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Abstract

Supersymmetry is a theoretical framework that extends the Standard Model of Particle
Physics and solves some of its shortcomings. The phenomenological Minimal Super-
symmetric Standard Model (pMSSM) is a simplified supersymmetric model that allows
for a systematic probing of its parameter space due to its heavily reduced number of
parameters.

This work focuses on the comparison of three simplified models in the context of the
pMSSM, in which a stop (t̃1) decays via either a stau (⌧̃1) or a tau-sneutrino (⌫̃⌧ ).
The lightest supersymmetric particle (LSP) is either a gravitino (G̃) or a neutralino
(�̃0

1). These models are used to get an understanding of how di↵erent particle decays
are influenced by the parameters of the pMSSM, and to find the boundaries for each
model’s phase space. Decay modes that compete with the simplified models are also
studied to determine how to suppress them. These comparisons are performed using
generated model points, which are configurations of particle masses and decay modes
uniquely defined by sets of pMSSM parameter values. The phase space of the model
generation has been adjusted to increase the likelihood that the model points will con-
tain the simplified models, whilst still allowing for an uncompromising study.

A secondary goal is to understand which of these models would be best suited for
a study using real data. For this, the influence of the simplified models on the dark
matter relic density and the mass of the Higgs boson is studied. Model points, in which
the simplified models with a gravitino as LSP could be measured, are generally within
the boundaries of the dark matter relic density. The models with the neutralino as
LSP tended to have a relic density that is too large. The models are able to produce
Higgs bosons within 122–128 GeV, but only within limited regions of the total phase
space. While all three simplified models seem promising in the context of the pMSSM,
clear advantages for the model with the gravitino as LSP can be identified.





Zusammenfassung

Supersymmetrie ist ein theoretisches Gerüst, welches das Standardmodell der Teilchen-
physik erweitert und manche der o↵enen Fragen des Standardmodells beheben kann.
Das phänomenologische Minimale Supersymmetrische Standard Modell (pMSSM) ist
ein vereinfachtes supersymmetrisches Model, dessen Parameterraum aufgrund der stark
reduzierten Parameteranzahl eine systematische Erforschung ermöglicht.

Der Schwerpunkt dieser Arbeit liegt im Vergleich von drei vereinfachten Modellen
im Kontext des pMSSM’s, in denen ein Stop (t̃1) über einen Stau (⌧̃1) oder einen
Tau-Sneutrino (⌫̃⌧ ) zerfällt. Das leichteste supersymmetrische Teilchen ist entweder
ein Gravitino (G̃) oder ein Neutralino (�̃0

1). Diese Modelle werden genutzt, um ein
Verständnis vom Einfluss der Parameter des pMSSM auf verschiedene Teilchenzerfälle,
zu bekommen. Dabei werden auch die Grenzen der Phasenräume der Modelle aufge-
deckt. Zerfallsmoden, die mit den vereinfachten Modellen konkurrieren, werden eben-
falls untersucht, um sie unterdrücken zu können. Diese Vergleiche werden mit generieten
Modellpunkten durchgeführt. Modellpunkte sind Konfigurationen von Teilchenmassen
und Zerfallsmoden, die durch die Werte der pMSSM Parameter einzigartig bestimmt
werden. Der Phasenraum der Generierung der Modellpunkte wird an die vereinfachten
Modelle angepasst, um die Wahrscheinlichkeit, dass ein Modellpunkt eines der verein-
fachten Modelle beinhaltet, erhöht wird.

Ein sekundäres Ziel ist es, herauszufinden, welches der Modelle für eine Studie mit
experimentellen Daten am besten geeignet wäre. Dafür werden, unter anderem, die
Einflüsse der Modelle auf die Restmenge von Dunkler Materie und auf die Masse des
Higgs Bosons geprüft. Modellpunkte, in denen die vereinfachten Modelle mit Gravitino
als LSP gemessen werden könnten, sind in der Regel innerhalb der Grenzen der Relikt-
dichte von Dunkler Materie. Die Modellpunkte mit Neutralino als LSP neigen dazu,
eine zu groe Reliktdichte zu haben. Die Modelle können Higgs Bosonen innerhalb 122–
128 GeV produzieren, aber nur innerhalb eingeschränkter Regionen des kompletten
Phasenraums. Während alle drei vereinfachten Modelle vielversprechend im Kontext
des pMSSM’s sind, können eindeutige Vorteile für das Modell mit dem Gravitino als
LSP identifiziert werden.
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Chapter 1

Introduction

The field of particle physics focuses on the study of some the most fundamental as-
pects of our universe: Which particles exist and how do they interact with one another?
Many experiments requiring hundreds and thousands of researchers using some of the
largest and most precise machines in the world have been performed to try to answer
these questions. This has lead to the construction of a theoretical model known as the
Standard Model of Particle Physics (SM). The SM is likely the most well researched
physical theory to date. It describes all known elementary matter particles and explains
the origin of three of the four known forces. Over the second half of the 20th century,
many of the particles predicted by the SM were found, with the final discovery being
that of the Higgs boson in 2012 [1]. This verified the SM as a self-contained theory that
could be used as a very good model for explaining most known phenomena in particle
physics.

However, there are still open questions that can not be explained by the SM: What is
dark matter? How are the loop corrections to the Higgs boson’s mass being cancelled?
How can gauge coupling unification at high energies be explained theoretically? It
has become quite clear that theories that extend the SM are necessary. One class of
theories is Supersymmetry (SUSY), which introduces new partner particles for all SM
fermions and bosons. The potential discovery of these partner particles has become a
great topic of interest, with large scale searches being performed by multiple collabo-
rations using the Large Hadron Collider at CERN. So far, no traces of SUSY particle
have been found.

A SUSY model can take on various forms, one of which being the phenomenological
Minimal Supersymmetric Standard Model (pMSSM), which is a simplified version of
the MSSM and is described by 19 parameters. This work focuses on getting a better
understanding of how the di↵erent parameters influence the pMSSM’s particle spec-
trum by studying three di↵erent simplified models within the pMSSM using generated
models. After an introduction to the theoretical background required for this analysis,
an overview of the model generation is given. How the simplified models are dependant
on each pMSSM parameter is discussed in detail in the main section of this work.

1
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Chapter 2

Theory

This following section will briefly cover the theoretical principles and models upon
which this analysis is built. The Standard Model of Particle Physics (SM), along with
it is short-comings, will be discussed and an overview of Supersymmetry (SUSY), a
theoretical framework that extends the SM, will be given. Finally, the phenomenolog-
ical Minimal Supersymmetric Standard Model (pMSSM), the SUSY model that this
analysis focuses on, will be introduced.

