. Jet angles can be determined very precisely and the direction of the jets reflects
very well the direction of the initial quark.
The invariant mass ratio of the reconstructed top quark and the W boson,

mtop

mW
,

can be evaluated by measuring the angles between the jets in the top quark rest
frame only. However, the angles in the top quark rest frame cannot be measured
directly as the top quarks are usually boosted with respect to the laboratory frame.
Therefore, a small dependence on the jet energy remains due to the transformation
of the measured jet angles to the angles in the top quark rest frame. In order to
reduce the dependence on the jet energies, studies based on Monte Carlo simula-
tions have been performed to investigate the functional dependence between the top
quark mass estimator and the boost in order to extrapolate to the case of top quarks
at rest. Subsequent studies on the method calibration are made in order to prepare
the method for an application to 2012 ATLAS data with a center of mass energy of√
s = 8 TeV and a luminosity of L = 20.3 fb−1.
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1. Introduction

The top quark is the heaviest quark as well as currently the heaviest known elementary
particle in the Standard Model. The top quark mass is an important parameter of
the Standard Model and a precise measurement on the one hand provides consistency
checks of the value of other Standard Model parameters like the Higgs mass due to the
relation of the top quark mass, the W-boson mass and the Higgs boson mass via loop
contributions [1].
On the other hand, the precise determination of the top quark mass might lead to hints
of new physics and the energy scale at which this new physics is expected: The shape of
the Higgs potential depends very strongly on the value of the Yukawa-coupling yt of the
top quark to the Higgs field due to the relatively high value of yt which is a consequence
of the high mass of the top quark. Small variations of yt might result either in a more
stable Higgs-potential minimum at higher values of the Higgs-field or at no minimum
at all. Our vacuum might thus only be meta-stable or even unstable according to the
top quark mass. So its experimental and theoretical uncertainties matter. To make the
Standard Model potentially consistent with observations, new physics might be necessary
[2].
In 2014, the first world average of the top quark mass

mtop = 173.34± 0.27(stat.)± 0.71(syst.) GeV.

taking into account selected measurements from the ATLAS and CMS experiments at
the LHC and the D0 and CDF experiments at the TEVATRON was published in [3].
With a total uncertainty of 0.76 GeV, the LHC and TEVATRON world average is as
precise as 0.44%.
Most top quark mass measurements are dominated by systematic uncertainties. Statis-
tical uncertainties become less and less an issue due to the increasing size of datasets
which is a consequence of the increasing luminosity of the colliders and the increasing
center-of-mass energy which implies a higher top quark production cross section.
One of the dominant contributions to the systematic uncertainty on the top quark mass
measurement is the uncertainty on the jet energy scale i.e. the uncertainty on the con-
version of a jet-induced signal in the detector to terms of energy taking into account
background processes and modelling uncertainties but to name a few. Therefore, a spe-
cial effort is directed towards decreasing that uncertainty. There are several approaches
for example in-situ calibration of the jet energy scale using the mass of the hadronically
decaying W-boson. Another possibility is to decrease the sensitivity of the measurement
on the jet energies [1], the approach chosen in this analysis. This analysis method is
thus complementary to other default methods of top quark mass determination.
This method can be assigned to the group of template methods. A variable which is
sensitive to the top quark mass, the so-called estimator, is calculated and calibrated
using Monte-Carlo simulations [1].
Applying geometrical considerations, it is possible to find a relation between mW

mtop
and

the angles between the top quark decay products. However, this relation is only valid in
the top quark rest frame. Therefore, by transforming the system in the top quark rest
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frame via a Lorentz transformation, a dependence on the jet energies is introduced. This
dependence can be parametrized and the top quark mass estimator can be extrapolated
to the case of top quarks at rest for which the method is found to be valid. Studies are
performed regarding the feasibility of the method for

√
s = 8 TeV ATLAS data with an

integrated luminosity of 20.3fb−1.
This thesis is organized as follows: In section 2 and 3, the underlying framework of top
quark physics is introduced briefly, in section 4, the ATLAS experiment is described,
section 5 gives details on the definition of physics objects and in section 6, the simulated
datasets used for the analysis are described. In section 7, details on the reconstruction
of the top quark and on the applied section cuts are given, section 8 motivates the esti-
mator, the analysis using simulated data is described in section 9-11 and in section 12,
a conclusion is provided.
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2. Theoretical Framework of Top Quark Physics

2.1. Overview over the Standard Model

2.1.1. General Principles

The Standard Model of Particle Physics (SM) is a Quantum Field Theory. This states
that all particles in the SM are associated with fields. Fields are required in order to ex-
plain creation and annihilation of particles and the non-conservation of particle numbers.
This also implies that the principles of special relativity have to be valid, particularly,
the conversion of energy to mass.
The Standard Model furthermore has to be Lorentz-invariant, this postulates that fun-
damental physics laws as for example momentum and energy conservation and the con-
stancy of the speed of light have to be valid in all reference frames.
A crucial requirement on any predictable theory is renormalizability, which states that
the predicted cross-sections and decay rates stay finite at all energies and if including
higher-order corrections. Divergences can occur but it must be possible to absorb these
in existing constants like masses or coupling constants [4].
The Standard Model is a gauge-theory, i.e. invariant under gauge-transformations. In-
teractions in the SM are a consequence of invariance under local phase transformations.
Invariance under local phase transformation implies a conserved current in the interac-
tion. In the SM, interactions are mediated by exchange bosons. These gauge bosons
compensate the local phase shift introduced by the interaction.
Being an important principle, gauge-invariance should be demonstrated once at the
example of QED (Quantum Electrodynamics) [5]. The Langrangian of QED, the Dirac
Lagrangian

L = i~cψ̄γµ∂µψ −mc2ψ̄ψ (1)

is invariant under a global phase transformation ψ → eiθψ where θ is a global phase
shift. But, if introducing a local phase transformation, i.e. θ = θ(x), an extra term is
obtained and the Lagrangian becomes

L → L− ~c(∂µθ)ψ̄γµψ (2)

and therefore, the Lagrangian is not locally gauge invariant which should hold if all inter-
actions are independent on each other. This phase can be compensated by introducing
a new field Aµ in the Lagrangian:

L = [i~cψ̄γµ∂µψ −mc2ψ̄ψ] + ~cψ̄γµψAµ (3)

The phase of Aµ is shifted as well if a local phase transformation occurs:

Aµ → Aµ + ∂µθ(x) (4)

Local gauge invariance of the Lagrangian can be achieved by introducing the covariant
derivative and replacing the derivative ∂µ in equation (1) by

Dµ ≡ ∂µ − iAµ (5)
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But the Lagrangian must also contain the free vector field Aµ which obeys the Proca
equation, so the complete Lagrangian becomes:

L = − 1

16π
FµνFµν +

1

8π
(
mAc

~
)2AνAν + [i~cψ̄γµ∂µψ −mc2ψ̄ψ] + ~cψ̄γµψAµ (6)

Note that (6) is not invariant under local phase transformation. It is only locally phase
invariant if the mass of the vector field mA equals 0. Therefore, local phase invariance
can be achieved but only if the gauge boson mediating the interaction is massless [5].
This can also be understood intuitively, if requiring that a local phase transformation
has to be compensated in the entire universe and only a massless particle has infinite
reach [6]. Gauge bosons are not necessarily massless. Therefore a mechanism needs to
be introduced in order to make the observations consistent with theory.

Interactions are described as rotations in abstract space and conserved quantities, as
required in a locally gauge-invariant theory, are invariant under a rotation in the corre-
sponding space. The description of the SM is based on the symmetry group SU(3)C ×
SU(2)L×U(1)Y. The first term represents a rotation in colour space which is described by
Quantum-Chromodynamics (QCD) and SU(2)L×U(1)Y describes a unified electroweak
theory of QED and the weak interaction. The subscript L denotes that the weak force
only acts on left-handed particles, and Y the charge which the boson of U(1) couples
to [6].

2.1.2. The Particle Content of the Standard Model

There are two kinds of elementary particles which matter is made of in the Standard
Model: quarks and leptons. Both are fermions, spin 1/2-particles. The particles can
be ordered into three so-called families consisting each of 2 quarks and two leptons (see
Fig. 1).

Figure 1: Overview over the matter and force particles of the Standard Model. From [7].

Each family contains a onefold charged lepton and a neutral lepton, called neutrino. Ac-
cording to the original concept of the Standard Model, neutrinos are considered massless
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Generation Flavour Charge [e] Mass [MeV]

1st up (u) +2/3 2.3+0.7
−0.5

down (d) -1/3 4.8+0.5
−0.3

2nd charm (c) +2/3 1275± 25
strange (s) -1/3 95± 5

3rd top (t) +2/3 173340± 270(stat.)± 710(sys.)
bottom (b) -1/3 4180± 30

Table 1: Quarks and their properties. Data extracted from [8], top quark mass from [3].

Generation Flavour Charge [e] Mass [MeV] Lepton Number

1st e (electron) -1 0.510998928± 0.000000011 Le = 1
νe 0 ≈0 Le = 1

2nd µ (muon) -1 105.6583715± 0.0000035 Lµ = 1
νµ 0 ≈0 Lµ = 1

3rd τ (tau) -1 1776.82± 0.16 Lτ = 1
ντ 0 ≈0 Lτ = 1

Table 2: Leptons and their properties. From [8].

and furthermore, a lepton number conservation holds within each lepton family.
Quarks have non-integer charge and each family contains one quark of charge +2/3 and
one quark of charge -1/3, adding up in total to 6 so-called quark-flavours.
Besides from the matter particles, there are force fields represented by integer-spin par-
ticles: bosons. These particles mediate the fundamental forces in the SM: the electro-
magnetic interaction, mediated by the massless photon, the weak interaction, mediated
by the W± and the Z-boson, the strong force, mediated by the massless gluon and the
scalar Higgs-field providing the particles with masses [5].

The particles of the SM and their properties can be extracted from Tab. 1 (quarks),
Tab. 2 (leptons) and Tab. 3 (gauge bosons). Note that a corresponding antiparticle
exists for each of the quarks and leptons. Their charge-like quantum numbers differ by
sign.

2.2. Electroweak Theory

The electroweak theory comprises the weak and the electromagnetic interaction to one
unified theory. The weak interaction couples to all particles carrying weak force, that
is, all quarks and leptons and the electromagnetic force couples to all particles carrying
charge. It has been shown by C.S. Wu in her famous experiment [9], that weak inter-
actions are parity-violating: only left-handed particles and right-handed antiparticles
couple to the weak force. Massive particles can be regarded as mixture of right and
left handed components whereas massless particles can only occur as either right- or
left-handed particles.
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Gauge Mediated Charge Spin Mass [GeV] Couples to
Boson Force [e]

photon (γ) electromagnetic 0 1 0 all charged particles
W± weak ±1 1 80.385± 0.015 all quarks and leptons,

itself, Z-boson,
photon, Higgs

Z-boson weak 0 1 91.1876± 0.0021 all quarks and leptons,
itself, W-boson,
Higgs

gluon strong 0 1 0 all quarks, itself
Higgs - 0 0 125.7± 0.4 all particles carrying

mass, itself

Table 3: Gauge bosons and their properties. From [8] and [6].

A consequence of lepton number conservation is that in the perspective of the weak
interaction, leptons of one family are doublets under the weak interaction. The under-
lying symmetry of weak interaction is therefore SU(2) [6]. It was shown by Yang and
Mills, that the introduction of 3 massless gauge fields Wµ = (W1

µ,W
2
µ,W

3
µ) is necessary

to describe a local gauge-invariant SU(2) theory [5]. These fields compensate any local
phase transformation caused by the weak interaction.
Furthermore, it has been shown that weak and electromagnetic interaction cannot be
treated as separate theories. At some energy, their coupling strengths are equal and
their symmetry is just broken at low energies. The underlying symmetry of the electro-
magnetic theory is U(1)em, the gauge boson of U(1)em is the photon, and the conserved
quantity as consequence of invariance under phase transformation is the electric charge.
The symmetry of the unified electroweak theory was found to be SU(2)L ×U(1)Y. This
symmetry is spontaneously broken at low energy which results in the formation of W±,
Z0 and γ. The SU(2)L W3

µ−boson mixes with the B-boson to generate physically ob-

servable gauge bosons, the photon and the Z-boson. W1
µ, W2

µ mix and form the two
bosons W±:

W±µ =
1√
2

(W1
µ ∓ iW2

µ) (7)

Aµ = Bµ cos(θW) + W3
µ sin(θW) (8)

Zµ = −Bµ sin(θW) + W3
µ cos(θW) (9)

where θW is the weak mixing angle which is measured experimentally to 28.75◦. The
hypercharge Y is defined by

Y = 2 · (Q− T3) (10)

11



where Q is the electric charge and T3 is the third component of the weak isospin [5].

The complete Lagrangian of the electroweak interaction is given by

L = −1

4
Wi

µνWµν
i −

1

4
BµνBµν+

ψ̄L(iγµ∂µ − gW

τi
2
γµWi

µ − g’
Y

2
γµBµ)ψL+

ψ̄R(iγµ∂µ − g’
Y

2
γµBµ)ψR

(11)

where Wµν and Bµν are the field strength tensors of SU(2) and U(1) respectively. The
first and the second term represent the free gauge fields. gW is the coupling strength of
the SU(2) gauge fields and g’ the coupling constant to the U(1) field and τi, i ∈ {1, 2, 3}
represent the Pauli spin matrices. The Wi

µ fields, the gauge fields of SU(2), only couple
to the left-handed chiral component of the fermionic fields ψ, indicated by the subscript
L in equation 11 while the Bµ fields couple to both left- and right-handed chiral states
with a strength proportional to the particle’s hypercharge Y [10].

But, as it turned out, in contrary to the requirements stated in section 2.1.1, the gauge
bosons W and the Z have a mass (see table 3). Therefore, it is necessary to introduce a
mechanism which endows the exchange bosons with mass, commonly referred to as the
Higgs-mechanism.
A scalar boson field potential with a symmetric ground-state such as in Fig. 2 is pos-
tulated. The vacuum expectation value has to take a value unequal to zero. Then, if
the system chooses one specific ground-state, the symmetry is broken. If additionally
requiring local gauge invariance, the vector bosons acquire masses [5].

Figure 2: The Higgs potential, from [5].
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While lepton flavour is conserved in the weak interaction, quark flavour is not. In fact,
flavour mixing is possible by coupling to the W-boson, the degree of mixing is described
by the CKM-Matrix:d’

s’
b’

 =

Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 d
s
b

 =

0.974 0.227 0.004
0.227 0.973 0.042
0.008 0.042 0.999

 d
s
b


The pairs(

u
d’

)
,

(
c
s’

)
,

(
t
b’

)
are doublets with respect to the weak interaction but d’, s’ and b’ are linear combina-
tions of quarks given by the CKM-Matrix [5].

The absolute values of the matrix elements Vtd,Vts and Vtb are a measure of the couplings
of the top quark to the up, strange and b-quark, respectively. Note that a decay of the
top quark to an up-type quark like itself is not possible as there are no flavour-changing
neutral currents. The matrix element Vtb is nearly unity and all the other elements are
very small compared to Vtb. As a consequence, in almost all cases, the top quark decays
to a b-quark, effects from decays to other down-type quarks are negligible.

2.3. Quantum Chromodynamics

Experiments (for examples, see [6]), have shown, that quarks carry three colours, namely
”red”, ”green” and ”blue” and the corresponding anticolours. Colour is a conserved
quantity in QCD and interactions are regarded as rotations in 3-dimensional colour
space. The relevant symmetry is SU(3) due to which 8 gauge bosons which are called
gluons are introduced [4]. The QCD-Lagrangian denotes to

LQCD = ψ̄(iγµD
µ −m)ψ − 1

4

−→
Gµν
−−→
Gµν (12)

where Dµ = ∂µ + 1
2 igs

−→
λ
−→
Gµ is the covariant derivative analogously to equation (5) with

gs, the strong coupling constant,
−→
λ , the generators of SU(3) which are the Gell-Mann-

Matrices and Gµν , the gluon field strength tensor (see [5] and [6]).
In the Yang-Mills theory, gauge boson-self interaction is a consequence of the non-abelian
nature of the underlying symmetry group [5]. The gluons therefore can couple to each
other and they themselves carry colour-charge. In fact, in a gluon-radiation process such
as q→ q + g, the colour-charge of the quark can change. But as interactions in QCD are
colour-conserving, the gluon has to carry two colour-charges [5]. Out of the nine possible
colour-anticolour combinations1, 8 have a net-colour charge and one is a colour-neutral
singlet ( 1√

3
(rr̄ + bb̄ + gḡ)) [5].

Renormalizability requires that divergences issuing from intermediate virtual states can

1 1√
2
(rb̄−br̄), −i√

2
(rḡ−gr̄), 1√

2
(rḡ+gr̄), 1√

2
(bḡ+gb̄), −i√

2
(bḡ−gb̄), −i√

2
(rb̄−br̄), 1√

2
(rr̄ - bb̄), 1√

6
(rr̄+bb̄−2gḡ)

[5].
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be absorbed by a constant. As a consequence, the coupling constant of the strong
interaction, αs depends on the momentum transfer. Additional self-coupling causes the
potential to decrease at short distances or high momentum transfer and to increase at
large distances or small momentum transfer [5]. Equation (13) shows the behaviour of
the strong coupling constant αs with the momentum transfer Q.

αs =
12π

(33− 2Nf)ln(Q2

Λ2 )
(1 + ....) (13)

where Nf is the number of accessible quark flavours for the momentum transfer (2mf <
|Q|) and Λ is a free parameter [6].

At high momentum transfer or short distances, the quarks behave like free particles, as
the case in hadrons. This is called asymptotic freedom.
At low Q2 or long distances, the states of quarks are governed by confinement. A single
quark cannot be observed but only colourless states (either color-anticolour or g+b+r,
or ḡ + b̄ + r̄) resulting in mesons (quark-antiquark) or baryons (3 quarks).
If a quark-antiquark pair (like in Fig. 3) is created in an interaction, they will fly apart
but their potential energy increases with distance and new quark-antiquark pairs are
produced which form bound states, hadrons. Therefore, the typical signature of quark
production are jets of hadrons. This process is called hadronization [5].

Figure 3: Illustration of hadronization. From [5].
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3. The Top Quark

Top quark production proceeds mainly via two processes: Top quark pair production
mediated by the strong interaction and single-top production mediated by the charged-
current weak interaction. Top quarks are heavy compared to the other quarks and
therefore, a higher center-of-mass energy (cms) is necessary to produce them at a collider.
Additionally, in proton-proton colliders, the top quarks are produced out of the partons
in the proton which only carry a fraction of the proton’s energy. The first collider
capable of producing top quark was the proton-antiproton collider TEVATRON with a
cms energy of 1.8 TeV in Run 1. The production cross section rises with increasing cms
energy and thereby the number of produced top quarks [1].
The LHC with a center of mass energy of

√
s = 8 TeV in 2012 provides thus the ideal

environment for studying top quarks. In this section, the production and decay channels
of the top quark at the LHC are presented.

3.1. Top Quark Production

3.1.1. Top Quark Production via the Strong Interaction

In this Master’s thesis, the top quark mass is measured with top quarks produced by the
strong interaction. The production mechanism via the strong interaction is much more
likely as the value of the coupling constant of the strong interaction is much higher than
of the weak coupling constant and the masses of the bosons mediating the weak force
are very massive. The leading-order diagrams of the tt̄-production at a proton-proton
collider like the LHC are shown in Fig. 4.

Figure 4: Leading-order diagrams of tt̄-pair production at proton-proton colliders via
the strong interaction. From [1].

The upper diagram in Fig. 4 is the Feynman-diagram corresponding to the process
qq̄ → tt̄, the annihilation of a quark-antiquark pair into a gluon which subsequently
decays into a tt̄-pair. The lower diagrams correspond to the gluon-gluon-fusion process,
gg → tt̄. In case of the LHC with a center-of-mass energy of

√
s = 8 TeV, the gluon-fusion
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dominates the tt̄-production. This can be motivated by the proton parton distribution
function (PDF) shown in Fig. 5.

Figure 5: Parton distribution function (PDF) of the proton. From [1].

The partons in the protons each carry only a fraction of the proton momentum. The
PDF illustrates the distribution of the hadron momentum fraction x among the partons.
In order to produce a tt̄ pair, the kinematic condition

xi · xj ≥
4m2

top

s
(14)

has to be fulfilled where xi and xj denote the energy fraction of the interacting partons
with respect to the proton energy and s the cms energy of the collider squared [11]. The
LHC collided protons with a cms energy of

√
s = 8 TeV in 2012, thus, the cms energy

exceeds the top quark mass (mtop ≈ 173 GeV) by a magnitude. The factor xi · xj yields
≈ 2 · 10−3, so, typically xi and xj take values of the order of < 0.1. The gluon PDF
at these small momentum fractions (indicated as ”x” in Fig 5) is much larger than the
PDF amplitude of the other partons, therefore, the probability of two gluons with small
energy fusing is much larger than of other partons [12],[1].

3.1.2. Electroweak Single Top Quark Production

Another possibility to produce top quarks is the single-top production via the electroweak
interaction. There are three different production channels in electroweak single-top
production. These channels are illustrated in Fig. 6.
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Figure 6: Processes leading to single-top production. Upper panel: s-channel, center:
t-channel and bottom panel: associated Wt-production. From: [1]

Single-top production can proceed via the annihilation of two quarks of the same isospin
doublet into a W-boson (s-channel, see Fig. 6,top) or when a virtual W-Boson interacts
with a sea-b-quark inside the proton whereas the b-quark inside the proton is generated
by a gluon splitting into a bb̄-pair (t-channel, Fig. 6, center). In the third possible pro-
cess, called the associated Wt production, shown in Fig. 6, bottom panel, a top quark
and a W-boson are produced when a gluon excites a sea-bottom-quark.
In proton-proton collisions mostly up- and down-quarks coupling to the W-Boson con-
tribute to single-top production but there’s also a small contribution from quarks of
the second family. At the LHC, the t-channel single-top production is the dominant
single-top-production channel [13].
Single-top production was already observed at the TEVATRON but its properties can
be measured in detail for the first time at the LHC (see for instance [14]). Its cross
section is notably lower than strong top-pair production. For details, see [1].

3.2. Top Quark Decay

In almost all cases, the top quark decays into a b-quark and a W-boson. Decays to lighter
quarks (s- or d-quarks) are possible but not very likely, the corresponding CKM-matrix
elements,Vts and Vtd are very small compared to Vtb (see section 2.2). Top quarks are
the only quarks which do not form hadrons, their lifetime is smaller than the time it
takes to form bound states. Consequently, top quarks decay via the weak interaction
before they can form hadrons.
Within the scope of this thesis, the top quark mass measurement is performed by exam-
ining tt̄ decays. Therefore, in the following, the possible decay topologies of tt̄ pairs are
discussed. As the top quark almost exclusively decays into a W-boson and a b-quark,
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the event topology of the tt̄ decay depends on the decay modes of the ensuing decay of
the two W-bosons: The W-boson can either decay to a lepton and the corresponding
neutrino or to a quark-antiquark pair. Hence, three decay modes are possible: the dilep-
tonic decay, the lepton+jets decay and the all-hadronic decay channel [1]. The branching
ratio of the tt̄ decay can be extracted from Fig. 7.

Figure 7: Branching ratio of the decay channels of the tt̄. From [1].

The dileptonic channel In case of a dileptonic decay, both W-bosons decay leptonically,
emitting each a charged lepton and the corresponding neutrino or antineutrino resulting
in an event signature of tt̄ → W+bW−b̄ → l̄νlbν̄l’l’b̄. An illustration of the dileptonic
decay can be seen in Fig. 8.

Figure 8: Dileptonic tt̄ decay. From: [15].

Thus, the signature of the dileptonic channel are two oppositely charged leptons, two
energetic b-jets and missing transverse energy issuing from the neutrinos. Note that
lepton means either an electron or a muon, tau-leptons are not considered in most
standard analyses in the dileptonic and neither in the lepton+jets decay channel. This
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analysis excludes decays of the W-boson to tau leptons as well. Due to their decay, they
introduce additional neutrinos [1] and moreover, tau-leptons are difficult to identify as
they further decay [12].
The dileptonic decay constitutes about 5% of all top-pair decays [1].

The lepton+jets channel If one of the W-bosons from the top pair decay decays into
one lepton and the corresponding neutrino and the other W-boson decays into a quark-
antiquark-pair, the decay is assigned to the lepton+jets tt̄ decay channel. An example of
the topology of this decay, tt̄→W+bW−b̄→ qq̄’blν̄l’b̄+l̄νlbqq̄’b̄, which has a branching
ratio of 29%, is illustrated in Fig. 9.

Figure 9: An example of the event topology of the lepton+jets decay. From [15].

Consequently, the event signature is one energetic and isolated lepton and missing trans-
verse energy from the neutrino and in total four energetic jets of the hadronic W-decay
and of the two b-quarks of the top quark decay [1].

The all-hadronic channel In 46% of all cases, both W-bosons decay hadronically re-
sulting in an event signature consisting of 6 energetic jets, no charged leptons and no
significant missing transverse energy. Thus, the topology of this decay with the highest
branching ratio is tt̄→W+bW−b̄→ qq̄’bq”q̄”’b̄. An illustration of the all-hadronic top
quark decay can be seen in Fig. 10.

q̄’

q

W+

b
t

b̄
q̄”

q”’
W−

t̄

Figure 10: All-hadronic tt̄ decay.
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Discussion of Top Quark Mass Measurements in the Top Pair Decay Channels The
lepton+jets tt̄ decay channel provides the best trade-off between a reasonably large
branching ratio and a low background fraction [11]. Physics background, events with
the same event signature as the signal, is mainly caused in this channel by W+jets
events with a leptonically decaying W-boson produced in association with 4 jets and by
single-top events [16].
On the one hand, the dileptonic decay has a very low branching ratio but on the other
hand, the signal purity is high due to the clear signal in the detector and the low physics
background. But as the event kinematic is under-constrained due to the two neutrinos
leaving the detector undetected, the event cannot be reconstructed easily [1]. Therefore,
the top quark mass in this channel is preferably measured using estimators which do not
require a full reconstruction of the tt̄ event, see for example [17] and [18].
The all-hadronic decay channel is particularly difficult to analyse in spite of its large
branching ratio. The signature of this decay are 6 jets, therefore, background mainly
issues from multijet events. But the multijet production cross section is orders of mag-
nitude larger than the signal [11]. Moreover, the multijet background is very difficult to
model with Monte-Carlo simulations [1]. For a top quark measurement in this channel,
see for instance [11].
This analysis is performed using the lepton+jets tt̄ decay channel. The branching ra-
tio is reasonably large resulting in data samples of reasonable size and the top pair can
be fully reconstructed which is necessary for this approach as angles have to be measured.
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4. The Large Hadron Collider and the ATLAS experiment

The Large Hadron Collider (LHC) is the world’s largest circular particle accelerator
and collider and is situated at CERN (European Organization for Nuclear Research),
Geneva. Proton-proton collisions at unprecedented energy and luminosity happen at
the location of the four affiliated detectors ATLAS, CMS, ALICE and LHCb. These
experiments probe the building blocks of matter and the fundamental forces between
them, pursue the discovery of new particles as well as a precise measurement of the
Standard Model of particle physics. Due to the high luminosity of the LHC, processes
and new particles can be discovered and investigated which were inaccessible before due
to their low cross-section [19]. This section provides an overview of the LHC and the
ATLAS experiment whose data were analysed for this thesis.

4.1. The Large Hadron Collider

The LHC, a circular proton-proton collider of 27 km circumference, is the last stage of a
series of accelerators (see Fig. 11).

Figure 11: The Large Hadron Collider LHC (dark blue) with its pre-accelerators and
affiliated experiments, from [20].

The protons enter the ring after having been accelerated to an energy of 450 GeV by
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the pre-accelerators LINAC2, PSB, PS and SPS (see Fig. 11) [21]. In the LHC itself,
the proton energy is increased from 450 GeV to 4 TeV, resulting in a center-of-mass
energy (cms) of 8 TeV in 2012. The design energy of the LHC is 14 TeV and the design
luminosity 1034 1

cm2s
. The collider is operated at these beam parameters after the long

shut-down LS1 which ends in 2015.
The acceleration is achieved using a radio-frequency acceleration system. The proton
beams are kept on their circular path by dipole magnets and focussed by quadrupole
magnets along the beam pipe. Due to the high beam energy, a high magnetic field of
8.4 T is necessary which can only be achieved using superconducting magnets. These
require a cooling to a temperature of 2 K with superfluid helium. Two beam channels are
contained by an iron yoke, the protons run clockwise in one pipe and counter-clockwise
in the other pipe. The profile of such a dipole magnet containing the beam pipes is
illustrated in Fig. 12.

Figure 12: Profile of a LHC dipole magnet. The beam pipes are indicated in bright red.
From [22].

The beams cross where the four experiments are located: ATLAS (A Toroidal LHC
ApparatuS), CMS (Compact Muon Solenoid), ALICE (A Large Ion Collider Experi-
ment) and LHCb (Large Hadron Collider beauty). CMS and ATLAS are multi-purpose
detectors whereas LHCb is specialized on b-quark physics and ALICE investigates heavy-
ion-collisions: Not only protons can be collided within the LHC but also lead nuclei [23].
The LHC started operating in 2008 and first collisions at a center-of-mass energy of
7 TeV were initiated in 2010. The center-of-mass energy was increased in 2012 to 8 TeV
[24]. The studies in this thesis were performed with Monte-Carlo generated events sim-
ulating collisions in the ATLAS detector at 8 TeV.
In 2012 a long shut-down period began, the LHC will be restarted in spring 2015 oper-
ating at a cms energy of 13 TeV [25].
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4.2. The ATLAS experiment

The ATLAS detector is an multi-purpose detector designed to identify and measure the
energy and momenta of all hadronic jets, leptons and photons issuing from inelastic
collisions between two partons of the protons. Missing transverse energy, energy of par-
ticles which cannot be detected, can be calculated by requiring momentum balance in
transverse direction.
The detector is forward-backward symmetric with respect to the collision point and all
detector components cover the complete solid angle in order to detect all particles pro-
duced in the inelastic collision.
The ATLAS detector is located in a cavern 100 m under the surface. Its shape is cylin-
drical with a central barrel and end-caps perpendicular to the beam axis. ATLAS is 44 m
long and has a diameter of 25 m. A cut-away view of ATLAS can be seen in Fig. 13.

Figure 13: Illustration of the ATLAS detector and its components. From [19].

To examine in detail the entire process happening after an inelastic collision and the par-
ticles involved, ATLAS consists of several detector layers with complementary purposes
[19]. In the following subsections, a short overview on the detector parts is given.

4.2.1. The ATLAS coordinate system

Coordinates in the ATLAS detector are defined as illustrated in Fig. 14.
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Figure 14: Left panel: Schematic illustration of the ATLAS coordinate system and the
assignment of the coordinates Φ (azimuth angle), θ (polar angle) and z (lon-
gitudinal direction). Instead of the polar angle θ , the polar coordinate is
commonly expressed in terms of the pseudorapidity η (see text) [26]. The η
coordinate is visualized in the right panel [27].

The interaction point of the proton beams constitutes the origin of the coordinate system.
The direction of the beam pipe is defined as the z-axis. The polar angle θ is the angle
between the beam pipe. The pseudorapidity η is defined as η = − ln tan θ

2 in case of

massless particles and as y = 1
2

E+pz
E−pz

in case of massive particles and the angle Φ, the
azimuthal angle, is the angle around the beam pipe. Distances ∆R between two objects
are calculated using the relation ∆R =

√
(∆η)2 + (∆Φ)2.

In terms of a cubic coordinate system with coordinates (x,y,z), z is, as before, defined
as the direction of the beam axis, y is pointing upwards and x is pointing towards the
centre of the LHC. Important quantities are the transverse momentum pT and energies
ET of objects which are measured in the x,y-plane [19].

4.2.2. The inner detector

In the inner detector, momentum and vertex measurements are performed, tracks are
recognized and electrons are identified. For these purposes, the inner detector consists
of semiconductor pixel, silicon microstrip trackers (SCT) in the pseudorapidity region
|η| <2.5 and transition radiation tracker straw tubes (TRT) (up to |η| = 2.0).
The tracks of particles can be reconstructed using the coordinate information provided by
the hit information in the pixel, SCT and TRT detectors and momentum measurement
is possible due to the bending of tracks of charged particles by the magnetic field of 2 T
produced by the solenoid magnet surrounding the inner detector [19]. In addition to
tracking, the TRT is also able to identify electrons by detecting the transition radiation
caused by electrons crossing the TRT [28]. The pixel and SCT detectors are allocated
on concentric cylinders around the beam axis in the barrel and in the end-caps in discs
perpendicular to the beam axis. The straw tubes of the TRT are parallel to the beam
axis in the barrel and are mounted radially in the end-caps [19]. Fig. 15(a) shows a
schematic view of the inner detector.
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Figure 15: Left panel: The Inner Detector containing Semiconductor Pixel and Mi-
crostrip Trackers and Transition radiation tracker straw tubes. Right panel:
Illustration of the ATLAS calorimeters. In yellow: Electromagnetic Calorime-
ter, in gray: Hadronic Calorimeter. From [19].