2.1 The Standard Model

2.1.1 Mathematical description

Quantum field theory

The following mathematical description of the SM follows [2, 3, 4]

Classically, objects in space are described by their time-dependent spatial coordinates:
x (t). Here, x (t) is a 3-vector, which is denoted by the bold font. An example of this
would be the calculation of the path of a single water particle in a turbulent body of
water. In contrast to this, field theory takes a metaphorical step backwards and tries to
describe a region of space as a whole system. Therefore, fields are functions of position
and time (�i (x, t)) and particles are excitations of a field. In the previous analogy, a
field would describe the motion of the turbulent body of water as a system, throughout
time. Or, for more of a particle physics related example, the electric potential V is a
field.

A Lagrangian density L (often simply referred to as a Lagrangian, as in the following)
is a function of fields �i and their derivatives in time and space @µ�i ⌘ @�i

@xµ . In field
theory, the action S is defined as the integral over a Lagrangian:

S =

Z
L (�i, @µ�i) d

4
x. (2.1)

3
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The principle of least action states that if a system can evolve over time, it will always
do so in a way that the action S remains minimal; mathematically expressed as �S = 0.
From this follows the Euler-Lagrange equation

@µ

✓
@L

@ (@µ�i)

◆
=
@L
@�i

, (2.2)

which provides the equations of motion for the system. Quantum field theory focuses
on describing the behaviour of quantum particles with fields.

Phase invariance and gauge symmetry

Gauge invariance implies that the Lagrangian doesn’t change when it undergoes a
phase transformation. Specifically, the two types transformations in question are global
phase transformations and local phase transformations. A global phase transformation,
described as

 ! e
i↵
 , (2.3)

is independent of spacetime. An important property of global gauge invariance is that
the new phase doesn’t a↵ect the derivative of the field

@µ ! e
i↵
@µ , (2.4)

which also means that the Lagrangian is not a↵ected by the transformation. An anec-
dote for this would be a universe-wide potential being changed by a equally-large
flat amount, everywhere. This shouldn’t change the laws of physics, which is why
a Lagrangian that describes elementary particles and forces must be globally gauge
invariant. Generally, this is not problematic, as the global phase is independent of
space-time and therefore not a↵ected by the derivative during the construction of the
Lagrangian. On the other hand, a local phase transformation, as the name implies, is
dependent on spacetime and is described as

 ! e
i↵(x)

 =  ̃. (2.5)

When applying the derivative to the transformed field, an additional term appears that
doesn’t exist for the non-transformed field

@µ ̃ = @µ

�
e
i↵(x)

�
 + e

i↵(x)
@µ = i (@µ↵ (x)) ei↵(x) + e

i↵(x)
@µ . (2.6)

Therefore, when constructing a Lagrangian to describe a physical theory, it must be
expanded by an additional field that transforms such that it causes the additional term
in Eq. 2.6 to be cancelled. This can be done by choosing the expansion of the field
in a way that contains the local phase. A example of this can be performed with the
Dirac Lagrangian 1

1
Using natural units: ~ = 1, c = 1
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L = i ̄�
µ
@µ �m ̄ (2.7)

where  ̄ is the adjoint spinor of  2. If the field in 2.7 transformed like Eq. 2.5, then
the derivative of the field in the first part of the Lagrangian transforms like Eq. 2.6,
resulting in

L ! L� (@µ↵ (x))  ̄�µ (2.8)

which clearly is not invariant under local phase transformation. To ease the choice
of how the new field (with which the Lagrangian will be expanded) should transform
locally, the phase ↵ (x) can be defined as

↵ (x) = �q� (x) (2.9)

which redefines the local phase transformation to

 ! e
�iq�(x)

 (2.10)

and results in Eq. 2.8 being rewritten as

L ! L+ q ̄�
µ
 @µ� (x) . (2.11)

The Lagrangian clearly is not invariant under transformation. To reconcile this prob-
lem, a vector field Aµ (referred to as a ‘gauge” field) is introduced that transforms
locally with

Aµ ! Aµ + @µ�. (2.12)

Implementing Eq. 2.9 into Eq. 2.6 results in

@µ = e
�iq�(x) (@µ � iq (@µ�)) . (2.13)

Since the transformation of the gauge field was chosen so that it contains @µ�, a substi-
tution for the partial derivative can be introduced, known as the ”covariant derivative”

Dµ = @µ + iqAµ (2.14)

which transforms with

Dµ ! @µ + iq (Aµ + @µ�) (2.15)

and has the property

Dµ ! e
�iq�(x)Dµ . (2.16)

2 ̄ ⌘  †�0, where �0 is the time-like gamma-matrix
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In other words, with a specific choice of gauge field (and with the help of the redefined
phase to simplify matters), a new derivative can be constructed that makes the Dirac
Lagrangian invariant under local phase transformation (note the similarity between
Eq. 2.16 and Eq. 2.4). As a result, the Dirac Lagrangian takes on a new form

L = i ̄�
µ
@µ �m ̄ +

�
q ̄�

µ
 
�
Aµ (2.17)

it is important to realise that the redefinition of the phase and the introduction of the
gauge field do not just serve mathematical purposes. As with all terms in a Lagrangian,
the new term seen in Eq. 2.17 has a physical interpretation: it introduces both the
electromagnetic field Aµ and the electromagnetic charge q. However, it doesn’t include
the free term for the gauge field. Since the gauge field is a vector field, the free term
can be described by the Proca Lagrangian

L = � 1

16⇡
F

µ⌫
Fµ⌫ +

1

8⇡
m

2
A
B

⌫
A⌫ . (2.18)

The first term includes the electromagnetic tensor, which is defined as Fµ⌫ = @
µ
A

⌫ �
@
⌫
A

µ and is local phase invariant under the aforementioned transformation of Aµ in
Eq. 2.12. The second term, specifically A

⌫
A⌫ , is not local phase invariant and the

only way to solve this problem is by setting the mass parameter mA to 0, eliminating
the second term entirely. This means that the gauge field Bµ was introduced and its
mediating particle, which at this point looks like the photon, must be massless. This
results in a U(1) gauge symmetry, and is the basis of quantum electrodynamics (QED).
It should be noted, that in the example with the Dirac Lagrangian it looks like local
gauge invariance was demanded first and then the origin of the electromagnetic force
conveniently followed. However, it is the other way around: to be able to construct a
Lagrangian describing the electromagnetic force, it is required that local gauge invari-
ance is introduced.