4.2.3. Calorimeters

ATLAS comprises an electromagnetic calorimeter and a hadronic calorimeter (illustra-
tion see Fig. 15(b)). The fine-grained liquid-argon (LAr) electromagnetic calorimeter
surrounds the solenoid magnet in the barrel (|η| <1.475) and has also a component in
the end-caps covering the range 1.375< |η| <3.2. The sampling calorimeter with lead
as absorber and liquid argon as detection material performs precision measurement on
position and energy of photons and electrons.
The more coarse grained hadronic calorimeter reconstructs jets and measures their en-
ergy. With its depth of 9.7 interaction length2 (10 interaction length in the end-caps),
it ensures a good energy resolution for high-energetic jets. Like the electromagnetic
calorimeter, the hadronic calorimeter is a sampling calorimeter: The barrel hadronic
calorimeter (|η| <1.7) uses steel as absorber material and scintillating tiles as detector
material whereas the hadronic end-cap calorimeter (1.5< |η| <3.2) installed directly be-
hind the end-cap electromagnetic calorimeter consists of copper absorber with gaps in
between for liquid argon for detection.
The ATLAS sampling calorimeters allow for a simultaneous measurement of the particle
energy and position of leptons or hadronic jets [19]. Interaction with the absorbing ma-
terial causes secondary particles in inelastic nuclear processes (hadrons), pair production
and Compton scattering (photons) and bremsstrahlung (charged particles) to name just
a few, which are then detected by the active material [30].

2The nuclear interaction length is given by the mean path a particle travels before colliding inelastically
[29].
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4.2.4. The ATLAS muon system

The size of the ATLAS detector is largely determined by the dimension of the muon
detectors (see Fig. 13). These are placed cylindrically around the beam axis and in wheels
perpendicular to the beam in the end-caps. In total, they cover a pseudorapidity range
of |η| < 2.7 [19]. Effects of multiple scattering are reduced by arranging them in an open
structure [31]. Two types of precision muon detectors are used in ATLAS: Monitored
Drift Tubes (MDT) and Cathode Strip Chambers (CSC). The latter are applied at large
pseudorapidities, i.e. close to the beam axis due to their better resistance to background
radiation. For triggering, Resistive Plate Chambers (RPC, in the barrel region) and
Thin Gap Chambers (TGC, in the end-cap region) are used. The muon chambers are
located in the magnetic field of the toroid magnets. These magnets bend the muon
tracks allowing for a momentum measurement via the bending radius of the track whose
coordinates are measured by the muon detectors [19].

4.2.5. The trigger

In order to cope with the high luminosity and the resulting high collision and event rate,
a trigger has to be applied. The rate for interesting events is very low but a lot of pile-
up events occur in the detector: 20 proton-proton collisions happen per bunch crossing
causing low-energy background events. The collision rate is 20-40 MHz at a luminosity
of nearly 1034 1

cm2s
. This has to be reduced to an event rate of 200 Hz, the limit required

by the processing time and storage [32].
The trigger consists of 3 Levels, the Level 1 trigger (L1) and two high level triggers, L2
and the event filter (EF). In each step, the event reconstruction is improved and more
information on the event is processed. The L1 trigger only searches for events with high
transverse momentum, jets, leptons or large missing transverse energy. Having found
such an ”interesting” event, the L1 trigger passes on information to the L2 trigger on
the type of event, the passed selection criteria and also defines a Region of Interest
where the interesting signatures were found. The L2 trigger looks at the event in the
region of interest with full granularity and precision and selects or rejects the event [19].
The event filter which uses information provided by all detector components and a high
quality reconstruction algorithm further reduces the event rate to 200 Hz [32].
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5. Physics Object Definition

tt̄-events are the consequence of hard scattering between protons of the incident beam.
Hard-scattering processes cause objects with a significant momentum component trans-
verse to the beam direction whose decay products cause high-pT final-state particles
which are then the input to the physics analysis. Objects involved in the event signature
of a lepton+jets tt̄-decay are one charged lepton such as an electron or a muon, light-
and b-jets and missing transverse energy due to the neutrino. In this section, the identi-
fication and reconstruction of these objects on the base of their characteristic signatures
in the detector is discussed.
Before that, a detail on proton-proton collisions needs to be discussed.

5.1. Pile-up and Underlying Event

Due to the complex structure of the proton and the high instantaneous luminosity of the
LHC, background processes occur which can distort the event topology in the detector
and can lead to misinterpretation of physics results. It is therefore vital to understand
the background processes happening during a recorded collision, namely pile-up and
underlying event.

Underlying Event In addition to the hard collision relevant for physics processes such
as tt̄-production, which are caused by coloured interactions between each one parton
of the two colliding protons, mostly low-energetic processes can occur between the pro-
ton remnants after the hard proton-proton scattering. These include multiple-parton
interactions which are coloured interactions within the same proton-proton collision,
beam-beam remnants, which are the debris of the protons which participated in the
hard scattering, and supplementary initial and final state radiation (see Fig. 16).

Figure 16: Illustration of the underlying event. In red, the hard scattering process is
indicated whereas the remaining partons in the protons cause supplementary,
often low-energetic processes (from [33]).

Underlying events are thus a consequence of the complex internal structure of the collid-
ing particles, the protons. Most of the underlying events are low-energetic, i.e. cannot
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be described within perturbative QCD theory and are simulated with phenomenological
models [33].

Pile-up As a consequence of the high instantaneous luminosity in the LHC (up to
7.7 · 1033 1

cm2s
in 2012), several inelastic proton-proton collisions take place during the

same bunch-crossing (in-time pile-up). Crucial factors for the mean number of inelastic
proton-proton interaction within the same bunch-crossing are the instantaneous lumi-
nosity L, the cross-section for inelastic collisions σinel. and Nbunch · fLHC which is the
average frequency of bunch crossings in the LHC. The mean number of inelastic proton-
proton collisions is evaluated to

〈µ〉 =
L · σinel.

Nbunch · fLHC
. (15)

With 2012 configuration, the mean number of protons colliding inelatically within a
bunch-crossing amounts to 〈µ〉 ≈ 20.7. In-time pile-up is illustrated in Fig. 17.

Figure 17: Example of an event display showing in-time pile-up. The dots are the ex-
trapolated tracks of particles to the vertex issuing from inelastic collisions
within the same bunch-crossing (from [34]).

Furthermore, influence from past and future collisions as a consequence of the low bunch-
spacing of 50 ns are still present as their energy deposits still affects the signal in the
detector (out-of-time pile-up) [35].

5.2. Electrons

For electron3 identification and reconstruction, information provided by the silicon de-
tectors, the transition radiation tracker (TRT), the electromagnetic calorimeter (EM)
and the hadronic calorimeter (HCAL)4 is used.
At first, clusters of fired EM calorimeter cells are identified by scanning regions of fixed
size in order to search for local maxima of energy deposit [36]. Reconstructed tracks
in the inner detector are extrapolated in a next step to the electromagnetic calorimeter

3This of course also includes positrons.
4For discrimination from hadrons.
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middle layer and compared to the seed cluster position in that layer considering a certain
displacement due to uncertainty factors. If one track can be matched, the reconstruction
is considered as successful and if there are more tracks meeting the requirements, the
track with the smallest distance is associated with the electron.
For the energy measurement, the region around the seed cluster is enlarged and the
energy deposit is summed up considering contributions of the EM calorimeter, the esti-
mated energy deposits in front and after the EM calorimeter and the estimated energy
leakage outside the selected region in longitudinal direction.
Energy calibration is performed on the basis on energy deposit from electrons from
Z→ee, J/Ψ→ee, W→eν decays [37].
The electron operating point in this analysis is set to tight++ [38]. All information from
all detector components in question is used in order to gain a good background rejection
efficiency. Background is mainly caused by hadrons identified as electrons and converted
photons [36]. Stringent criteria on shower shape, a significant signal of transition radia-
tion in the TRT, cluster energy to track momentum ratio, a small leakage in the HCAL,
a successful extrapolation to a primary vertex and a signal in the first tracking layer are
required among others. Further requirements applied in the ”tight++” criteria can be
found in [36] and [37].
Isolation criteria are not included in the tight++ operating point, therefore the isolation
criteria EtCone20@90 and PtCone30@90 were applied [38].

5.3. Muons

The Muon Spectrometer (MS) is exclusively designed for the detection of muons. It
contains detectors of four different technologies which can be classified in two groups:
precision tracking chambers and muon triggers (see section 4.2.4) [39].
Muons are reconstructed using a so-called combined reconstruction [38] based on infor-
mation provided by the Muon Spectrometer as well as by tracks in the Inner Detector
using the muid algorithm. The muon track is reconstructed by fitting the hits in the
Muon Spectrometer considering the inhomogeneous magnetic field and the reconstructed
track is extrapolated back to the interaction point. The extrapolated track is matched
to tracks in the inner detector [39].
The procedure of combining two independent measurements ensures a better momentum
resolution by exploiting the fact that the momentum resolution of the MS and Inner De-
tector are each superior to the other in complementary pT-ranges. Furthermore, muons
from secondary interactions are rejected more easily [40]. Details on quality cuts required
for the muons can be found in [38].

5.4. Jets

5.4.1. Jet Object Definition

Jets manifest itself in the detector as groups of fired calorimeter cells which are topolog-
ically related. In general, these can be retraced to tracks of charged particles measured
in the inner tracking detector [41].
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Jets issue from quarks which hadronize and are measured as particle jets in the detector
[1]. These particle jets consist of many particles and contain charged hadrons, leptons,
neutrinos and photons, as well as neutral hadrons [30].
Fired calorimeter cells are summarized in radial direction to calorimeter towers. Neigh-
bouring cells with a measured signal form topological cell clusters. A cluster is split if
more than one local signal maximum is observed [42].
In the hadronic calorimeter, the jet energy and transverse momentum are measured on
the basis of energy deposit in the calorimeter cells attributed to the jet (see next sub-
section). Only calorimeter cells which give a significant signal above the electronic noise
and the noise expected due to pile-up are considered [41].

5.4.2. Jet Reconstruction Algorithm

The jet reconstruction algorithm has to take into account QCD radiation, the emission of
gluons, which causes a branching of the jet [43]. Thus, the reconstruction algorithm has
to be collinear safe and infrared safe. Collinear safety implies that collinearly emitted
particles are attributed to the jet and an infrared safe reconstruction algorithm takes into
account soft parton emission [43]. Collinear and infrared safety are achieved by undoing
the branching process [44] and successively combining smaller energy deposits to larger
energy deposits in its vicinity and therefore cluster soft particles to hard particles [43].
This is the basic idea of the anti-kT-algorithm used to reconstruct jets in the ATLAS
detector.
The algorithm dictates that the distances of all objects to one specific object, i, is
calculated. The distance of the object i to the object j is defined as follows:

dij = min(k−2
ti , k

−2
tj )

∆R2
ij

R2 (16)

diB = k−2
ti

where kti is the transverse momentum of the object i, R is a predefined parameter, ∆Rij

is the distance between two objects (∆R =
√

∆η2 + ∆φ2, where η and φ are the ATLAS
coordinates defined in section 4.2.1). dij and diB are evaluated and if dij is the minimum,
the two objects i and j are attributed to the same jet, and if diB is the minimum, the jet
is considered as completely reconstructed and removed from the list.

The distance dij is smaller than diB if the factor
∆R2

ij

R2 is smaller than unity [43]. This
implies that the jet cone opening angle has a pre-defined size, which is in case of the
analysis in this thesis R = 0.4 [38].
The nature of the algorithm causes soft objects to cluster at first with hard object be-
fore clustering with other soft objects if a hard object is found within a distance of R.
Therefore, the jet energy and direction are determined by hard objects without being
altered by soft objects. The shape of jets is conical if no other hard jet is found within
a distance of 2R, otherwise, the two jets will overlap and the conical shape will be dis-
torted. Whereas, if a soft jet is found in the vicinity of a hard jet, a part of the soft
jet-cone will be attributed to the hard jet cone. Fig. 18 shows an example of calorimeter
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clusters and towers combined to a jet.

Figure 18: Example of jets reconstructed with the anti-kT algorithm. It can also be seen
by means of this example that in case of soft jets in the vicinity of a hard jet,
the overlapping components are always attributed to the hard jet (green and
purple jets). From [43].

The jet momentum is obtained by summing up all the 4-momenta of the combined
objects [41], consequently, the jet direction is determined mainly by hard objects [43].

5.4.3. The Jet Energy Scale

The measured energy deposit in the cells belonging to the jet must be converted to terms
of jet energy. The jet energy scale JES indicates how the summed energy deposits in
the calorimeter relate to the jet energy. The precise knowledge of the jet energy scale is
fundamental as the jet energy is an input to many physics analysis [1]. Hadronic showers
in the calorimeter are very complex and their properties are subject to high fluctuations
[30]. This is why the jet energy scale is difficult to determine. Therefore, the uncertainty
on the JES is one of the dominant uncertainties in the top quark mass measurement [1].

After the jet reconstruction, the jet energy is corrected for pile-up effects. Pile-up causes
a systematic shift towards higher jet energies, therefore, a constant factor is subtracted.
This factor is calculated using the estimated jet area and the event energy density. A
further correction is applied taking into account the number of reconstructed primary
vertices and the expected average number of interactions within one bunch-crossing [38],
[41]. Pile-up correction factors are a function of the rapidity and the transverse energy
of the reconstructed jet.
In a next step, the jet direction is corrected such that the jet originates from the primary
vertex. The jet energy is not sensitive to this correction [41].
Jets with too many constituents associated with it which do not seem to originate from
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the primary vertex are discarded. The quantity calculated for this task is called |JVF|
which is the pT sum of the tracks matched to the primary vertex divided by the total
pT associated with the jet. In this analysis, the |JVF| is required to be > 0.5 [38].

The jet energy is calibrated by applying a factor to the measured energy deposit which
was obtained from Monte-Carlo simulations, namely MC12a PYTHIA inclusive QCD jet
events [38]. Simulated truth jets are compared to the corresponding simulated energy
deposition in the calorimeter. This factor also depends on the jet-pT and η with respect
to ATLAS coordinates [41].
Further corrections are applied based on MC simulations as well as on measurement
data evaluated requiring pT-balance and taking well calibrated objects such as photons
as reference [41].

Uncertainties on the jet energy scale issue from uncertainty on pile-up [38], modelling
uncertainties for very forward jets [45], uncertainties on the modelling of the detector,
on the calibration and on the physics models like hadronization [44], to name a few. An-
other uncertainty factor is the uncertainty on the modelling of the flavour composition
and the gluon fraction of the sample [45]. Shower properties, jet fragmentation and the
detector response depend on the flavour of the underlying parton [44].
In order to estimate the systematic uncertainty due to the uncertainty on the jet energy
scale with a simplified model, the jet scale factor (JSF) is introduced. In this thesis,
the JSF takes values in the interval [0.94;1.06] which corresponds to an estimated uncer-
tainty of up to ± 6%. The 4-momenta of jets of the top quark decay are multiplied with
the JSF, thus, jet energy and momentum are varied by some percent. By evaluating the
top quark mass as a function of the JSF, the systematic uncertainty on the measured top
quark mass due to the uncertainty on the energy scale can be estimated. Note that this
is a simplified model as the jet energy scale and its uncertainty depend on the rapidity
coordinate η and on the jet-pT.

5.4.4. b-Tagging

In order to discriminate between b-jets and light jets in the analysis, b-tagging is in-
cluded. The b-tagging algorithm makes use of the specific properties of jets issuing
from b-quarks, like the large branching-ratio into leptons which is about 20% [44] and
the longer lifetime which results in a measurable path of flight and a delayed decay at
a secondary vertex [38]. A neuronal network-based algorithm called MV1 combining
several b-tagging algorithms [44] is employed in the analysis. The nominal efficiency,
the fraction of b-tagged jets which indeed issues from a b-quark, is set to 70%. MV1
tagging weights are specified in [46]. The discrimination of light- and b-jets is done on
the basis of detector signatures like the calorimeter jets, tracks in the inner detector and
the secondary vertex [38]. More details on the b-tagging algorithm can be found in [47].
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5.5. Missing Transverse Energy

As the beams entering the detector only posses energy and momentum in longitudinal
direction, the momentum before the collision in transverse direction adds up to zero.
Therefore, the transverse momentum has to be balanced after the collision as well. The
energy deficit is called missing transverse energy ET, miss. In this analysis it is associ-
ated with neutrinos which escape the detector undetected [48]. In order to calculate
the missing transverse energy, pT-balance is required and the weighted sum of the ET

of all objects attributed to the event is calculated [38]. Systematic uncertainties on the
ET, miss-measurement arise from systematic uncertainties on the pT measurement of all
reconstructed objects in the event [48].

The signature in the detector of the objects described above is illustrated in Fig. 19.

Figure 19: Object signature in the detector of the objects described above. Relevant in
this analysis are protons and neutrons as hadrons producing hadronic showers,
electrons, muons and neutrinos (from [49]).
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6. Simulated Data Sets

Events were generated using PYTHIA 6.426 [50] with P2011C tune based on the CTEQ6L1
PDF set [51] interfaced with POWHEG [52] (CT10 PDF set) [51]. The detector was
simulated with a GEANT 4-based [53] ATLAS detector simulation [51].
POWHEG simulates the hard processes occurring during a pp-collision and the produc-
tion of the outgoing particles, in this case the tt̄-pair, including higher order processes and
corrections. PYTHIA resumes from the point of the tt̄-decay to b-quark and W-boson
and simulates the succeeding processes such as further decay, showering and hadroniza-
tion.

A list of all datasets used in the analysis can be found below in Tab. 4. Important
parameters are also given: mMC

top (simulated top quark mass), σ (cross section), k-factor
(correction factor to the cross section for higher order processes [54]) and sample statis-
tics (total number of generated events)[51].

mMC
top [GeV] σ [pb] k-factor sample statistics

165.0 143.21 1.2008 5.988.267

167.5 132.87 1.1997 5.998.058

170.0 123.27 1.1998 5.999.47

172.5 114.49 1.994 14.996.424

175.0 106.46 1.1988 5.998.875

177.5 99.045 1.1984 5.986.769

180.0 92.214 1.1981 5.998.382

Table 4: Properties of the top quark mass variation sample. Based on [51].
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7. Event Selection and Reconstruction

The event selection criteria, i.e. the requirements on the events included in the analysis,
are presented in this section.
Pre-selection criteria, which are already included in the Monte-Carlo sample, are de-
scribed in Section 7.1. In 7.2, the analysis-specific selection criteria are listed. Section
7.3 provides a description of the event reconstruction algorithm used for first feasibility
studies.

7.1. Pre-Selection Cuts

Several cuts are applied during the processing of a Monte-Carlo sample ensuring a good
quality of the events. These cuts are listed hereafter, a detailed description can be found
in [55]. Note that all cuts follow the recommendations of the ATLAS Top Working group
[38] and [56].

• C1: All events are contained in the GRL, the ”Good Run List”, a list of all accepted
runs during which no problems with the detector or the reconstruction system was
registered.

• C2: An event is only kept if there was no problem concerning the Liquid Argon
calorimeter like noise bursts or dead cells. Events will be deleted as well if they
occur within a certain time span around these failures. If only incomplete detector
information is available due to failures of the Liquid Argon Calorimeter system or
of the tile calorimeter system, the event is discarded.

• C3: Electrons have to pass either the trigger ”EF e24vhi medium1” or ”EF e60 me-

dium1” and muons either the trigger ”EF mu24i tight” or ”EF mu36 tight”. For
details see [38].

• C4: A primary vertex to which all objects in the event can be retraced is required.

• C5: The event has to contain at least one charged lepton fulfilling either the
”tight++” criteria in case of electrons or the ”tight” criteria in case of a muon
(see [57] for a further definition of the ”tight” criteria for muons, and for the
”tight++” criteria for electrons see [36]).

• C6: One charged lepton of each flavour passing the ”tight++” criteria (electron)
or the ”tight” criteria (muon) is allowed at the most.

• C7: Only one lepton flavour is allowed. This lepton has to pass the ”tight++”
criteria in case of electrons or the ”tight” criteria in case of a muon.

• C8: This lepton must match the triggered lepton.

• C9: The event is discarded if the inner detector track of any electron or muon
coincide.
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• Events containing a bad jet, e.g. signals with jets signatures but caused by hard-
ware problems, calorimeter noise, beam-gas-interaction, cosmic rays, etc., are dis-
carded.

• C11: The event has to contain at least one reconstructed jet.

• C12: The event has to contain at least two reconstructed jets.

• C13: The event has to contain at least three reconstructed jets.

The cuts are illustrated in the cut-flow diagram in Fig. 20.
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Figure 20: Cutflow diagram for cuts C1-C13 (Pre-Selection Cuts) for the mMC
top =

172.5 GeV sample.

Also, a jet-η cut (|η| < 2.5) as well as a cut on the lepton-η (see C20 in the next
subsection) were implemented but are not included in the pre-selection cuts cutflow
diagram.

7.2. Selection Cuts

In order to enhance signal over physics background5, further selection cuts adapted to
the expected event signatures are required. Event signatures of a tt̄ lepton+jets decay
are a high-pT lepton, significant missing transverse energy ET, miss, 4 high-pT jets thereof

5Note that within the scope of this Master’s thesis, physics background was not yet examined.
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2 b-jets which can be discriminated from light jets with b-tagging algorithms (see section
5.4.4). In this subsection, all further analysis-specific selection cuts are listed.

• C14: The transverse energy of every jet is required to be above 30 GeV.

• C15: All jets in the event are required to be central with |η| < 2.5.

• C16: The event has to contain at least 4 jets and 6 jets at the most.

• C17: The event has to contain at least 2 b-tagged jets.

• C18: The event has to contain exactly one lepton (either electron or muon)

• C19: In case the lepton is an electron, its energy must be greater than 30 GeV, in
case of a muon, its pT has to be greater than 30 GeV.

• C20: If the event contains a muon, its |η| is required to be smaller than 2.5 and
if the event contains an electron, it has to be found within a region of η < |2.47|
excluding the region 1.37 < |η| < 1.52 as limited resolution is to be expected
in that pseudorapidity range due to the transition from the barrel to the endcap
calorimeter [36].

• C21: Calculation of the missing transverse energy at least has to yield ET, miss >
30 GeV

A cut-flow diagram illustrating the event loss due to cuts C14-C21 is shown in Fig. 21.
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Figure 21: Cutflow diagram illustrating the cuts C14-C21. Note that some of the cuts
were already implemented in the Monte-Carlo sample beforehand and there-
fore do not influence the event number.
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7.3. Jet-Parton Matching

After selecting the events, the jets have to be assigned to the partons from the tt̄-decay.
In the first part of the analysis, a tt̄ reconstruction method is chosen suitable to perform
feasibility studies without having to deal with effects from combinatorial background.
The approach in the so-called jet-parton matching is to assign the partons to the re-
constructed detector jets using coordinate information of the parton and the detector
jets and thus their mutual distance. This procedure is only applicable in Monte-Carlo
samples as information on the partons is not found in real data.

As a first step, the partons from the tt̄-decay are identified using the information on
the parton identity. The top quarks and their final decay products, one bottom quark
originating from one top quark each, two light quarks and a lepton and a neutrino from
the decay of the two W-bosons are identified that way. The quarks are matched to the
jets by collecting all jets within a distance6 of ∆R < 0.4 from the parton.
This is motivated by the jet-reconstruction procedure (anti-kT, see section 5.4.2 and [43]):
All energy deposits within a distance ∆R < 0.4 around a high-pT calorimeter tower are
combined to a jet. This jet cone has by definition an opening angle of ∆R = 0.4 unless
the jet is distorted by another nearby high-pT jet.
If exactly one jet is found within a distance of ∆R < 0.4, this jet is assigned to the
parton and the jet assignment is considered successful. The jet assignment is considered
failed if none or more than one jets are found within the cone with an opening angle of
0.4 around the parton.
The resulting distribution of the 4-momentum invariant mass of the reconstructed top
quarks (mMC

top = 172.5 GeV) can be found in Fig. 22.
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Figure 22: 4-momentum invariant mass of the hadronically decaying top quark recon-
structed with jet-parton matching.

6∆R =
√

(∆Φ)2 + (∆η)2 where ∆Φ and ∆η are the difference in η and φ coordinates of the jet and
the parton.
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8. The Top Quark Mass Estimator mangle
top

The top quark mass is always measured using a variable which is sensitive to the top
quark mass. This variable is called the top quark mass estimator. In this thesis, an es-
timator is employed which is based on entirely geometric considerations: the top quark
mass estimator is only dependent on the angles between the top quark decay products.
This is motivated by the fact that the measured jet directions reflect very well the di-
rection of the initial quarks. Therefore, the angles can be determined very precisely and
with a higher precision than the jet energies [1]. In this section, the top quark mass
estimator this analysis is based on is introduced and derived intuitively on the basis of
geometrical assumptions. For a derivation using energy and momentum constraints, see
[58].

In the top quark rest frame, the 3-momentum vectors of the three top quark decay prod-
ucts span a plane as all momenta have to be balanced. This is visualized in Fig. 23:

−→p1

−→pb

−→p2

W-bosonb-jet

jet1

jet2

Figure 23: Illustration of the decay of a top quark at rest (not to scale). Due to kinematic
constraints (see text), the decay products are emitted in the same plane.

The resting top quark decays in a two-body decay into a b-quark and a W-boson emit-
ting the decay products back-to-back and the W-boson subsequently decays in another
two-body decay into either two jets or a lepton and the corresponding neutrino.
Note that in this analysis, only the hadronic top quark decay is considered. For a lep-
tonic decay, the missing transverse energy is correlated to the jet energy. If varying the
jet energy (JSF variation studies, see section 5.4.3), the missing transverse energy has to
be varied accordingly. An incorrect correction would distort the geometry of the leptonic
decay and therefore alter the result.
Momentum conservation implies momentum balance (equation (17)) and equation (18)
states energy conservation:

−−→pjet1 +−−→pjet2 +−−→pjetb = 0 (17)

E1 + E2 + Eb = mtop (18)

where −→pi , i ∈ {jet1 , jet2 , jetb} denote the momentum 3-vectors of light jet 1 and 2 and
the b-jet, respectively and Ej, j ∈ {1, 2, b} are the energies of the light jets and the
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b-jet.
Due to the constraint of momentum balance in all directions in space (equation (17)),
the top quark is situated in the center of gravity of the triangle spanned by the three top
quark decay products. The decay products’ momentum vectors reside on the median
line of the triangle (illustration: see Fig. 24)7.

top−−−→pjet1

−−−→pjet2

−−−→pb-jet

A1b

A12

A2b

φ12

φ1b

φ2b

Figure 24: Illustration of the geometrical properties of the triangle spanned by the top
quark decay products’ momentum vectors. The top quark (blue dot) resides
in the center of gravity of the triangle and the momentum vectors −→pi , i ∈
{1, 2, b} (thick red arrows) are in line with the median lines of the triangle
(dashed black lines). The momentum vectors divide the triangle into 3 parts
of equal area A12, A1b and A2b. The angles φj, j ∈ {12, 1b, 2b} denote the
angles between the decay products, the angles this analysis is based on.

In such a constellation, the momentum vectors divide the triangle into three sub-triangles
of equal area (differently hatched areas A12, A1b and A2b in Fig. 24) [60]. A calculation
of these areas using the angles between the decay products’ 3-momentum vectors −→pi ,
i ∈ {1, 2, b} and the absolute values of the momentum vectors, which are equal to the
energies Ei, i ∈ {1, 2, b} if neglecting the jet masses, yields [59]:

2 ·A12 = E1E2 sinφ12 (19)

2 ·A1b = E1Eb sinφ1b (20)

2 ·A2b = E2Eb sinφ2b (21)

where φk, k∈ {12, 1b, 2b} denotes the angles introduced in Fig. 24.

Considering that all the areas Aj are equal, the energies E1 and E2 can be written using
equations (19)-(21) as

E1 =
sinφ2b

sinφ12
· Eb (22)

E2 =
sinφ1b

sinφ12
· Eb (23)

7By definition, the median lines intersect at the center of gravity [59].
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Calculating the top quark mass using equation (18) and inserting equations (22) and
(23) yields equation (26), but the expressions in equation (24) and (25) can be derived
analogously:

E1 = mt ∗
sin Φ2b

sin Φ12 + sin Φ1b + sin Φ2b
(24)

E2 = mt ∗
sin Φ1b

sin Φ12 + sin Φ1b + sin Φ2b
(25)

Eb = mt ∗
sin Φ12

sin Φ12 + sin Φ1b + sin Φ2b
(26)

A calculation of the W-boson mass mW yields (neglect light quark mass):

(mW)2 =

[(
E1−→p1

)
+

(
E2−→p2

)]2

= 2E1E2(1− cos(Φ12)) (27)

After plugging in (24) and (25) in (27), one obtains the top quark mass estimator mangle
top :(

mW

mangle
top

)2

=
2 sin(Φ1b) sin(Φ2b)[1− cos(Φ12)]

[sin(Φ12) + sin(Φ1b) + sin(Φ2b)]2
(28)

Note that the top quark mass estimator (equation (28)) only depends on the angles
between the decay products and doesn’t hold any dependence on the jet energies. It
should therefore be independent on the jet scale factor (see section 5.4.3). Latter state-
ment can be proven intuitively: A variation of the jet energies only changes the length
of the vectors in Fig. 24 but not their directions. The angles consequently stay invariant.

The derivation of equation (28) shown above affirms that it is indeed important for
the validity of the method that the top quarks are at rest. Without this requirement,
the top quark is not located in the center of gravity of the triangle spanned by its decay
products and the decay products are not emitted in the same plane and the assumptions
used in the derivation (equations (17)-(23)) cannot be employed.
Therefore, a Lorentz-Transformation has to be applied first on all top quarks if cal-
culating their mass using this method. But a Lorentz-Transformation requires the jet
energies, or, rather the Lorentz-factor βγ as input (see appendix B). The factor β is

defined as |
−→p |
E where |−→p | is the top quark momentum and E its energy. The jet energy

is proportional to the factor γ where γ is defined as 1√
1+β2

. In this thesis, the factor βγ

is defined as negative, if the momentum points in the negative z-direction according to
the definition of the ATLAS coordinate system and positive, if pointing in the positive
z-direction.
In the following sections, an analysis strategy is developed in order to calculate the top
quark mass using this estimator and the impact of the Lorentz-Transformation on the
estimator is examined.
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9. Monte-Carlo Studies on the Angle Method

In the previous section, the top quark mass estimator mangle
top was introduced. In this

section, the angle method is applied to tt̄-pairs which were generated by Monte-Carlo
simulation and reconstructed using jet-parton matching (see section 7.3). Thus, the

mangle
top distributions obtained with equation (28) are devoid of influence of combinatorial

background, incorrectly reconstructed top-antitop quark pairs.
The estimator introduced in section 8 was constructed under the assumption that the
top quarks are produced at rest. In this section, the behaviour of the angle method for
boosted top quarks is examined and an analysis strategy is developed to measure the
top quark mass using jet angles beginning from the method as described in Katharina
Behr’s thesis [58] who performed first studies on this method.
In [58], a functional dependence of the top quark mass estimator on βγ was observed.
The investigation of this dependence is one of the main aims of this thesis.

9.1. The Functional Dependence of mangle
top on βγ

The angle method as described in section 8, equation (28), should be independent on
the jet energies. However, equation (28) is only valid for top quarks which are produced
at rest. For top quarks with8 βγ 6= 0, a Lorentz-transformation (see appendix B) has
to be applied first which requires the knowledge of the energies and momenta of the top
quarks. Consequently, the Lorentz-transformation introduces a residual dependence on
the jet energies. In [58], a functional dependence of mangle

top on the factor βγ was observed
in simulated 2011 data (

√
s = 7 TeV).

In Fig. 25, the dependence of the top quark mass estimator on the factor βγ is shown
for simulated 2012 data (

√
s =8 TeV). Note that for all the studies described in this

section, unless otherwise stated, events generated with a simulated top quark mass of
mMC

top = 172.5 GeV were used.

8For a definition of β and γ see section 8.
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Figure 25: Functional dependence of the peak position of the mangle
top -estimator distribu-

tion on βγ.

In Fig. 25, the top quark mass estimator is shown for different bins of βγ of the recon-
structed top quark. For each bin, the jet 4-momentum vectors are transformed into the
top quark rest frame and mangle

top is calculated for each event in the corresponding bin
according to equation (28). The resulting distributions are fitted with a Crystal Ball

Function (see appendix A). For each βγ bin, the peak position mpeak
top, angle is extracted

(see Fig. 26). In the following, mpeak
top, angle is used as top quark mass estimator.
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Figure 26: Example of a fit of the Crystal Ball function to the mangle
top -distribution.
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9.2. Analysis using low-βγ Top Quarks

Using only top quarks produced at rest, one could measure the top quark mass di-
rectly without applying a Lorentz-transformation to the top quark rest frame and there-
fore avoid introducing the residual dependence on the jet energies due to the Lorentz-
transformation. However, as a consequence of the object selection cuts (see section 7.2),
top quarks with low boost are disfavoured: For top quarks at rest, the energy of each of
the three jets would be approximately 170:3 ≈ 60 GeV. Not all of this energy or momen-
tum would be transversal and a cut is applied at a transverse momentum of 30 GeV (Cut
C14, see section 7.2). This explains the drop of statistics at low βγ in the βγ-distribution
of the top quarks in the samples indicated in Fig. 27 (a).
Fig. 27 (b) shows a zoom on the top quark βγ-distribution at low values of βγ.
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Figure 27: Distribution of βγ-values of the reconstructed top quarks in the mMC
top =

172.5 GeV Monte-Carlo sample after applying cuts C1-C21. Right: Same
as left but zoom on low βγ-values.

Fig. 28 shows the dependence of the top quark mass estimator on the jet scale factor
(JSF, see section 5.4.3) using only low-βγ top quarks. The top quark mass estimator

mpeak
top, angle is defined as the peak value of the Crystal Ball fit to the mangle

top distribution

(see Fig. 26). For a qualitative proof of the independence of the mpeak
top, angle-estimator on

the JSF, the 4-momenta of the jets are multiplied by a factor (JSF) within the range of

0.94 and 1.06 and the top quark mass estimator mpeak
top, angle is calculated as a function of

the JSF.
Since there are barely top quarks produced at rest (Fig. 27), in these studies top quarks
with βγ < |0.3| are used in order to increase the statistics9.
The result can be seen in Fig. 28.