The U(1)QED gauge symmetry is not the only symmetry that can come from im-
plementing a gauge field to achieve local phase invariance. The same can be done for
SU(2) and SU(3)3, though the local gauge transformations are not as simple as with
the Dirac Lagrangian, as more fields are involved.
The SU(3) gauge symmetry, which introduces gluons, quarks and the colour charge, is
known as quantum chromodynamics (QCD). The process for its derivation is similar
to that of the U(1)QED gauge symmetry.
The SU(2) gauge symmetry describes the weak interaction with the gauge bosons
W

1
µ
,W

2
µ
,W

3
µ
. It has the problem that the gauge bosons for the weak interaction would

have to be massless to ensure local gauge symmetry, but it has been proven experi-
mentally that they have mass [6, 7]. The U(1)QED and SU(2) gauge symmetries can
be combined to form the SU(2)L ⇥ U(1)Y symmetry, which describes the electroweak
symmetry. Since the weak part only interacts with particles with a left-handed chiral-
ity, the SU(2) group is denoted with the L subscript. The U(1)Y group is not quite
the same as the U(1)QED group: the Y refers to the weak hypercharge from the Gell-
Mann-Nishijima formula Y = 2(Q � I3), where Q is the electric charge and I3 is the

3
Strictly speaking, according to Yang and Mills [5], this can be done with any SU(n) group.
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third component of the weak isospin. The gauge bosons of U(1)QED and SU(2) mix,
to create the W

± bosons, the Z
0 boson and the photon Aµ

W
+ =

1p
2

�
W

1
µ
� iW

2
µ

�
(2.19)

W
� =

1p
2

�
W

1
µ
+ iW

2
µ

�
(2.20)

Z
0 = cos (✓W ) ·W 3

µ
� sin (✓W ) · Bµ (2.21)

Aµ = sin (✓W ) ·W 3
µ
+ cos (✓W ) · Bµ (2.22)

(2.23)

where ✓W is the weak mixing angle. During this process, with the introduction of the
Higgs mechanism, the W

± and Z
0 bosons gain mass. The Higgs field is a complex

scalar field

�(x) =
1p
2
(�1(x) + i�2(x)) (2.24)

and introduces a new potential

V (�) = �µ
2(�⇤

�) + �(�⇤
�)2 (2.25)

where µ
2 and � are positive constants. It can be shown that the minimum of this

potential is degenerate, meaning that there are an infinite number of states that achieve
the minimum potential. The minimum is known as the vacuum expectation value
(VEV). The first term on the right side of Eq. 2.25, �µ

2(�⇤
�), looks like it represents

a mass term, but the minus sign would mean that the mass is negative. This would
be unphysical, therefore the mass term would have to be set to 0. However, this
problem can be solved by considering fluctuations around the minimum, which results
in the spontaneous breaking of the symmetry of the system (meaning without influence
from an outside system). This ultimately introduces the Higgs boson, a scalar particle
with mass mH =

p
2�v2

�
=

p
2µ

�
and when implemented into the SM, it gives the

electroweak gauge bosons, W± and Z
0, mass.

2.1.2 Particle content

The following section is based on [2, 8, 9]

All known elementary particles can be split into two groups: fermions, which have
a half-integer spin and bosons, which have an integer spin.

Fermions

Fermions have a spin of SZ = ±1
2 , follow the Pauli principle and and get their name

from following the Fermi-Dirac statistics. They consist of all of the known matter
particles and can be split into two groups: leptons and quarks.
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Leptons come from the SU(2) gauge symmetry involving the weak interaction. They
are generated as three doublets (see Tab. 2.1) which, in this case, means that each
charged lepton has an associated neutral lepton (neutrino). Whilst they all have a weak
isospin of I = 1, the third component of the weak isospin is I3 =

1
2 for charged leptons

and I3 = �1
2 for neutral leptons. They all interact via the weak interaction, but only

the charged leptons interact electromagnetically. According to the SM, neutrinos are
massless, but evidence of flavour oscillation implies that some neutrinos must be mas-
sive [10]. Charged and neutral leptons can change into one another by either absorbing
or emitting a W

± boson, whereby the third component of their weak isospin is changed
by ±1 (thereby changing their electric charge via the Gell-Mann-Nishijima formula).
This indicates that if not for the electric charge, one could think of the two particles of a
doublet being two states of the same particle. A lepton and anti-lepton can eliminate to
a Z

0 boson. Each generation has its own lepton number Li = 1 (anti-leptons have �1),
where i indicates the first, second or third generation. So far, total leptonic number
conservation has been observed. For example, if a tau-lepton (⌧) decays, then the to-
tal lepton number of the end state particles would have to equal L1 = 0, L2 = 0, L3 = 1.

Generation Flavour Electric charge [e] Mass

1
e -1 0.511 MeV

⌫e 0 < 1.1 eV

2
µ -1 105.7 MeV

⌫µ 0 < 0.19 MeV

3
⌧ -1 1776.9 MeV

⌫⌧ 0 < 18.2 MeV

Table 2.1: SM leptons. Natural units. Masses taken from [8].

Quarks come from the SU(3) gauge symmetry involving the colour charge. The colour
charge, which appears in the form of either red, green or blue (or the associated anti-
colours), allows multiple quarks of the same flavour to bind together. Without the
colour charge, the Pauli exclusion principle would seem to be broken for particles such
as �++, which consists of three strange-type quarks. The configuration of quarks has
to be colour neutral (also called colourless or “white”), meaning there must be a red,
green and blue charge for particles made of three quarks (known as baryons), or there
must be a colour charge plus anti-colour charge of the same colour for particles made of
a quark and an anti-quark (mesons). As a result, quarks can never be found by them-
selves and hadronise4 when separated. The quarks themselves come in six flavours,
split into three generations of doublets (see Tab. 2.2). Like with the leptons, the dou-
blets are defined by their weak isospin, where each doublet has an isospin of I = 1

2 and
the upper quarks have a third component of weak isospin I3 =

1
2 and the lower quarks

I3 = �1
2 . Also like the leptons, their electric charge di↵ers by a total value of 15, but

it is split di↵erently. The upper quarks have a value of Q = +2
3 , whereas the lower

quarks have Q = �1
3 , which allows for the creation of negative and positive particles.

4
New quarks are spontaneously created and bind to create a colourless particle.

5
In units of e
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Generation Flavour Electric charge [e] Mass [MeV]

1
u +2

3 2.16

d �1
3 4.67

2
c +2

3 1.27 · 103

s �1
3 93

3
t +2

3 172.78 · 103

b �1
3 4.18 · 103

Table 2.2: SM quarks. Natural units. Masses taken from [8].