9A Lorentz-Transformation is applied here as well in order to boost to the top quark rest frame.
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Figure 28: The peak position of the mangle
top -estimator distribution of low-βγ top quarks

(blue dots) as a function of the JSF. For comparison, the peak position of the
4-momentum invariant mass distribution is plotted using red triangles.

For comparison, the peak position of the 4-momentum invariant mass distribution of the
decay products10 obtained for different JSFs is superimposed. The dependence on the
JSF is significantly reduced when using the angle method. A small dependence on the
JSF is still visible which is due to the fact that all top quarks in that reduced sample
are slightly boosted (see Fig. 29).
In fact, a fit of a linear function yields better results than a fit with a constant function:
the uncertainty on the slope parameter in Fig. 29 (see statistics box) is smaller than the
absolute value of the slope parameter.

10Calculation of 4-momentum invariant mass m: m2 = 1
c4
· (E2 −−→p 2c2) where c is the speed of light, E

is the energy of the top quark and −→p is the 3-momentum of the top quark.
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Figure 29: Illustration of the slight dependence of the peak position of mangle
top on the JSF

for low-βγ top quarks.

Given the small statistics in case of top quarks at rest or with low boost (see Fig. 27
(b)), it is not recommendable to perform the analysis only with top quarks with a small
boost. Therefore, a dedicated procedure needs to be developed to handle the dependence
of the measured top quark mass on the factor βγ.

9.3. The Angle Method for Top Quarks with Non-Zero Boost

The low dependence of the measured top quark mass on the JSF was shown qualitatively
for top quarks with a small boost. The method can thus be assumed to work for top
quarks with βγ=0, top quarks at rest, for which the method was developed.
The concept must now be transferred to the case of top quarks with βγ 6= 0. In section
9.1, Fig. 25, a functional dependence of mangle

top on βγ can be noted. If this functional
dependence could be parametrized, the value for the top quark mass estimator could be
extrapolated to βγ=0, i.e. to the case of top quarks at rest and for top quarks at rest, the
method works according to section 9.2. In order to find a function which parametrizes
the mpeak

top, angle(βγ)-distribution (Fig. 25, section 9.1) best, the origin or the cause of this
functional dependence has to be found.

9.4. Studies on Parton Level

Studies are performed to investigate the origin of the dependence of the mangle
top estimator

on βγ. According to equation (28) (section 8), no dependence of the estimator on βγ
should be visible if the system was transformed to the correct frame (i.e. top quark
rest frame). On parton level, only the quarks and their decays are simulated, object
kinematics and decay geometry are not yet altered by hadronization effects or detector
effects. Thus, studies on parton level are performed. Fig. 30 is obtained analogously to
Fig. 25 (section 9.1) but using parton 4-momenta instead of detector jet 4-momenta.
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Figure 30: Dependence of mpeak
top, angle on βγ in case of a parton-level analysis.

No dependence of the estimator mpeak
top, angle on βγ is observed according to Fig. 30.

Note that, although a top quark mass of 172.5 GeV is simulated, an offset in the mea-
surement of a few 100 MeV with respect to the simulated top quark mass is observed in
Fig. 30.
The effect accounting for the offset can issue from the finite decay width of the top
quark. It was already mentioned in section 3, that gluon-fusion is the dominant top-
antitop production channel. The parton distribution function (see section 3.1, Fig. 5)
indicates that gluons in the protons preferably carry a small fraction of the proton’s
energy. Therefore, predominantly top quarks with a mass at the lower end of the decay
peak width are produced.
The absence of a βγ-dependence on parton level can either mean that the functional
dependence is introduced during the process of hadronization or during the energy mea-
surement in the detector.

To examine how physics effects like hadronization and detector effects alter the momen-
tum of the top quark, the top quark momentum distributions on parton and on detector
level are compared component-wise. Fig. 31 shows the longitudinal momentum (pl) dis-
tribution of the top quark on parton level (red) and on detector level (black), normalized
and scaled to the same height, superimposed.

For a quantitative evaluation of the change of the top quark longitudinal momentum from
parton to detector level, the momentum dependent factor

pl, parton level

pl, detector level
is calculated by

which the detector level longitudinal momentum has to be multiplied in order to make
it coincide with the parton level longitudinal momentum distribution. In other words,
the factor is calculated by which the detector level pl-distribution has to be compressed
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Figure 31: Normalized longitudinal momentum (pl) distribution of the reconstructed top
quarks on parton level (red) and on detector level (black), scaled to the same
height.

or stretched in order to make it coincide with the parton-level top quark pl-distribution.
The factor

pl, parton level

pl, detector level
is plotted in Fig. 32 as a function of the longitudinal momentum

of the reconstructed top quark at parton level.

The shape of the distribution in Fig. 32 looks very similar to the distribution of mpeak
top, angle

as a function of βγ on detector level (see Fig. 25, section 9.1). The systematic shift of
the pl-distribution, which happens during the transition from parton to detector level,
depends on the value of the longitudinal component of the top quark momentum. This
indicates that the effect most probably issues from systematics in the jet energy mea-
surement in the detector. The shape of the distribution in Fig. 32 suggests a correlation
to the rapidity y which is related to the longitudinal coordinate:

y = ASinH(βzγ) (29)

with βz = pz
E and E being the energy and pz the longitudinal momentum.

An ASinH-function indeed parametrizes the distribution in Fig. 32 very well (see Fig. 33).

Similarly, the top quark transverse momentum (pT) distribution is studied at parton
and detector level (see Fig. 34).
The factors

pT, parton level

pT, detector level
needed to correct the detector level top quark transverse mo-

mentum distribution to parton level are shown in Fig. 35 as a function of the parton
level top quark transverse momentum.
This shape does not clearly mirror any feature of the mpeak

top, angle(βγ)-distribution as a
function of βγ (Fig. 25) and thus, no conclusion can be drawn from Fig. 35. Therefore,
to examine the dependence of the estimator on the top quark pT, another approach has
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Figure 33: Fit of a ASinH-function to the data points in Fig. 32 for pl, parton level < 0
and pl, parton level ≥ 0, respectively, with the boundary condition that the
ASinH-functions intersect at pl, parton level=0.
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to be chosen: Fig. 36 shows the mpeak
top, angle-distribution as a function of the top quark

pT. The top quarks were divided into bins of top quark pT and the peak position of the
mangle

top -distribution was calculated separately for each of the pT-bins.

 [GeV]
T

p
20 40 60 80 100 120 140 160 180

 [G
eV

]
pe

ak
to

p,
 a

ng
le

m

164

165

166

167

168

 / ndf 2χ  1.187 / 3

Prob   0.7562

p0        0.2228± 162.7 

p1        0.002232± 0.03184 

 / ndf 2χ  1.187 / 3

Prob   0.7562

p0        0.2228± 162.7 

p1        0.002232± 0.03184 

Figure 36: Plotting the peak position of the mangle
top -estimator distribution as a function

of the top quark pT. For this study, the sample is divided into bins of top
quark pT.

It is visible from Fig. 36, that a dependence on pT exists which is assumed to be ap-
proximatively linear according to Fig. 36.
The dependence of the peak position of the mangle

top -distribution on the transverse and
longitudinal components motivates the analysis approach which will be introduced in
the next subsection.

9.5. Analysis Strategy

In section 9.1-9.4, studies have been performed to parametrize the peak position of the
mangle

top -distribution (mpeak
top, angle) as a function of βγ allowing to apply the angle method

to top quarks with |βγ| > 0. It was shown that on parton level, the peak position of

the mangle
top -estimator distribution yields no dependence on βγ and therefore, the depen-

dence is most likely introduced by a Lorentz-transformation into the incorrect frame.
Consequently, studies were performed on how the top quark momentum distribution on
detector level changes with respect to parton level. The studies described in section 9.4
indicate an ASinH-dependence of mpeak

top, angle on the longitudinal top quark momentum pl

pointing to a correlation to the rapidity. Plotting mpeak
top, angle as a function of ASinH(βzγ)

can therefore be parametrized by a linear function.
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There is also a dependence on the transverse top quark momentum which has to be taken
into account. But this dependence could not be determined on the base of a comparison
between the top quark pT on parton and detector level. Fig. 36 in section 9.4 leads to
the assumption, that this dependence can be parametrized using a linear function.

The possibility to treat the top quark momentum components separately motivates a
2-step analysis.
The sample is divided into top quark pT-bins like illustrated in Fig. 37. The bins are
chosen such that the pT-range in the bins is not too large whereas high values of pT

are not included due to expected effects of gluon radiation11 and because of the low
statistics. Furthermore, the bins should have approximately equal statistics.
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Figure 37: Illustration of the top quark pT-bins used in the analysis. Each of the relevant
bins is colour-coded.

Each of the top quark pT-bins is subsequently divided into bins of βzγ. The peak position
of the mangle

top -estimator distribution is evaluated for each of these βzγ-bins and plotted
as a function of ASinH(βzγ). An example of the resulting distribution can be seen in
Fig. 38.
By extrapolating to ASinH(βzγ) = 0, which is equivalent to an extrapolation to βzγ =

0, mpeak
top, angle is corrected in longitudinal direction. This is done by fitting two linear

functions to mpeak
top, angle(ASinH(βzγ)) with the constraint that these two linear functions

intersect at ASinH(βzγ) = 0 (see Fig. 38). Note that the fluctuations in Fig. 38 issue
from the limited statistics due to the frequent binning of the sample.

11Initial state radiation might cause an additional boost in transverse direction and a loss of virtual
mass of the top quark. Then, it is possible, that the top quark becomes virtual which leads to a
systematic shift towards lower top quark masses.
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Figure 38: mpeak
top, angle as a function of ASinH(βzγ). The fluctuations originate from the

low statistics in each top quark βzγ-pT bin due to the high number of bins
necessary in this analysis.

This procedure is applied to all pT-bins. Thus, for each top pT-bin, one mpeak
top, angle-value

corrected in longitudinal direction, mpeak
top, angle@βzγ = 0, is obtained. This value is plotted

as a function of the corresponding value of the top pT as demonstrated in Fig. 3912.
A linear function is fitted to mpeak

top, angle@βzγ = 0 as a function of pT of the top quark.
By extrapolating to pT = 0, a correction of the effects of the Lorentz-Transformation in
transverse direction is achieved.
Combining an extrapolation to βzγ = 0 with an extrapolation to pT = 0 yields an overall
extrapolation to βγ = 0 and thus, to top quarks at rest. Consequently, the extrapolated
value of mpeak

top, angle@βzγ = 0 to pT = 0 is the obtained value of mangle
top for top quarks at

rest.
Note that this value still needs to be calibrated to the simulated top quark mass. This
procedure is described later in the text (section 10.3).

9.6. Results Obtained with Jet-Parton Matched Objects

According to Fig. 39 in the previous section, for a MC input top quark mass of 172.5 GeV,
an estimator value of mest.

top, angle = 162.4 ± 0.4 GeV is obtained13. Note that the given

uncertainty on mest.
top, angle is the uncertainty on the parametrization.

There are two main effects which can lead to the low value of the extrapolated estimator
which is of the order of 10 GeV smaller than the MC input top quark mass. Initial state

12Note that the plotted values on the abscissa correspond to the mean value of pT in that bin.
13Note that in order to translate the value of mest.

top, angle to terms of top quark mass, a calibration on
the basis of the MC input top quark mass needs to be performed.

53



 [GeV]
T

p
20 40 60 80 100 120 140 160 180

 =
 0

 [G
eV

]
γ zβ

 @
 

pe
ak

to
p,

 a
ng

le
m

163

164

165

166

167

168

169

 / ndf 2χ  1.022 / 3

Prob   0.796

p0        0.3037± 162.4 

p1        0.002832± 0.03535 

 / ndf 2χ  1.022 / 3

Prob   0.796

p0        0.3037± 162.4 

p1        0.002832± 0.03535 

Figure 39: The extrapolated (βzγ = 0) value of mpeak
top, angle of each top quark pT-bin as

a function of the top pT. Extrapolation to pT = 0 is done by fitting a linear
function to the data points.

radiation might cause a former real top quark to become a virtual top quark prior to
its decay. As a consequence, the estimator might be shifted towards lower values. Final
state radiation might cause an energy loss of the decay products as well as a distortion
of the geometrical alignment of the decay products.
To examine whether effects of initial and final state radiation play a role, the analysis
procedure is repeated but only events which contain exactly 4 jets are considered in
the analysis. Initial and final state radiation cause supplementary jets issuing from the
radiated gluons. In event selection cut C16 (see section 7.2) a jet multiplicity of 4-6
jets is required whereas 4 jets is the lowest number of jets generated in a lepton+jets
decay (see section 3.2) and two other objects identified as jets are allowed. Initial and
final state radiation is a possible origin of these additional jets14. The pT-extrapolation
function fitting mpeak

top, angle@βzγ = 0 as a function of the top pT obtained when requiring
exactly 4 jets in each event is shown in Fig. 40.

14Note that a 4-jet signature can also result if 5 jets were generated but one jet was misidentified as
electron. But due to the tight++ criteria applied on the electrons and Cut C18 requiring exactly one
lepton in the event, this effect should only play a minor role.

54



 [GeV]
T

p
20 40 60 80 100 120 140 160 180

 =
 0

 [G
eV

]
γ zβ

 @
 

pe
ak

to
p,

 a
ng

le
m

164

165

166

167

168

169

 / ndf 2χ  4.084 / 3

Prob   0.2525

p0        0.362± 162.9 

p1        0.003329± 0.03358 

 / ndf 2χ  4.084 / 3

Prob   0.2525

p0        0.362± 162.9 

p1        0.003329± 0.03358 

Figure 40: mpeak
top, angle@βzγ = 0 as a function of the top pT and the corresponding ex-

trapolation function for the case of a required jet multiplicity of 4.

The extrapolated estimator extracted from Fig. 40 amounts to 162.9± 0.4 GeV and co-
incides within the uncertainty with the value obtained if processing the analysis with
a required jet multiplicity of 4-6 jets (Fig. 39). Thus, initial and final state radiation
do not contribute significantly to the shift towards lower values for the top quark mass
estimators with respect to the input top quark mass.
In the process of deriving the top quark mass estimator (see section 8, equations (19)-
(21) and (27)), the approximation of negligible jet masses was made. The jet rest energy
is indeed much smaller than the total jet energy but could account for the shift of 5-6%
towards lower top quark masses.

The extrapolated estimator of 162.4 ± 0.4 GeV is of course not the final result. For a
top quark mass of 172.5 GeV in data, a measurement with this method would yield a
result of 162.4±0.4 GeV, therefore, the extrapolated estimator must be calibrated to the
Monte Carlo input top quark mass. A so-called Calibration Curve is created plotting
the extrapolated estimator as a function of various Monte Carlo input top quark masses
in order to map the extrapolated estimator value to the simulated top quark mass. Top
quark mass variation samples with mMC

top of 165.0 GeV, 167.5 GeV, 170.0 GeV, 172.5 GeV,
175.0 GeV, 177.5 GeV and 180.0 GeV are used in this analysis.
This Calibration Curve must be generated under analysis conditions equal to the con-
dition of a data analysis. However, in data, no jet-parton matching is possible and
therefore, a way must be found at first to handle the combinatorial background, which
is detailed in section 10.
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9.7. JSF-Variation Studies

In order to investigate the dependence of the resulting estimator on the jet energy scale,
the analysis procedure is repeated but with different values of the jet scale factor JSF
(see section 5.4.3). A JSF in the interval [0.94;1.06] is multiplied to the jet 4-momentum
vectors in order to simulate a variation of the jet energy scale. For each value of the
JSF, the top quark mass estimator is calculated again and extrapolated to βγ = 0. The
result is shown in Fig.41.
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Figure 41: The extrapolated top quark mass estimator as a function of the jet scale
factor JSF.

According to Fig.41, the extrapolated top quark mass estimator varies of the order of
200 MeV if varying the JSF by ± 6%. The data points even coincide within their error
bars. This shows, that the extrapolated estimator mangle

top @ βγ = 0 depends indeed very
little on the jet energy scale and its uncertainty.
This is intuitive if visualizing the decay geometry (see section 8): A variation of the JSF
which results in a variation of the jet energies only causes a variation of the momentum
vectors’ lengths but not of the geometry of the triangle spanned by the decay product
as such: The angles are invariant to a change of the momentum vector length and thus,
the estimator given by equation (28), section 8. The angle method is indeed largely
independent on the jet energy scale as postulated.
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10. Preparation of the Application of the Angle Method to
ATLAS Data

In the previous section, studies were performed to test the general feasibility of the angle
method. Now, steps are taken to prepare the method for an application to real ATLAS
data. Unlike Monte-Carlo simulations, real data contain no information on the original
partons. Therefore, object reconstruction cannot be done with jet-parton matching and
one has to deal with combinatorial background. Bearing this in mind, the analysis
procedure is transferred to the actual case.

10.1. Event Reconstruction Algorithm and Combinatorial Background

Previously, top quarks were reconstructed using the truth information in the Monte-
Carlo samples. But truth information is no longer available in data. Top-quark pair
reconstruction thus has to be done using properties of the top quark and its decay
products.
Six objects are involved in the tt̄-decay: two b-jets, two light jets, one charged lepton
and a neutrino.

Cut C18 requires exactly one lepton in the event, therefore, the assignment of the mea-
sured lepton to the lepton of the top quark decay is clear. In case of an event containing
4 jets, there are 24 possibilities of assigning the jets to the final-state-partons of the top
quark decay. If requiring the light jets to be permutable, 12 possibilities remain15 and
if including b-tagging, two possible assignments are still left. Considering that there are
two solutions for the neutrino-pz (see later), one ends up with 4 possible assignments.
In case of an event with a jet multiplicity of 5, there are 12 possible solutions and for a
6-jet event, there are 24 possible solutions of assigning the objects (neutrino and jets).
The event jet multiplicity distribution is shown in Fig. 42. Note that a cut (C16) was
applied on the jet number requiring 4-6 jets in an event.

15The W-boson mass is indifferent under the exchange of the two light jets of its decay. An exchange of
the two jets does neither affect the mangle

top -estimator.
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Figure 42: Histogram showing the jet multiplicity in the events of the sample.

Using the χ2-top-pair reconstruction algorithm (method of least squares), the most likely
assignment is identified given the data [61].
The minimization of χ2 makes use of the kinematic properties of the objects in order to
reconstruct the tt̄-pair [16].
The kinematic properties of the most probable jet-parton assignment minimizes equa-
tion (30):

χ2 =
(mb1,j1,j2 −mb2,l,ν)2

σ2
t

+
(mj1,j2 −mW)2

σ2
W

+
(ml,ν −mW)2

σ2
W

(30)

[62]. The first term in equation (30) compares the 4-momentum invariant mass of the
combination of a b-jet and two light jets to the 4-momentum invariant mass of the
combination of another b-jet and the lepton and the neutrino. The underlying criterion
is the equality of the top and the antitop quark masses.
The second and the third terms are minimal if the invariant masses of the combination of
two light jets and of the combination of lepton and neutrino are closest to the W-boson
mass16. All terms in equation (30) are weighted with either the width of the invariant
mass peak of the W-Boson (σW) or of the top quark (σt) in order to account for the
detector resolution. The values of σW and σt have been obtained by fitting a Crystal
Ball function to the 4-momentum invariant mass distribution of the W-boson and the
top quark which were reconstructed with jet-parton matching (see Fig. 43).

16PDG W-boson mass mPDG
W = (80.398± 0.025) GeV [63].
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Figure 43: 4-momentum invariant mass distribution of the W-Boson (red) and of the top
quark (coloured blue) and suitable parametrization (Crystal Ball function).
W-Boson and top quark were reconstructed using jet-parton matching.

Note that b-tagging was used and the b-tagging efficiency was set to 70% [46]. Permu-
tations with a non-b-tagged jet on a b-jet position were rejected whereas b-tagged jets
were required not to be on a light-jet position.

The z-component of the neutrino momentum pz,ν is necessary to obtain the neutrino
4-vector and was calculated assuming the W-boson mass:

m2
W = (El + Eν,T)2 − (pl,x + pν,x)2 − (pl,y + pν,y)2 − (pl,z + pν,z)

2 (31)

whereas mW is the mass of the W-boson, E denotes the energy and p the momentum;
the index T denotes the transverse component; the indices x,y and z are the coordinates
in 3-dimensional Cartesian space and the index ν denotes the neutrino and l the lepton
[64].
The election which solution for pz,ν out of the two possible solutions of equation (31)
corresponds to the neutrino was included in the χ2−minimization algorithm.

The resulting top quark invariant mass distributions can be seen in Fig. 44a and 44b.
Fig. 44a shows the 4-momentum invariant mass distribution and Fig. 44b the mangle

top -
distribution. Correct assignments are coloured orange and the combinatorial back-
ground, incorrect assignment, is hatched blue.
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Figure 44: Distribution of the 4-momentum invariant top quark mass (Fig. 44a) and of

the mangle
top -estimator (Fig. 44b) if reconstructing the top pair with the χ2-

algorithm (black line). The coloured distributions visualize the share of cor-
rectly assigned events (smooth orange) and of the combinatorial background
(hatched blue) on the total distribution (black line, no fill).

Signal efficiency and purity are quantities to evaluate the goodness of the reconstruction
algorithm. The efficiency ε is the ratio of events which could be reconstructed success-
fully to the number of event which passed the selection cuts:

ε =
Number of successfully reconstructed events

Total number of events which passed the selection cuts
(32)

The purity π is the number of events with correctly assigned objects divided by the to-
tal number of successful reconstructions which consist of correctly assigned objects and
combinatorial background:

π =
correct assignments

correct assignments + combinatorial background
. (33)

Signal efficiency and purity in case of the χ2 reconstruction algorithm are listed in Tab. 5.

ε π

(39.15± 0.12)% (27.69± 0.15)%

Table 5: Efficiency ε and purity π evaluated for the top pair reconstruction algorithm of
equation (30).

Note that, however, the reconstruction algorithm is sensitive to the jet energy and there-
fore also to its uncertainty [16].
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10.2. The adapted Top Quark Mass Estimator

In this analysis, ways must be found to deal with the combinatorial background. One
way would be to apply cleaning cuts. Some possible cleaning cuts are described in [16].
This would further reduce the number of successfully reconstructed events, correct as-
signments would be affected as well. But a large number of successfully reconstructed
events is essential in this method. As an alternative approach, one can make use of the
fact that the combinatorial background also contains information on the top quark mass
and include the combinatorial background in the analysis and define a new top quark
mass estimator.
As a first step, the measured mangle

top -distribution shown in Fig. 44b must be parametrized
with as few parameters as possible in order to guarantee a high stability of the fit. Ac-
cording to Fig. 44b, the distribution of the correct assignments (coloured orange) looks
very much Gaussian-like whereas the combinatorial background (hatched blue) could
be parametrized by a Landau distribution. This motivates a fit of a combination of a
Landau and a Gauss distribution with the boundary condition that the peak position of
the Gaussian is in the region where the distribution of the correct assignments peaks.
The Landau has to approximate the peak at low values of mangle

top . But the steep slope

at the lower mass range and the slow decline at high values for mangle
top on the one hand

and the peak on the other hand make it difficult to fit the distribution. Consequently,
it is advisable to restrict the fit range. Studies were performed to find the most suitable
fit range (examples: see Fig. 45a and 45b):
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Figure 45: Examples of mangle
top distributions in a single pT-βzγ-bin. Various fit ranges

are tested in order to find the most reasonable fit range if parametrizing the
distribution with a combination of a Landau and a Gauss function.

From Fig. 45a and 45b, it becomes obvious that the fit of the whole range is not rea-
sonable as the steep slope at low mangle

top -estimator values cannot be described easily (see
black line). A fit range which is slightly reduced (red dotted and dashed line) is still af-
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fected too much by the steep slope at low mangle
top -values. If the range is too short like the

case for the green dotted line in Fig. 45a and 45b, then, the shape of the combinatorial
background in the low-mass regime is not approximated by the fit.
A good compromise is the blue dashed line (long dashes) which describes the distribution
in the whole fit range reasonably well without restricting the range of the distribution
too much. Later, it will be motivated, that a range as large as possible is indeed of
advantage. For the following studies, a fit range of [95;225] is thus chosen.

A new top quark mass estimator is defined, including as well the information on the
top quark mass provided by the combinatorial background. This is done to account for
the possible correlation of the peak position of the Landau and of the Gaussian and
for the correlation of the other fit parameters as well 17. The Gauss peak position will
always be influenced to some degree by the combinatorial background. Furthermore, the
distribution of the correctly assigned events is not entirely parametrized by the Gaussian
and the Landau-function does not exclusively fit the background. This motivates the
definition of the new top quark mass estimator mweighted peak

top, angle (equation (34)).

mweighted peak
top, angle =

IL · pL + IG · pG

IG + IL
(34)

where pL and pG are the peak positions of the Landau and the Gaussian and IL and IG

are the integrals of the Landau and the Gaussian within the defined fit range. Note that
the mweighted peak

top, angle -estimator is normalized and independent on the event number.

The correlation ρ describes the degree of linear dependence between two quantities.
The correlation between two quantities x and y is calculated with equation (35) [65]

ρ =
〈xy〉 − 〈x〉〈y〉

σxσy
(35)

where the covariance is defined as

cov(x,y) = 〈xy〉 − 〈x〉〈y〉 = ρ(x,y)σxσy (36)

with σi, i ∈ {x,y}, standard deviation of x,y. ρ is a normalized quantity and can take val-
ues between -1 and +1 whereas the covariance also takes into account the variances of the
quantities x and y. In case of a perfect linear dependence of the quantities x and y, ρ is
equal to 1 (correlation) or -1 (anti-correlation). If x and y are independent, ρ equals to 0.

The coefficients of the correlation matrix ρ
mweighted peaks

top, angle
specifying the correlation between

the parameters of equation (34) denote to

17Direct investigation of the correlation of signal and combinatorial background is not possible due to
lack of statistics in the samples with mMC

top 6= 172.5 GeV. Further details can be found later in the
text.
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ρ
mweighted peaks

top, angle
=


ρ(pG,pG) ρ(pL, pG) ρ(IG, pG) ρ(IL,pG)
ρ(pG, pL) ρ(pL,pL) ρ(IG,pL) ρ(IL,pL)
ρ(pG, IG) ρ(pL, IG) ρ(IG, IG) ρ(IL, IG)
ρ(pG, IL) ρ(pL, IL) ρ(IG, IL) ρ(IL, IL)

 =


1 0.24 0.013 0.036

0.24 1 −0.56 −0.45
0.013 −0.56 1 0.85
0.036 −0.45 0.85 1


The component ρ(IG, IL) sticks out immediately: With a correlation of 0.85, the value
of the integral of the Gaussian and of the Landau distribution are very much correlated.
All the other quantities are weakly to medium correlated.
Correlated parameters are inconvenient on the one hand, as strongly correlated quan-
tities do not provide much new information due to their linear dependence and on the
other hand, they introduce problems in the calculation of the uncertainties.
The uncertainty σ on a composite quantity g which is dependent on x and y, is calculated
by σ2 = (∂g

∂x)2σ2
x + (∂g

∂y)2σ2
y + 2ρ∂g

∂x
∂g
∂yσxσy whereas σx and σy are the standard deviations

on the quantities x and y and ρ is the correlation coefficient between x and y. A strong
correlation between x and y could therefore increase the uncertainty on the quantity g.
A better idea would be to rewrite the expression in equation (34) to

mweighted peak
top, angle =

f · pL + pG

f + 1
(37)

where f = IL
IG

, and to obtain the parameter f directly from the fit.
The fitting function hfit (equation (38)) must be slightly modified to include the param-
eter f in the fit:

hfit(x) = NG ·Gaus(x, x̄G, σG) + NL · Landau(x, x̄L, σL) (38)

If normalizing the Gaussian and factoring out NG (equation (39)), the integral over the
Landau function equals the parameter f in equation (37).

h’fit = NG · [
1√

2 · πσ2
G

·Gaus(x, x̄G, σG) + N̄L · Landau(x, x̄L, σL)] (39)

f =
IL

IG
=

∫ 225

95
N̄L · Landau(x, x̄L, σL) (40)

Equations (39) and (40) are based upon the fact that the integral over a normalized
Gaussian yields 1.
But, this holds only true if the integral over the normalized Gaussian indeed yields 1,
thus, the assumption has to be made, that the whole Gaussian is integrated in spite
of the restricted fit range. Consequently, a too strict restriction of the fit range would
not have been of advantage. In order to make sure that the whole Gaussian is within
the fit range, the parameter range has to be restricted so that the peak position of the
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Gaussian indeed coincides mostly with the distribution maximum.

An example of the fitting function according to equation (39) and the obtained fit pa-
rameters is shown in Fig. 46. The first line in the text box shows the result for the the
factor f obtained with the fitting function of equation (39) and in the second line the
exact value for f (obtained by fitting a conventional Landau+Gauss, equation (38)) is
printed for comparison, and in the third line, the ratio of the integral over the Gaussian
in the restricted range to the integral over the Gaussian without a restriction of the fit
range can be seen. Latter demonstrates, that the whole Gaussian can indeed assumed
to be within the fit range.
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Figure 46: Example of the parametrization of the mangle
top -distribution. The value for the

parameter f is given for the case of the approximation (equation (39)) in the
first line of the text box. The exact value obtained with the conventional
fit (equation (38)) is printed in line 2 of the text box. The last line gives
information on the fraction of the area of the fitted Gaussian which is within
the fit range.

Applying this new fitting function, the correlation between the components of the
mweighted peak

top, angle -estimator could be reduced according to the correlation matrix ρnew:

ρnew =

ρ(pG,pG) ρ(pL,pG) ρ(f, pG)
ρ(pG,pL) ρ(pL, pL) ρ(f,pL)
ρ(pG, f) ρ(pL, f) ρ(f,f)

 = 1 0.12 −0.014
0.12 1 −0.086
−0.014 −0.086 1


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According to the correlation matrix ρnew, the Landau and Gauss peaks are weakly cor-
related (ρ(pL, pG) ≈ 0.12). Therefore, the combinatorial background could probably be
neglected in good conscience or given a much smaller weight in the calculation of the es-
timator since the top quark mass seems to be sensitive to the combinatorial background
to a low degree due to the small correlation of pL and pG. But in order to do a quan-
titative evaluation of the correlation between signal and background, the dependence of
the fit parameters of the Landau and the simulated top quark mass must be examined.
An investigation yielding significant results cannot be done with the samples available
due to the low statistics in the samples with mMC

top 6= 172.5 GeV.
The covariance matrix element ρ(pL,pG) was calculated in Fig. 47(a) as a function of the
simulated top quark mass mMC

top . By the means of that example it can be seen that the
correlation between the signal peak (approximated by pG) and the combinatorial back-
ground (approximated by pL) is subject to large fluctuations and therefore, no reliable
conclusions can be drawn for the correlation between the signal and the combinatorial
background on the basis of the samples available.

Later, the analysis procedure has to be applied on other samples with mMC
top 6= 172.5 GeV

as well. The covariances (equation (36)) needed in order to calculate the uncertainty

on the mweighted peak
top, angle -estimator are shown in Fig. 47 as a function of the simulated top

quark masses.
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Figure 47: Covariance of the variables in equation (37) as a function of the simulated
top quark mass mMC

top .

Fig. 47 demonstrates the strong variability of the covariances with the simulated top
quark mass. The magnitude of the covariance also depends on the standard deviations
of the variables18, which are a measure of the fluctuations. The Monte-Carlo sample size
determines how many entries are in the histograms and therefore is directly responsible
for the stability of the fit of the mangle

top -distributions in the βzγ − pT-bins. If the fits are
less stable, the fit parameters will fluctuate more and this increases the covariance.
The sample with a simulated top quark mass of mMC

top =172.5 GeV contains the highest

18standard deviation of x: σx =
√

1
n

∑n
i = 1(x− x̄)2 where x̄ denotes the expected value of x and n the

number of data values [59].
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number of top quarks which passed the pre-selection cuts (≈ 3.8 million) whereas all the
other samples contain less than half that number (≈ 1.5 million). It is thus expected,
that the covariances obtained with the mMC

top =172.5 GeV sample are more reliable than
the covariances obtained with the other samples. Consequently, for all subsequent stud-
ies, the covariance matrix obtained with the mMC

top =172.5 GeV sample is used for the
calculation of the uncertainties.

The proceeding of the analysis is the same as described in Section 9: The sample is
divided into several pT-bins (see Fig. 37 in section 9.5) and then, subsequently in bins of

βzγ. Then, the top quark mass estimator mangle
top (equation (28) in section 8) is calculated

for each event in the βzγ-pT-bin and the resulting distribution (see for example Fig. 46)
is fitted with the modified Landau+Gauss function (see equation (39)).

For each of the pT-bins, the resulting top quark mass estimator mweighted peak
top, angle is plotted

as a function of ASinH(βzγ). Two examples are shown in Fig. 48.
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Figure 48: Example plots of the mweighted peaks
top, angle estimator as a function of ASinH(βzγ).

According to the fit statistics boxes, a fit of two linear functions intersecting
at ASinH(βzγ) = 0 turns out to be a reasonable fit.

A fit with two linear functions intersecting at ASinH(βzγ) = 0 yields good results (see
Fig. 48). As before, an extrapolation to ASinH(βzγ) = 0 is done and the extracted value

for mweighted peak
top, angle at ASinH(βzγ) = 0 is plotted as a function of pT (see Fig. 49).
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Figure 49: Resulting values for mweighted peaks
top, angle extrapolated to βzγ = 0 as a function of

pT. The fit shows the linear extrapolation to pT = 0 (see p0, fit statistics
boxes).