Bosons

Bosons have spin Sz = 1 (apart from the Higgs boson) and follow Bose-Einstein statis-
tics. They consist of the gauge bosons that mediate the known forces between matter
particles.

The gluon g mediates the strong force, the interaction between quarks. it is massless
and has no electric charge, but it has eight di↵erent colour charge states, known as the
colour octet.

The photon � is the neutral gauge boson of the electromagnetic interaction. it is
massless, has spin s = 1 and conserves angular momentum. The lack of mass is a
result of setting mA = 0 in Eq. 2.18.

The W± bosons and the Z0 boson are the mediators of the weak force. The W
±

bosons have a weak isospin of ±1 and only couple to left-handed helicity states of
quarks and leptons. They allow for quarks to change their flavour and for charged
and neutral leptons to interact with one-another. The Z

0 boson mediates chargeless
interactions (known as weak neutral currents) between leptons, conserving momentum
and spin, and has a weak isospin of 0.

The Higgs boson has spin SZ = 0. It gives mass to the W
± and Z

0 bosons and
it is coupling strength with other SM particles depends on the particle’s mass. For
this reason, it is strongest coupling is with the top-quark, followed by the W

± and Z
0

bosons.

Boson Mass [GeV]

g 0

� 0

W
± 80.379

Z
0 91.1876

H 125.10

Table 2.3: SM bosons. Natural units. Masses taken from [8].
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2.2 Supersymmetry

The basic idea of SUSY is that symmetry is constructed between fermions and bosons.
For the Minimal Supersymmetric Standard Model (MSSM), the simplest complete
SUSY model, this means that every fermion has a bosonic, supersymmetric partner
particle (superpartner) that has the same quantum numbers (apart from the spin),
and every boson has a fermionic superpartner. First, some of the shortcomings of the
SM will be highlighted along with their SUSY solutions. Then, the simplest complete
SUSY model, the MSSM and a simplification of this model, the phenomenological
MSSM (pMSSM), which this work focuses on, will be presented.

The following section is based o↵ of [11, 8].

2.2.1 Mathematical Description

In SUSY, fermionic states are transformed into bosonic states, and vice-versa. The
transformation is performed with the fermionic operator Q, which is an anti-commuting
spinor [11], with

Q |bosoni = |fermioni , Q |fermioni = |bosoni . (2.26)

Since Q is a spinor, its hermitian conjugate Q
† is also a symmetry generator. That

fact that both Q and Q
† are fermionic operators means that they have a spin of 1/2,

from which follows that SUSY is a spacetime symmetry. They follow the commutator
and anti-commutator relations:

{Q,Q
†} / P

µ (2.27)

{Q,Q} = {Q†
, Q

†} = 0 (2.28)

[P µ
, Q] = [P µ

, Q
†] = 0, (2.29)

where P µ is the four-momentum generator of spacetime translations [11]. Each particle
and its superpartner are represented together as a supermultiplets in the SUSY algebra.
As a result of Eq. 2.29, the SUSY generators also commute with �P

µ, which is the
operator that produces a particle’s squared mass. This means that a particle and
their superpartner must have the same mass, as it doesn’t matter whether the particle
is transformed into its superpartner before squared mass operator is applied. Also,
because Q and Q

† commute with generators of gauge transformations, it follows that
the particles and their superpartners have the same quantum numbers (apart from
spin).

2.2.2 Soft Symmetry Breaking

If SUSY were to be a perfect symmetry, then sparticles would have the same mass
as particles (as discussed in Sec. 2.2.1). The general assumption is that if this were
the case, then the SUSY-particles should be measurable with the currently achieved
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energy levels in particle accelerators. The fact that SUSY has not been confirmed
means that if SUSY particles do exist, then their masses are heavier than previously
thought. Therefore, sparticle masses must be greater than particle masses, breaking
the symmetry. To take this “soft” breaking into account, the SUSY Lagrangian has to
be extended by an additional term:

L = LSUSY + Lsoft. (2.30)

2.2.3 The Hierarchy Problem

Quantum gravitational e↵ects become important at an energy scale known as the re-
duced Planck scale MP , which is in the order of magnitude of around 1018 GeV. it is
generally assumed that MP functions as a sort of upper bound for the SM and that
new physics must exist beyond it. Another energy scale that is used to describe the SM
is the electroweak scale MW , which defined is by the VEV of the Higgs field and is in
the order of 102 GeV. It is generally seen as quite odd that two energy scales that seem
fundamental for the SM are at completely di↵erent orders of magnitude and becomes
problematic when looking at higher order corrections to the Higgs boson’s (squared)
mass, which according to the SM are dependant on these energy scales. These correc-
tions come from particles coupling to the Higgs field. The larger the mass of a coupling
particle is, the larger the correction is as well.

An example is a correction to mh
2 from a loop involving a fermion f that has the mass

mf and a coupling parameter �f [11]:

�mH
2 = � |�f |2

8⇡2
⇤2

UV
+ . . . . (2.31)

The ultraviolet momentum cut-o↵ ⇤2
UV

is the energy scale that is used to regulate the
loop integral (to stop divergences) and should be understood as the energy scale at
which new physics need to be introduced to describe behaviours at high energies. If
⇤2

UV
is taken to be MP , then the corrections to the Higgs mass become incredibly large;

many orders of magnitude larger than the Higgs mass itself. More corrections can come
from a coupling to a hypothetical heavy complex scalar particle S with mass mS [11]:

�mh
2 =

�S

16⇡2

✓
⇤2

UV
+ 2mS

2
ln

✓
⇤UV

mS

◆
+ . . .

◆
. (2.32)

These corrections need to be eliminated to get a Higgs boson with a mass in the order
of GeV. For the �S and |�f |2 terms to cancel each other, the coupling parameters
require the relation �S = 2|�f |2. It is not possible to eliminate all other appearing
terms without having to introduce some sort of tuning to specifically counter them,
referred to as fine-tuning, but this is considered unphysical. The idea that all of these
extremely large corrections just so happen to cancel each other in a way that leaves the
Higgs mass around the same order of magnitude as the other SM particles is generally
seen as “unnatural”. This is what is referred to as the hierarchy problem.
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(a) (b)

Figure 2.1: Interaction between the Higgs boson and (a) a fermion and (b) a scalar
particle [11].