According to Fig. 49, the measured top quark mass mmeas.
top, angle in case of a simulated top

quark mass of mMC
top = 172.5 GeV is mmeas.

top, angle = (119 ± 4) GeV (for a remark on this
result, see section 10.3). Note that the uncertainty given includes only the uncertainty
on the parametrization.
According to a previous comment, statistics in the top quark mass variation samples
is not sufficient to investigate the feasibility of this estimator for an analysis. Within
the scope of this thesis, it was not possible to generate further MC samples with larger
statistics. Thus, in the following, the next analysis steps are presented and performed
with the statistics available. In order to be able to do that analysis, some approximations
have to be made in the course of the next subsections, whereas the first approximation
is to fix the correlations to the values obtained with the mMC

top = 172.5 GeV sample for
the uncertainty calculation.

10.3. Calibration of the Angle Method

It was shown in the previous subsection, that a Monte-Carlo top quark input mass of
mMC

top = 172.5 GeV yields an extrapolated top quark mass estimator of mweighted peaks
top, angle =

(119± 4) GeV if measuring the top quark mass with the presented approach.
As a next step, the Calibration Curve is generated in order to map the measured top
quark mass estimator mmeas.

top, angle onto the Monte-Carlo input top quark mass mMC
top . If a

measurement with data is performed, mmeas.
top, angle can be related to the final result for the
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top quark mass with the Calibration Curve.
Top quark mass variation samples are available simulating top quark masses of 165.0 GeV,
167.5 GeV, 170.0 GeV, 175.0 GeV, 177.5 GeV and 180.0 GeV. For each of these samples,
the extrapolated top quark mass estimator mweighted peaks

top, angle is calculated. But these sam-

ples contain less produced top quarks than the mMC
top = 172.5 GeV sample. In fact,

statistics are reduced by more than a factor of 2: While the mMC
top = 172.5 GeV sample

contains about 3.8 Mio. events (after the pre-selection cuts), all the other samples con-
tain around 1.5 Mio. events.
This directly affects the results: If the mangle

top -distributions of the top quarks in the βzγ-
pT-bins contain less events, the fits to the distributions are more unstable and/or yield

entirely different fit parameters. Three examples of resulting mweighted peak
top, angle values as a

function of ASinH(βzγ) are shown along with the extrapolation function in Fig. 50a,
Fig. 50c and Fig. 50e.
Fig. 50a, Fig. 50c and Fig. 50e demonstrate that some of the fits to mweighted peak

top, angle (ASinH(βzγ))
are distorted by some outliers. These outliers are caused by fluctuations of the fits to
the mangle

top -distributions which are due to the low statistics in the top quark mass vari-

ation samples. The examples in Fig. 48 of section 10.2 of mweighted peak
top, angle (ASinH(βzγ)) in

case of the Monte-Carlo sample with higher statistics (mMC
top = 172.5 GeV) demonstrate

that the slope parameter takes values of around ±15 GeV, whereas the slope parameters
in Fig. 50a, 50c and 50e, are particularly low or even have the wrong sign. Fig. 50b,
50d and 50f indicate that outliers become less important if imposing limits on the slope
parameters.
Examining the fits of the mweighted peak

top, angle (ASinH(βzγ)) distributions for all top quark mass
variation samples showed that most reasonable fits have a slope parameter of at least
|7|GeV. It is not reasonable to set a stricter condition on the slope parameter as it
is difficult to find a common trend among all the fits and one runs the risk of intro-
ducing a bias by forcing the slope parameter of the fit to be higher than given by the
mweighted peak

top, angle (ASinH(βzγ)) distributions. In the following, the slope parameter must be
greater than |7|GeV as a second approximation made to account for the low statistics in
the samples with mMC

top 6= 172.5 GeV. Note that this supplementary boundary condition

does not influence the result obtained with the mMC
top = 172.5 GeV sample.

Before generating the Calibration Curve, another matter has to be considered: The
offset parameter of the pT extrapolation function is correlated to the slope, therefore
the calibration of the top quark mass depends on the slope parameter as well as on
the offset parameter of the pT extrapolation function. These two parameters have to
be included in the calibration. Although the statistics of the MC samples other than
mMC

top 6= 172.5 GeV are very low, it can be noted that the slopes of the pT extrapolation
functions do not scatter much and coincide in almost all cases within their error bars
(see Fig. 51). Therefore, as a third approximation, the slope can be fixed to the value
obtained with a constant fit (see Fig. 51).
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Figure 50: The panels (a) (mMC
top = 180.0 GeV), (c) (mMC

top = 175.0 GeV) and (e) (mMC
top =

175.0 GeV) each show the extrapolation function to βzγ = 0 without the
restriction of the slope parameter range and the panels (b), (d) and (f) each
show the fit requiring the slope parameters to be > |7| . In case of a non-
restricted slope parameter, the fit is governed by fluctuations of the data
points.
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Figure 51: Slope of the pT extrapolation function as a function of the MC input top
quark mass mMC

top . Fit of a constant function in order to evaluate the average
slope under consideration of the uncertainties on the data points.

The results for the Calibration Curve are shown in Fig. 52a (variable slope of pT extrap-
olation function) and Fig. 52b (fixed slope of pT extrapolation function).
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Figure 52: (a): Calibration curve obtained without fixing the slope parameter, (b): Cal-
ibration Curve obtained if fixing the slope parameter of the pT extrapolation
function.

For a quantitative proof that fixing the slope of the pT extrapolation function also reduces
the uncertainty on the calibration, the uncertainties on the calibrated final result due
to the parametrization of the Calibration Curve for the case of a fixed and a variable
pT extrapolation function slope are compared. The measurement applied on data would
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yield a resulting value mmeas.
top, angle. This value is then translated using the Calibration

Curve to the final result for the top quark mass. Considering the uncertainties on the
parameters of a linear fit to the Calibration Curves (see Fig. 53a and 53b) and their
correlation, the Gaussian uncertainty issuing from the parametrization is calculated if
not fixing the slope σ2

mtop;pT-slope free (Fig. 53a) and if fixing the slope (σ2
mtop;pT-slope fixed)

(Fig. 53b).
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Figure 53: Linear fit to the data points of the Calibration Curves of Fig. 52a and 52b.

The uncertainties are compared by calculating the difference between these uncertainties,
σ2

mtop;pT-slope free−σ2
mtop;pT-slope fixed (see Fig. 54). If the function value of σ2

mtop;pT-slope free−
σ2

mtop;pT-slope fixed is positive, the uncertainty on the final result of the top quark mass
due to the parametrization in case of a variable slope is bigger, if the uncertainty is
negative, the uncertainty in case of a fixed pT-slope is bigger. According to Fig. 54 and
considering the fact that in case of a top quark mass around 172 GeV, the measured top
quark mass is around 118-120 GeV, the uncertainty on the measured top quark mass
issuing from the parametrization is smaller in case of a fixed pT-slope.
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Figure 54: Comparison of the uncertainty on the calibrated result for the top quark
mass due to the parametrization of the Calibration Curve as a function of
the measured top quark mass estimator is shown. If the function returns
a positive value, the uncertainty is bigger in case of a Calibration Curve
obtained without fixing the slope of the pT extrapolation function.

In Fig. 55, the absolute uncertainty σmpar
top

issuing from the uncertainty on the parametriza-

tion of the Calibration Curve in case of a fixed pT-slope is plotted as a function of the
measured top quark mass estimator.
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Figure 55: Absolute uncertainty on the calibrated value for the top quark mass due to
the parametrization of the calibration curve as a function of the measured
estimator.
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The uncertainty due to the parametrization of the calibration is expected to be around
1.0-1.5 GeV.
In spite of the fact that the Calibration Curve does not have enough precision to calibrate
a measurement, it could be shown, that fixing the pT slope improves the result.

10.4. Evaluation of the Uncertainty due to the Jet Energy Scale

In the following, the impact of the uncertainty on the jet energy scale is examined. To
evaluate the uncertainty due to the uncertainty on the jet energy scale, energies and
momenta are varied by up to 6% by multiplying a factor in the interval [0.94;1.06] to the

jet 4-momenta. The extrapolated top quark mass estimator mweighted peaks
top, angle is calculated

for 11 intermediate values of the JSF and plotted as a function of the JSF. The result
can be seen in Fig. 56a.
In Fig. 56b, a linear function is fitted to the data points. The light gray fitting function
(dashed line) and the corresponding fit parameters (in gray) demonstrate the fit to all
data point whereas the red fit and the corresponding fit parameters (in red) does not
consider the outlier at JSF = 1.01 (light gray data point). This improves the fit (com-
pare fit statistics box).
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Figure 56: Variation of the extrapolated value of mweighted peaks
top, angle with the JSF. On panel

(b), a fit to the data is performed. In order to improve the goodness of the
fit, the outlier at JSF = 1.01 is not considered in the fit (red line). The light
gray dashed line shows the fit if considering all the data points.

The uncertainty on the jet energy scale (JES) varies with the jet energy and the rapidity.
The higher the energy and the more central the jet, the lower the uncertainty on the
jet energy. For example, for central jets (|η| < 1.2) with a small transverse energy
(≈ 17 GeV), the uncertainty was determined to 3% at

√
s = 7 TeV center-of-mass energy

in [45], to 2% for jets with a transverse energy of ≈ 25 GeV and to 1% for jets with
55 < pjets

T < 500 GeV. The uncertainty for forward jets (|η| > 1.2) is higher, for example
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for very forward jets (pT ≈ 25 GeV and |η| ≈ 4), an uncertainty of 5% is observed.
According to [45], the total JES uncertainty for an event sample of tt̄-pairs decaying in
the lepton+jets channel of 2011 data, considering all detector and physics effects and
background processes in the collider is below 3% for jets with 60 < pjet

T < 1000 GeV.
Assuming an average uncertainty on the JSF of 3%, the uncertainty denotes to
∆mweighted peaks

top, angle = 0.03 · p1 = 0.03 · (3± 2) · 101 = 0.9 GeV

where p1 is the slope of the fitting function to mweighted peaks
top, angle as a function of the JSF in

Fig. 56b.

10.5. Method Validation

Before a measurement on real data can be performed, the reliability of the method must
be tested, that means whether the MC input top quark mass is consistent with the
calibrated top quark mass. The so-called Method Validation gives information whether
the method works as expected, whether a bias was introduced and that therefore the
final result must be corrected by a constant offset or whether the method is entirely
based on incorrect assumptions.
The developed approach in the angle method analysis, the 2-step analysis correcting for
longitudinal and transverse effects of the jet energy measurement uncertainty, developed
according to parton level studies, must be verified at first.

For this task, 500 pseudo-datasets are created for each of the mass points based on the
available MC sample and the analysis is applied on these pseudo-datasets. In order
to reproduce a realistic analysis, the datasets are scaled to the number of tt̄ events
expected in data based on the mMC

top -specific cross-section of tt̄-production, its k-factor
and the luminosity (see Tab. 4, section 6). The number of events in these pseudo-data
samples is varied according to Poissonian statistics. Randomly, pairs of values (pT,βzγ)
are drawn according to the distribution of (pT,βzγ)-pairs in the samples. A value of

mangle
top is drawn from the corresponding mangle

top -distribution. The histograms necessary
for the analysis are created anew on the basis of the triples of values drawn.
Each of the created pseudo-datasets returns a value for the extrapolated top quark mass
estimator (=mweighted peaks

top, angle @ βγ = 0). So, in total, for each top quark mass variation
sample, a distribution of extrapolated top quark mass estimators containing 500 entries
results (example: see Fig. 57).
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Figure 57: Distribution of extrapolated top quark mass estimators mweighted peaks
top, angle ob-

tained by applying the analysis method on the 500 pseudo-data samples gen-
erated on the basis of the mMC

top = 172.5 GeV Monte-Carlo sample.

The distribution in Fig. 57 looks like a slightly asymmetric Gaussian and is therefore
fitted with a Crystal Ball Function. The top quark mass estimator obtained from the
Method Validation procedure for the corresponding mass point is the peak position of
the fit function. Considering the goodness of fit, the peak position uncertainty is scaled
by the factor [8]

S =

√
χ2

ndf - 1
. (41)

The uncertainty has to be scaled yet with another factor accounting for the correla-
tions between the pseudo-datasets: Selecting events with replacement in order to cre-
ate the pseudo-datasets means that the same event may occur twice or more times in
the pseudo-datasets. Drawing n events from a sample containing N events only yields
N/n independent pseudo-datasets, which in this case amounts to only 4-10 independent
datasets. This is considered by scaling the uncertainty σ on the resulting top quark mass
estimator obtained by the method validation procedure by

σcorrected = σ ·

√
1

Nsamples
+ (1− e−n/N) (42)

whereas Nsamples is the number of created pseudo-datasets, n the number of events drawn
from a sample containing N events. A more detailed description and the derivation of
this factor can be found in [66] and [67].
Fig. 58 compares the Calibration Curve (blue) and the underlying data points (blue
triangles) with the results obtained with the Method Validation (red dots) and the
corresponding fit (red).
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Figure 58: The Calibration Curve (blue) superimposed with the results obtained with
the Method Validation (red). The data points on which the fit is based are
drawn as red dots (Method Validation results) and blue triangles (Calibration
Curve).

Comparing the Calibration Curve with the fit to the Method Validation data points
leads to the conclusion that the Method Validation data points are systematically shifted
towards lower top quark mass estimator values.
On the basis of the Calibration Curve, the top quark estimator values obtained with
the Method Validation procedure, are converted to top quark masses and compared
to the MC input top quark mass. The result can be seen in Fig. 59a plotted as a
function of the MC input top quark mass. A fit of a constant (Fig. 59b) is applied to
Fig. 59a visualizing the systematic shift towards lower top quark masses of the measured
value with respect to the MC input top quark masses. Thus, the measured top quark
mass which was obtained by converting the measured top quark mass estimator on the
basis of the Calibration Curve has to be corrected towards higher top quark masses by
(3.0± 0.5) GeV.
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Figure 59: Comparison of the calibrated top quark masses obtained with the Method
Validation with the MC input top quark mass. The deviation from the con-
stant line intersecting the ordinate at zero gives information on the difference
to the MC input top quark mass. Right panel: Fit to the residuals.

The method is reliable but yields results which are shifted systematically towards lower
top quark masses and the obtained result for the top quark mass has to be corrected
towards higher top quark masses by (3.0± 0.5) GeV.

The construction of the estimator as in equation (34) and (37) in section 10.2 was an at-
tempt to include more statistics in the calculation of the estimator as well as to consider
possible correlations of signal and combinatorial signal fraction. Unfortunately, the ap-
proach turned out to be not successful or not feasible due to lack of statistics: Qualitative
studies on the correlation of signal and background (calculation of ρ(pL,pG)) showed,
that pL only depends very little on the top quark mass. But the correlation between the
simulated top quark mass and the fit parameters of the Landau must be checked quan-
titatively if samples with higher statistics are available. Furthermore, the uncertainty
of the calibrated top quark mass due to the uncertainty on the parametrization of the
calibration is also expected to be too large as due to lack of statistics, the Calibration
Curve is too imprecise. In order to decide if and to which degree the combinatorial sig-
nal fraction must be included in the calculation of the estimator, the correlation of the
Landau peak position to the simulated top quark mass must be examined. To construct
an improved estimator, the correlation of the Landau and the Gauss peak position to
mMC

top could be examined and equation (34) could be modified such that the weights are

given by the correlation to mMC
top instead of the relative integrals. But significant results

for the correlation can only be archived with top quark mass variation samples which
include a larger number of events. A preliminary conclusion drawn from the results of
this section is that the weight of the combinatorial background in the estimators given
by equations (34) and (37) is too large compared to the correlations calculated with the
mMC

top = 172.5 GeV sample. Therefore, in the next section, a new possible estimator is
introduced which only considers the Gauss peak of the Landau+Gauss fit and therefore
mainly includes information provided by correctly assigned combinations.
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11. Improving the Analysis Method

Although the combinatorial background also yields a dependence on the top quark mass,
it contains little information on the top quark mass compared to the signal peak. Nev-
ertheless, due to the high fraction of combinatorial background (more than 70%), the
contribution of the combinatorial background to the top quark mass estimator intro-
duced in section 10 is very dominant.
As the tt̄-pairs were reconstructed using invariant mass information, the combinatorial
background is largely dependent on the 4-momentum invariant mass of the reconstructed
top quark and therefore on the JSF. The dependence on the JSF was also shown in sec-
tion 10.4. To reduce on the one hand the dependence on the JSF introduced by the
combinatorial background and on the other hand use to a full extent the information
provided by the signal peak, studies using another approach are performed.