The general assumption is that there must be a new physical model that somehow
regulates these corrections. This is where SUSY comes into play: the corrections that
the Higgs boson receives from fermions and bosons are countered by corrections from
their superpartners. Since the electric charge, colour charge and weak isospin are the
same, the absolute value of the corrections are the same, but they have the opposite
signs due to the di↵erent spins. This is one of the stronger motivations for discovering
a SUSY-model.

2.2.4 Gauge Coupling Unification

it is believed that the strong, weak and electromagnetic forces are actually di↵erent
parts of the same force. If this were the case, then the individual coupling constants of
the forces would be the same at high energies (the coupling constants are not actually
constants, but are dependent on the energy of the system). Unfortunately, the SM
does not provide such a unification (depicted as dashed lines in Fig. 2.2). Through the
introduction of new particles, new corrections are applied to the coupling constants and
the MSSM allows for a unification at about 1.5 · 1016 GeV (coloured lines in Fig. 2.2).
The corrections start to have a stronger e↵ect at around 3 TeV, which is where the
coloured lines in Fig. 2.2 deviate from the dashed.

Figure 2.2: Strength of the coupling constants depending on energy scale for the SM
(dashed) and the MSSM (coloured) [11].
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2.2.5 Dark Matter and R-Parity

The are many experimental observations that hint at the existence of non-baryonic
dark matter, a few examples being gravitational lensing, stellar velocity dispersion and
rotation curves in asymmetric systems [8]. A big problem with the SM is that does
not provide an explanation for what dark matter could be. However, a mechanism
that can be implemented in SUSY models to solve a problem with baryon and lepton
number conservation can also result in particles that fulfil the requirements for dark
matter: R-parity.

A problem that can arise when constructing a SUSY Lagrangian is the possibility of
introducing terms that break baryon and lepton number conservation. The conserva-
tion is intrinsic to the SM and a breaking of this conservation has not been observed.
This issue can be resolved by introducing R-parity conservation. R-parity is defined as

PR = (�1)3(B�L)+2s
, (2.33)

where B is the baryon number, L the lepton number and s the spin. As a result,
SM-particles have an even R-parity (PR = +1) and SUSY-particles have an odd R-
parity (PR = �1). This has important consequence: every interaction needs to involve
an even number of SUSY-particles. Therefore, if a SUSY-particle decays, then it is
required to decay to an odd number of SUSY-particles (usually just one). That means
that the lightest SUSY-particle (LSP) is stable, as it is unable to decay to any other
SUSY-particles. If the LSP is also electrically neutral, then it becomes a candidate for
dark matter.

Relic Density

We can assume that there are two types of interactions: interactions that change the
abundance of a given particle type (annihilation, production) and interactions that do
not. Once the rate of a particle species’ number-changing interactions � has fallen
below the Hubble constant H, the species is considered chemically decoupled [8] and
the number of abundance-changing interactions is approximated to be negligible. This
limit is estimated by calculating the freeze-out temperature Tf.o.. It is defined as the
temperature where H(Tf.o.) ⇠ �(Tf.o.). Doing so provides a density of the given particle
species that is constant throughout time, also known as a relic density (this assumes
that the entropy is conserved between Tf.o. and today, which is not given).

The relic densities calculated for theoretical models that describe new forms of parti-
cles and particle interactions must coincide with the experimentally measured values.
When it comes to dark matter, the relic density calculated in this fashion is referred to
as the cold dark matter relic density. Models that propose an interaction that creates
a dark matter candidate must take into consideration that the interaction must not be
so common as to violate this relic density. The cold dark matter relic density itself is
given as ⌦ch

2, where h is a normalised version of the Hubble constant H and is used
to make the density ⌦c unitless.
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Table 2.4: Particle content of the MSSM. Sfermion mixing is assumed negligible for
the first two families. Table taken from [11].

According to the Planck 2018 results [12], the current combined measurement for the
cold dark matter relic density is ⌦ch

2 = 0.120 ± 0.001. The dark matter relic density
of a model point is not required to be exactly this value to be acceptable — it can
also be lower. If a model point does reach this value, then that would mean that this
model point can explain the existence of all dark matter currently in the universe, as
it is able to produce enough dark matter to achieve the measured density. If the dark
matter relic density of a model point is lower than the measured value, then the model
point does not produce enough dark matter to explain all current dark matter in the
universe, meaning that there would have to be other processes that also produce dark
matter.

2.2.6 Minimal Supersymmetric Standard Model

SUSY-particles are described by introducing new parameters, but how this is imple-
mented depends of the model. The Minimal Supersymmetric Standard Model (MSSM)
requires the smallest number of new parameters necessary to construct a SUSY-model.
The MSSM can be constructed to contain R-parity, in which case it is able to produce
a candidate for dark matter. The particles and supersymmetric particles of the MSSM
are represented in supermultiplets, of which there are two kind: chiral and gauge.

The chiral supermultiplets contain fermions and their superpartners, which are re-
ferred to as scalar fermions, or sfermions. They have the prefix “s-” and are denoted
with a tilde. As stated, the spin of the sfermions is 0, hence the name “scalar”. The
left-handed and right-handed parts of a fermion have their own superpartners, which
themselves are not left-handed or right-handed, since they are scalar. The L and R as
seen in Tab. 2.4 merely indicate whether they are the superpartners of the left-handed
or right-handed part of a fermion.
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There is a second type of supermultiplets, which contains gauge bosons and their
superpartners, known as the gauginos. Gauginos have a spin of 1/2 and are denoted
as W̃ 0, W̃± (winos) and B̃

0 (binos). The gluon also forms a gauge supermultiplet with
its superpartner, the gluino. When the electroweak symmetry is broken, along with
the W and Z bosons becoming massive, five scalar Higgs mass eigenstates appear.

The scalar Higgs bosons are associated with two chiral supermultiplets. The elec-
troweak gauge symmetry is a bit more complicated in SUSY models, which leads to
the MSSM requiring more that one Higgs boson. As a result, there are two supermul-
tiplets with Higgs bosons.The first supermultiplets (H+

u
, H

0
u
) has Y = +1/2 and the

second (H�
d
, H

0
d
) has Y = �1/2. Each supermultiplet has its own VEV: vu and vd.

The superpartners of these Higgs bosons are called higgsinos which belong to gauge
supermultiplets. The su�x applied to a spin-1/2 superpartner is “-ino”. They are
denoted as H̃+

u
, H̃0

u
, H̃�

d
and H̃

0
d
.

There are two are CP-even neutral scalars h
0 and H

0, where h
0 is lighter than H

0.
h
0 represents the Higgs boson that has been measured. There is one CP-odd neutral

scalar A0 and there are two charged scalars, H+ and H
�.

Another e↵ect of electroweak symmetry breaking is the mixing of higgsinos with gaug-
inos to form new mass eigenstates. The neutral higgsinos H̃0

u
and H̃

0
d
with the neutral

gauginos W̃ 0 and B̃ mix to form four mass eigenstates called neutralinos, denoted in
Tab. 2.4 as Ni (i = 1, 2, 3, 4). The charged higgsinos and gauginos H̃

+
u
, H̃

+
d
, W̃

+

and W̃
� mix to form four mass eigenstates called charginos, denoted in Tab. 2.4 as

Ci (i = 1, 2, 3, 4). An alternative notation exists for both neutralinos and charginos,
which is used in this work. Neutralinos are denoted as �̃0

i
(i = 1, 2, 3, 4) and charginos

as �̃+
i
(i = 1, 2, 3, 4). Neutralinos and charginos are ordered by their masses, with i = 1

being the lightest. It should be noted that the mass of a charginos or neutralinos can
have a negative phase. Although this phase has no e↵ect on physical interactions, the
absolute values of the masses of the neutralinos and charginos are used in this analysis.

Generally, the lightest neutralino �̃0
1 is the LSP of an MSSM model. However, it is

possible to have a di↵erent LSP by constructing a model that includes the superpartner
to the graviton, the gravitino G̃. The mass of the gravitino is not well defined, so it
can be chosen to be lighter than the �̃0

1 and therefore be the LSP.

Notation in this Work

Throughout this work, the particles t̃1, ⌧̃1, �̃
+
1 and �̃0

1 are often referred to as “stop”,
“stau”, “chargino” and “neutralino” instead of using the notation to ease the read-
ability. Although these terms are not quite accurate, as there are individually two
di↵erent stops and staus and four di↵erent charginos and neutralinos, this work will
almost exclusively be discussing the lightest form of each particle. It will be made clear
if one of the heavier versions is being referred to, by using the proper notation.

The mixtures of the stop and the stau are mixtures of a right-handed and a left-handed
state. To keep things simple, if the mixtures lean towards being mostly right-handed,
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the stop or stau will be referred to as being “right-like”. Similarly, stops and staus
with a mostly left-handed mixture will be referred to as being “left-like”.

When SPheno (see Sec. 3.2) calculates whether a decay mode for a particle is possible,
it lumps the decay mode and the anti-decay mode together. There is no di↵erentiation
between X ! Y + Z and X̄ ! Ȳ + Z̄. Generally speaking this shouldn’t matter, as
the branching ratios should be the same, but questions could be raised when it comes
to the chargino. �̃+

1 and �̃�
1 have two di↵erent mixing matrices, yet the resulting dif-

ferences are extremely small. Because of this, the notation of the charge is omitted for
all particles throughout this work, except to di↵erentiate the chargino (�̃+

1 ) from the
neutralino (�̃0

1).

In the MSSM there are multiple Higgs bosons, but this analysis only studies one of
them: h0. Throughout the rest of this work, it will be referred to as the “Higgs boson”.

2.2.7 phenomenological Minimal Supersymmetric Standard Model

The MSSM has 124 [8] parameter, which is the smallest amount of parameters needed
for a SUSY-model. It is necessary to understand how all of these parameters interact
with and influence each other to understand how the MSSM functions, but this is very
di�cult to do with 124 parameters. Therefore, a simplified version of the MSSM is in-
troduced: the phenomenological Minimal Supersymmetric Standard Model (pMSSM).
The pMSSM includes new assumptions that align with observations[13]:

• All parameters are real (no CP violation through SUSY)

• No flavour-changing neutral currents

• First and second generation sfermions are degenerate and have negligible Yukawa
couplings (based on experimental constraints)

These additional constraints reduce the number of parameters to 19 [13]:

• tan(�), which is defined as the ratio of the VEVs: tan(�) = vu
vd

• mA: mass of the CP-odd Higgs boson A
0

• µ: the higgsino mass parameter

• M1, M2, M3: the bino, wino and gluino mass parameters

• mQL1 , muR , mdR , meL , meR : mass parameters for the first and second sfermion
generations

• mQL3 , mtR , mbR , m⌧R , m⌧L : mass parameters for the third sfermion generation

• At, Ab, A⌧ : third generation trilinear coupling constants
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The gravitino’s mass has to be set by hand, acting as a 20th parameter, as it can not
be calculated with the given parameters. It is possible to scan this reduced parameter
space, which will provide a better understanding of how the parameters influence par-
ticle masses, mixing ratios, branching ratios, etc. To a degree, this information will be
extendible to the MSSM.

2.3 Simplified Models

The idea of a simplified model is to focus on only a few particles and interactions,
instead of trying to understand all aspects of a more complete model at once. This
allows for a targeted analysis on the boundaries of sensitivity of specific interactions,
which can then be used to limit broader searches [14]. The goal of this work is to look
into similar simplified models, to get a better understanding of how large of an e↵ect
the pMSSM parameters have on each particle and their interactions, but also to figure
out which model would be better suited for an expansive search with real experimental
data.

The first model (Fig. 2.3) has been chosen by the ATLAS Collaboration [15]. Here,
the stop decays via (what is assumed to be) an o↵-shell �̃+

1 (not depicted) to a stau
(⌧̃1), a tau-neutrino (⌫⌧ ) and a b-quark (b). The stau then decays to a G̃, which is the
LSP, and a tau (⌧). Throughout this work, this model is dubbed the “ATLAS-stau”
model.

The second (Fig. 2.4a) and third (Fig. 2.4b) models have been chosen by the CMS
Collaboration [16]. In this work, they have been named the “CMS-stau” model and
the “CMS-sneutrino” (sometimes shortened to “CMS-sneu”) model. The CMS-stau
model di↵erentiates itself from the ATLAS-stau model in two main ways: first, the
stop decays to an on-shell chargino (�̃+

1 ) and a b-quark (b). The �̃+
1 then decays to a ⌧̃1

and a ⌫⌧ , and the ⌧̃1 decays to a �̃0
1 and a ⌧ . Second, the LSP is a neutralino instead of

a gravitino. The CMS-sneutrino model di↵ers only slightly from the CMS-stau model:
instead of the �̃+

1 decaying to a ⌧̃1 and a ⌫⌧ , it decays to a tau-sneutrino ⌫̃⌧ and a ⌧ .
The ⌫̃⌧ then decays to a �̃0

1 and a ⌫⌧ . The CMS-sneutrino model has been chosen for
this analysis to find out if there are any noticeable di↵erences between the �̃+

1 decaying
to a ⌧̃1 or a ⌫̃⌧ .