11.1. Improving the tt̄-pair Reconstruction Algorithm

Predominately the first term of the tt̄-pairs reconstruction algorithm in equation (30)
(section 10.1) introduces combinatorial background. The other two terms, where the
4-momentum invariant mass of two light jets and of lepton and neutrino are compared
with the mass of the W-boson, are not so much prone to introducing background as
there is a strong constraint on their invariant mass. Combinations which are as close
to the W-boson mass as possible are strongly favoured, also due to the larger weight on
these terms.
On the other hand, there is no constraint on the invariant mass of the top quark. In
the first term of equation (30), combinations with a small difference in the 4-momentum
invariant mass of a b-quark combined with two light jets and another b-quark combined
with the lepton and the neutrino, are favoured. Even though the W-boson can be
reconstructed quite reliably, it is possible that even though the b-quark of the hadronic
and leptonic top quark decay are swapped, the criterion of as little 4-momentum invariant
mass difference as possible between the top and the antitop is met better.
One could try to reduce this combinatorial background caused by the exchange of the
two b-quarks by introducing a constraint on the 4-momentum invariant mass of the
top quark. Monte-Carlo samples available for this analysis are within a mass range of
165 GeV and 180 GeV and one could try to restrict the 4-momentum invariant mass of
the combinations to an interval of [165,180] GeV when using a Monte-Carlo sample with
a simulated top quark mass of 172.5 GeV.
The top quark mass estimator distribution mangle

top , resulting of equation (28) (section 8)
is plotted in Fig. 60.
Two options of a refined reconstruction method are plotted: To obtain the distribution
indicated by the blue line, only a restriction on the hadronically decaying top quark
is set. In case of the red distribution, combinations of the decay products of both top
quarks have to have a 4-momentum invariant mass within the given range.

78



 [GeV]angle
topm

0 50 100 150 200 250 300 350 400 450

#E
ve

nt
s/

 2
G

eV

0

200

400

600

800

1000

1200

1400

 [165;180]GeV∈4-momentum invariant mass 
for hadronically decaying top quarks

 [165;180]GeV∈4-momentum invariant mass 
for all top quarks

Figure 60: mangle
top invariant mass distribution if requiring the 4-momentum invariant top

quark mass to be within a range of [165;180] GeV. Red distribution: restrict
top as well as antitop 4-momentum invariant mass, blue distribution: con-
straint only on hadronically decaying top quark mass.

From Fig. 60, it becomes obvious, given the large number of divisions of the sample
necessary for this analysis, that the stricter condition resulting in the red distribution
is not suitable for this analysis due to lack of statistics. Therefore, in continuation, the
condition that only the decay products of the hadronically decaying top quark must have
a 4-momentum invariant mass within the interval of [165;180] GeV (blue distribution in
Fig. 60) is applied.
Applying this supplementary condition, the signal purity (see equation (33), section 10.1)
could be raised from (27.69 ± 0.15)% to (44.9 ± 0.5)% but with the cost of a reduced
number of events passing the reconstruction algorithm - the number of available events
was reduced by a factor of almost 4.5. The contribution of correct assignments and
combinatorial background is shown in Fig. 61.
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Figure 61: Visualization of the share of correct assignments (orange) to combinatorial

background (blue) in the mangle
top distribution.

In order to keep statistical fluctuation of the parametrization at a reasonable level, one
has to reduce the number of pT and βzγ bins. Latter is reduced from 14 to 8 and former
from 5 to 4 bins.

11.2. The New Top Quark Mass Estimator

With a fraction of 55% of the reconstructed events, the combinatorial background would
still contribute to a high level to the top quark mass estimator introduced in section 10.2
as the Landau integral would, even after a restriction of the fit range, still be a large
contribution to the total integral. Presumably, as already stated in section 10.1, it is
the combinatorial background that introduces a dependence on the JSF so it is desirable
to eliminate this contribution as far as possible. The combinatorial background also
contains information on the top quark mass but not as much as the signal peak. An
analysis approach therefore would be to fit the function like before with a Landau and a
Gaussian function but to only consider the peak position of the Gaussian in the analysis.
This new top quark mass estimator is denominated mGauss peak

top, angle .

As a first step, a suitable fit range has to be defined in order to approximate best the
peak position of the Gaussian. In Fig. 62, a few examples of possible fit ranges are
compared.

80



 [GeV]angle
topm

0 50 100 150 200 250 300 350 400 450

# 
E

ve
nt

s/
5G

eV

0

10

20

30

40

50

60

70

80 [0;450]
[100;220]
[110;200]
[110;220]

(a)

 [GeV]angle
topm

0 50 100 150 200 250 300 350 400 450

# 
E

ve
nt

s/
5G

eV

0

10

20

30

40

50

60

70

80

90 [0;450]
[100;220]
[110;200]
[110;220]

(b)

Figure 62: Examples of fits of a Landau+Gauss function to mangle
top distributions in pT−

βzγ bins fitting different ranges of the distribution.

In Fig. 62a and Fig. 62b, the fit of the whole range indicated by the black line has
obvious difficulties to fit the steep slope at low masses. As it is required to fit at the
same time the steep slope at low top masses and the slow decline at high masses and
one peak, it is difficult for the function to fit all features of the distribution satisfactory
at the same time and consequently, the distribution is not fitted very well.
Meanwhile, if the fit range is too small, as indicated by the green fit function in Fig. 62,
the slow decline at large masses cannot be fit with a sufficient precision. This case is
demonstrated in Fig. 62b.
If, on the other hand, the fit range extends too much to low masses, the fit is required
to fit the steep slope and therefore, in many cases as for example in 62b and Fig. 62a,
the Landau peak is not fitted well.
The blue function fitting the distribution in an interval of [110;220] GeV is the best trade-
off in this case. The function extends sufficiently to low mass ranges but not too far
while also describing to a good extent the high mass range important for the Gaussian fit.

The analysis is performed as already described in section 9.5: the sample is divided
into pT-bins and each of these pT-bins is subsequently divided into bins of βzγ. The
mangle

top -distribution of each sub-bin is fitted with a combination of a Landau and Gauss
function within the ideal fit range such that the Landau peak fits the combinatorial
background while the Gauss peak position should be in the range of the top quark mass.
An example of the resulting distribution of mGauss peak

top, angle as a function of ASinh(βzγ) can

be seen in Fig. 63 on the left, and of the extrapolated value of mGauss peak
top, angle to βzγ = 0 as

a function of pT is shown on the right panel of Fig. 63.
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Figure 63: Left panel: example plot of an extrapolation of the mGauss peak
top, angle estimator to

βzγ = 0. Right panel: extrapolation to pT = 0 using the mMC
top = 172.5 GeV

sample.

As a next step, it is investigated, whether this method behaves better under a variation
of the JSF than the method described in section 10. The impact on the top quark mass
estimator mGauss peak

top, angle if varying the JSF is demonstrated in Fig. 64:
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Figure 64: Investigation of the impact of a variation of the JSF on the mGauss peak
top, angle esti-

mator (represented by the purple stars). For comparison, the 4-momentum
invariant mass peak (red dots) and the results of the angle method analysis
if reconstructing the top pair using jet-parton matching (see section 9) (blue
triangles) are shown.

The red dots show the 4-momentum invariant mass distribution peak of the recon-
structed top quarks within a βγ interval of [-0.3;0.3] as a reference (see section 9.2).

82



The blue triangles indicate the case for the extrapolated mpeak
top, angle-estimator using jet-

parton matching as tt̄-reconstruction algorithm (section 9.7). The result obtained for
the case of the new, constrained χ2 reconstruction algorithm and an analysis using the
peak position of the Gaussian is indicated by the purple stars.
Although the JSF-dependence is smaller than if using the 4-momentum invariant mass
peak, the mGauss peak

top, angle estimator shows some dependence on the JSF, significantly more
than in case of the analysis method using jet-parton matching and Crystal Ball parametriza-
tion which is absent of influence of the combinatorial background (see section 9).
As demonstrated in section 9, the signal without the combinatorial background is ap-
proximately Gaussian-shaped19. The idea therefore was to fit that signal with a Gaussian
and the combinatorial background with a Landau function as the contribution of the
combinatorial background seems to be Landau-shaped. This point is underlined by
Fig. 61.
But in the Gauss peak, there might be as well a contribution by the combinatorial
background and vice versa, so Landau and Gauss functions are to some degree corre-
lated. Moreover, the restriction of the fit range might as well lead to a distortion of
the Gaussian and the Landau function. Due to the large slope at the lower end of the
distribution and the fit range restriction, the peak of the Landau might be shifted and
therefore change the Gaussian function.
This assumption can be checked by varying the fit range for example by taking into ac-
count the whole range in the fit of the Landau+Gauss function to the mangle

top -distribution.
The resulting JSF-dependence can be seen in Fig. 65. The purple stars show as a refer-
ence the results obtained with a restricted fit range and the blue crosses show the results
when taking into account the whole distribution range in the fit.

19The distribution was parametrized by a Crystal Ball function, which is mostly a Gaussian, see appendix
A.
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Figure 65: Investigation of the impact of the restriction on the fit range on the JSF
dependence of the mGauss peak

top, angle estimator. The purple stars show the results
if restricting the fit range and the blue crosses demonstrate the results if not
restricting the fit range of the Landau+Gauss function.

According to Fig. 65 a change in the fit range does not cause significant changes con-
cerning the JSF dependence: Both distributions show a similar slope and are shifted
with respect to each other but absolute values do not matter.

In order to check whether the dependence on the JSF has improved with this approach
compared to the approach discussed in section 10 (weighted peaks position), the system-
atic uncertainties introduced by the JSF are compared. A linear function is fitted (see
Fig. 66) to the extrapolated top quark mass estimator as a function of the JSF and an
uncertainty on the JSF of 3% is assumed (see section 10.4).
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Figure 66: Comparison of the JSF dependence of the mweighted peaks
top, angle estimator (left panel)

to the JSF dependence of the mGauss peak
top, angle estimator (right panel).

The systematic uncertainty of the extrapolated estimator due to the uncertainty on the
JSF can thus be calculated using:

∆mest.
top, angle = ∆p1 · 0.03 (43)

where p1 is the slope of the fit functions of Fig. 66. It must be considered that the
central values of the two measured top quark mass estimators are very different, there-

fore, the relative systematic uncertainty
∆mest.

top, angle

mest.
top, angle

@(JSF = 1) is calculated. Resulting

values for
∆mest.

top, angle

mest.
top, angle

@(JSF = 1) are calculated to
∆mweighted peaks

top, angle

mweighted peaks
top, angle

(@ JSF = 1)= 0.8% and

∆mGauss peak
top, angle

mGauss peak
top, angle

(@ JSF = 1)= 0.9%. These results stress that the JSF dependence of the

estimators is indeed very small and similar in both cases.
Fig. 64 indicates that the dependence is still larger with respect to the results obtained
with the analysis using jet-parton matching reconstruction. In the following, the in-
fluence of the 4-momentum invariant mass constraint in the χ2-tt̄ reconstruction algo-
rithm in the JSF dependence is evaluated. JSF variation studies are performed on the
mGauss peak

top, angle estimator but this time, the top pair is reconstructed without setting any re-
striction on the 4-momentum invariant mass of the reconstructed hadronically decaying
top quark. Thus, the fraction of combinatorial background is the same as in the analysis
in section 10. That way, the influence of the combinatorial background in the top quark
mass estimator mweighted peaks

top, angle can also be examined.

The orange diamonds in Fig. 67, left panel, demonstrate, that the JSF dependence is
slightly decreased when using the unconstrained χ2-reconstruction algorithm in case of
the Gauss peak estimator with respect to the same analysis but with using the con-
strained χ2-reconstruction algorithm (purple stars). In comparison, the top quark mass
measured with the peak position of the Crystal Ball function and with a jet-parton
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matching reconstruction (blue triangles) is shown. It is obvious from Fig. 67 that the
JSF dependence is smallest when there is no contribution of combinatorial background.
In order to evaluate the JSF-dependence, again a linear function is fitted to the data in
Fig. 67 on the right.
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Figure 67: Left panel: Comparison of the JSF dependence of the mangle
top estimator using

the jet-parton-matching-top-pair-reconstruction algorithm (blue triangles),

the mGauss peak
top, angle estimator without (orange diamonds) and with a constraint

(purple stars) on the 4-momentum invariant mass of the hadronically decaying

top quark. Right panel: evaluation of the JSF-dependence of the mGauss peak
top, angle

estimator for the case of the unconstrained χ2-reconstruction algorithm.

A calculation of the uncertainty introduced by the JSF using an average uncertainty on
the JSF of 3% yields a result 0.2%. This shows, that indeed, the increased dependence
on the JSF of the weighted peaks estimator mweighted peaks

top, angle is introduced by including
the combinatorial background in the estimator which is sensitive to the jet energy scale.
Moreover, the constraint on the 4-momentum invariant mass of the reconstructed top
quark introduces also additional JSF-dependence.
Concluding this section, extracting the Gauss peak position of the mangle

top -estimator dis-
tribution and reconstructing the top quark without requiring any constraint on the top
quark 4-momentum invariant mass, yields the result the least dependent on the JSF.
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12. Conclusion and Outlook

Monte-Carlo studies showed that the top quark mass is indeed affected very little, to a
degree of less than 200 MeV, by a variation of the jet energy scale according to Monte-
Carlo samples simulating collisions at a center-of-mass energy of 8 TeV.
Also, first feasibility studies were made taking into account combinatorial background.
Two examples for possible estimators considering combinatorial background have been
examined: In the construction of the mGauss peak

top, angle estimator, the combinatorial back-

ground is totally neglected while the mweighted peaks
top, angle estimator includes information on

the signal and the combinatorial background weighted with the relative integrals. But,
due to the large fraction of combinatorial background, latter enters with a very large
weight. An estimator which depends to a much smaller degree on the combinatorial
background is necessary.
In fact, in order to construct a suitable estimator, studies of the correlation of the combi-
natorial background and the signal have to be performed. First studies on the correlation
of signal and background within the scope of this thesis turned out to be largely insignif-
icant due to lack of statistics in the samples with mMC

top 6= 172.5 GeV. The knowledge of
the signal to background correlation would help to construct a suitable estimator with
regard to which degree the combinatorial background needs to be included in the esti-
mator.
Simplified studies on the JSF-dependence of the mGauss peak

top, angle estimator leads to the as-
sumption of a systematic uncertainty due to variations of the JSF of about 0.2% while the
mweighted peaks

top, angle estimator which considers the combinatorial background shows a larger
sensitivity to the uncertainty on the jet energy scale.
As next steps, physics background must be considered in the analysis and the impact
of a variation of the b-jet scale factor, a supplementary factor multiplied to the b-jet
4-momenta accounting for supplementary energy and momentum measurement uncer-
tainties concerning b-jets, has to be examined. The calibration of the angle method
needs to be redone including these components and then, the estimator could be applied
on data.

After the long shut-down LS1 of the LHC, the LHC restarts in 2015 with an increased
center-of-mass energy and increased luminosity resulting in larger tt̄ production cross
sections meaning larger data samples. In fact, the cross section of top quark processes
will increase by a factor of 2.5 while physics background processes will increase by a
factor of less than 2 [68]. More detailed studies which fail now due to lack of statistics
could be carried out with larger data samples. With these prospects, pursuing this
measurement method will yield promising results.
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A. The Crystal Ball Function

The Crystal Ball function is an asymmetric function which consists of a Gaussian func-
tion and a power-law tail. In this thesis, the Crystal Ball function is used to describe
asymmetric peaked distributions with one slowly declining tail. The Crystal Ball func-
tion is parametrized as follows [69], [70]:

f(x,α, n,x̄, σ) =

N · exp(− (x−x̄)2

2σ2 ) for x−x̄
σ > −α

N · ( n
|α| )

n·exp(− |α|
2

2 )

( n
|α|−|α|−

x−x̄
σ )n for x−x̄

σ ≤ −α
(44)

where x̄ is the peak position of the Gaussian, σ is the width of the Gaussian and N
is its height. The parameter n describes the slope of the power law function and the
parameter α determines the position of the transistion between the Gaussian function
and the power law function.
The function resulting of the parametrization of equation (A) can be seen in Fig. 68.

Figure 68: The Crystal Ball function shown for different parameter values, from [70].
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B. The Lorentz-Transformation

The Lorentz-transformation which was applied to boost the top quark decay products
into the top quark rest frame is of the following form [71]:

Λv =


γ −γ · v1

c
−γ · v2

c
−γ · v3

c
−γ · v1

c

−γ · v2
c

δij +
vi·vj ·(γ−1)

v2

−γ · v3
c



The Lorentz-transformation can be performed separately in each direction, they are or-
thogonal and independent in the 3 spatial directions which is required due to the equiv-
alence of all reference frames. This justifies the 2-step analysis of a separate treatment
of the longitudinal and transverse component of the estimator: The uncertainties on the
jet energy measurement which cause a Lorentz-transformation to the incorrect frame
are corrected separately in transverse and longitudinal direction by extrapolation. The
requirement of this approach is the possibility to decompose the Lorentz-transformation
into components.
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deren als die in der Arbeit angegebenen Quellen und Hilfsmittel benutzt zu haben.

München, 30.03.2015

Datum, Unterschrift

90



Acknowledgements
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