As stated in Sec. 2.2.7, the mass of the gravitino has to be implemented by hand.

Figure 2.3: ATLAS-stau simplified model [15]
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(a) (b)

Figure 2.4: (a) CMS-stau simplified model, (b) CMS-sneutrino simplified model [16]

Since the ATLAS-stau model has the gravitino as the LSP, the mass has been chosen
to be very light (m(G̃) = 10�9 GeV). For the CMS-stau and CMS-sneutrino models,
the gravitino’s mass is chosen to be extremely heavy (m(G̃) = 1019 GeV), so that the
possibility of another particle decaying to it is eliminated.

A model point is a unique set of values of the pMSSM parameters, plus the physi-
cal masses and branching ratios of each particle, which are determined by the values
of the parameters and are therefore also unique to that model point. By generating
many model points, a variety of di↵erent configurations of particle masses and decay
modes are created, which can be compared to one another. Throughout this work,
model points are often referred to as “containing” one of the simplified models. This
references whether specific criteria regarding the simplified model are upheld within
the model point.

The following criteria are used to determine whether a model point contains the
ATLAS-stau model:

• model point has to be physical: SPheno does not return an error and FeynHiggs
returns m(h) > 0 (see Sec. 3.2)

• m(t̃1) > (m(⌧̃1) + m(b) + m(⌫⌧ ))

• m(⌧̃1) > (m(G̃)+m(⌧))

• G̃ is the LSP

• BR(t̃1 ! ⌧̃1 b ⌫⌧ ) · BR(⌧̃1 ! G̃ ⌧) > 0.16

The following selection criteria are for the CMS-stau model:

• model point is physical

• m(t̃1) >
�
m(�̃+

1 ) + m(b)
�

• m(�̃+
1 ) > (m(⌧̃1)+m(⌫⌧ ))

6
BR stands for “branching ratio”
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• m(⌧̃1) > (m(�̃0
1)+m(⌧))

• �̃
0
1 is the LSP

• BR(t̃1) ! �̃
+
1 b) · BR(�̃+

1 ! ⌧̃1 ⌫⌧ ) · BR(⌧̃1 ! �̃
0
1 ⌧) > 0.1

The following selection criteria are for the CMS-sneutrino model:

• model point is physical

• m(t̃1) >
�
m(�̃+

1 ) + m(b)
�

• m(�̃+
1 ) > (m(⌫̃⌧1)+m(⌧))

• m(⌫̃⌧1) > (m(�̃0
1)+m(⌫⌧ )))

• �̃
0
1 is the LSP

• BR(t̃1) ! �̃
+
1 b) · BR(�̃+

1 ! ⌫̃⌧1 ⌧) · BR(⌫̃⌧1 ! �̃
0
1 ⌫⌧ ) > 0.1

Regarding the last condition, the combined branching ratio being greater than 0.1
comes from the secondary objective of this analysis: determining which simplified
model is best suited for a study using real data. If the combined branching ratio is
too small in a model point, then it becomes unlikely that the simplified model would
be measurable. Therefore, the lower bound of 0.1 has been set. As a result, a model
point in which any of the individual decay steps has a branching ratio below 0.1 does
not pass the selection criteria. This means that not every model point that is physical
contains one of the simplified models. On some occasions, the selection criteria of a
plot will be referred to a simplified model’s mass hierarchy. This means that the all
the criteria of the simplified model except for any selections on the branching ratios
are applied. The goal of this selection criteria is to have model points in which the
decay steps of the simplified model are kinematically possible, but they do not have to
be present. For example, a model point with m(t̃1) > (m(⌧̃1) + m(b) + m(⌫⌧ )) allows
for the decay t̃1) ! �̃

+
1 b kinematically, but BR(t̃1) ! �̃

+
1 b) = 0 is still possible.
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Chapter 3

Experimental Set-up

3.1 Detectors

The ATLAS and CMS detectors are located on the Large Hadron Collider (LHC). The
LHC is a proton-proton ring collider with a circumference of roughly 27 km and beam
energy of 13 TeV [17]. It is located at CERN, crossing the boarder between Switzerland
and France.

The ATLAS detector is a general-purpose detector. The inner detector consists of semi-
conductor pixel and strip detectors, which together are capable of pattern recognition,
momentum and vertex measurements, and electron identification. The outer part of
the inner detector has a transition radiation tracker. The inner detector is immersed
in a 2 T solenoidal magnetic field. Outside of the inner detector is an electromagnetic
and a hadronic calorimeter, the latter being split into multiple parts. The caps of the
detector have toroid magnets and the outer layer consists of a muon detection system
[18].

The CMS detector is also a general-purpose detector [19]. At the centre is the tracking
system. consisting of a silicon pixel detector and a silicon strip tracker. Next are
the calorimeters, first the electromagnetic followed by the hadronic calorimeter. These

Figure 3.1: ATLAS detector, taken from [18]

21
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Figure 3.2: CMS detector, taken from [19]

layers are all within a superconducting solenoid magnet, which provides a magnetic
field of 3.8 T. Outside of the solenoid magnet is the muon detection system, which is
embedded within an steel yoke which serves as the absorber plates for the muon system
[20]. The ends of the detector have hadronic forward calorimeters.

3.2 Software and Model Generation

The simulated data is generated using multiple programs. The first is EasyScan HEP
v.1.0.0 [21], which functions as a wrapper for the following programs, but is also
used to randomly generate parameter values. One run of EasyScan HEP generates one
random value for each of the 19 pMSSM parameters, and this set of parameter values is
referred to as a model point. These values can be used to calculate all particle masses,
mixtures, decay modes, etc. that are allowed within the pMSSM model. The intervals
from which each value is chosen are user defined, allowing for targeted simulation (see
Tab. 4.1 and Tab. 5.1). The configuration for EasyScan HEP , which includes the con-
figurations for SoftSusy and SPheno, can found in App. A.1.

The output file is then fed to both SoftSusy v.4.1.8 [22] and to SPheno v.4.0.4
[23, 24], which both perform the aforementioned calculations. Afterwards, the mass of
the Higgs boson is calculated with FeynHiggs v.2.15.0 [25, 26, 27, 28, 29, 30, 31, 32]
and the dark matter relic density provided by MicrOMEGAS v.5.0.8 [33]. The output
files of SoftSusy, SPheno, FeynHiggs and MicrOMEGAS are in the form of SUSY Les
Houches Accord (SLHA) files [34]. The SLHA files are read by PySLHA v.3.2.0 [35],
which is used to save the data as .root files.
The model points are either read from the .root files with ROOT v.6.20/04 [36]
and plotted with ROOT or they are read with uproot v.3.11.3 [37] and plotted with
MatplotLib v.2.2.5 [38]. Wide-scale comparisons between multiple parameters were
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performed with Seaborn [39].

SoftSusy is used for its error generation, since not all model points are physical.
Sometimes, the values of the pMSSM parameters are randomly chosen such that they
generate unphysical phenomenons, such as tachyons. In these cases, SoftSusy raises
an error related to the type of unphysical problem and the run is aborted. If SoftSusy
completes successfully, then SPheno calculates the data that is used for this analysis’
studies. SPheno was chosen over SoftSusy, because SoftSusy was not able to produce
any model points that contained the decay mode t̃1 ! ⌧̃1 b ⌫⌧ . It is possible that this
was due to a user error when configuring SoftSusy.
When SPheno calculates the branching ratios of a particle’s decay modes, only branch-
ing ratios greater than 10�4 are saved to the output file (user defined, see App. A.1).

3.3 Unphysical Model Points

In the previous section, model points that do not cause SoftSusy to return an error
have been regarded as physical. However, for this analysis, another minor condition
is applied for a model point to count as physical: the Higgs boson mass m(h), as
calculated by FeynHiggs, is required to be positive (m(h) > 0). How this a↵ects the
number of physical model points can be seen in Tab. 3.1.

Comparing unphysical model points with physical model points (e.g., Fig. 3.3) already
provides a lot of information on the pMSSM. Only a few parameters have much of
an impact by themselves (see App. A.2). mtR and mQL3 have a very strong influence,
where the likelihood of a physical model increases as the parameter’s values increase.
This means that light stops become problematic for the pMSSM (bound by the phase
space of the simulations). The gluino mass parameter M3 has the reverse e↵ect: the
larger it gets, the less physical model points there are. Other notable parameters are At

and M2, where the number of physical points decreases for larger absolute values, but
to a much larger degree for At. Interestingly, A⌧ and Ab are the only parameters that
have seemingly no e↵ect at all, since the other parameters that influence the sleptons
and squarks (apart from the stop) all drop-o↵ at small values. It is unknown why this
decline in physical points at small values appears for these parameters.

There is no considerable di↵erence in the shapes of the distributions when comparing
the physical model points with a light gravitino to the points with a heavy gravitino.
Therefore, the conclusion can be made that the mass of the gravitino doesn’t have
a tangible e↵ect on whether a model point is physical or not. The di↵erence in the

Table 3.1: Overview of the number of physical and unphysical model points. The
selection regarding the Higgs mass is only performed on model points that were deemed
physical by SoftSusy.

Model Set Generated Unphysical (Error) Unphysical (Higgs Mass) Physical
light G̃ 500000 417121 1747 81132
heavy G̃ 500000 414560 1846 83594
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Figure 3.3: Distribution of At for physical models points with (a) m(G̃) = 10�9 GeV
and (b) m(G̃) = 1019 GeV.

number of physical model points with a light or with a heavy gravitino is most likely
a statistical fluctuation.



Chapter 4

ATLAS-stau

The main objective of this thesis is to improve our understanding of how the pMSSM
parameters influence variables such as particle masses, mixing ratios, decay modes,
etc. To achieve this, the behaviours of various simplified models are examined using
the previously discussed generated model points.

4.1 Particle Masses and Mixtures

The complete phase space used for generating models points with m(G̃) = 10�9 GeV
can be seen in Tab. 4.1.

Table 4.1: Phase space used to generate model points with m(G̃) = 10�9 GeV.

tan (�) 1 – 60

|At|
|Ab| 0– 4000 GeV

|A⌧ |
mtR

mQL3

m⌧L

m⌧R

100 – 1200 GeV

|M1|
|M2|

0 – 3000 GeV

µ 0 – 3000 GeV

M3

mA

muR

mdR

mQL1

mbR

meL

meR

100 – 3000 GeV

The mass of each particle in the pMSSM is influenced by specific parameters. The
ATLAS detector is not sensitive to t̃1 with masses over 1 TeV, therefore the mass of
the simulated stops are limited to around 1 TeV. This is done by setting the upper
bounds for mtR and mQL3 to 1.2 TeV. Since the simplified model requires a certain
mass hierarchy, the parameters m⌧L and m⌧R are also set to maximally be 1.2 TeV,
generating staus up to around 1 TeV. The reason 1.2 TeV is chosen as the maximum,

25
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(a) (b)

(c) (d)

Figure 4.1: t̃1 mass parameters and mixture. Selection criteria: ATLAS-stau Simpli-
fied Model. (a) Mass parameters. (b) Mixture (

�
Rt̃1

�2
) with relation to the branching

ratio for t̃1 ! ⌧̃1 b ⌫⌧ . (Rt̃1
)2 = 1 represents a left-handed mixture. (c) Mixture with

relation to the mass. (d) Stop trilinear coupling constant with relation to the mass.

and not 1 TeV, is that it makes it more likely to generate model points in which the
masses of the stop and stau are around 1 TeV. There will be some model points in
which they are heavier than 1 TeV, but there are not many, as this requires both mtR

and mQL3 to be large, which is less likely. The parameters that are generated in the
range of 100–3000 GeV are mass parameters for particles that are not directly involved
in the ATLAS-stau simplified model, which means that their upper bounds can be
chosen to be large without having any significant e↵ects on model points that contain
the simplified model. Their lower boundaries have been set to 100 GeV, as model
points generated with lower values were unphysical. The coupling constants At, A⌧

and Ab also have a very broad phase space, as it is not clear how large their impact on
the simplified model is. tan(�) is also given a large phase space for the same reason.
Since the chargino is o↵-shell and there are no neutralinos in this simplified model,
M1, M2 and µ can also have a large range. It should be noted that µ is chosen to
be positive, as model points with negative µ did not produce SM Higgs bosons with
m(h) = 125 ± 3 GeV during early tests (see section 4.3.3). The boundaries for m(h)
have been chosen to be broad, because not very many model points produce Higgs
bosons with masses close to 125 GeV. Therefore, to have enough statistics to be able
to make conclusions on which regions of the phase space are likely to have Higgs bosons
with a mass near the observed value, a room for error of ±3 GeV has been implemented.
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Figure 4.2: Distributions of m⌧R and m⌧L . Selection criteria: ATLAS-stau simplified
model.

In Fig. 4.1a, the influence ofmtR andmQL3 on the mass of the stop can be seen for model
points that contain the ATLAS-stau simplified model. Unsurprisingly, stops with heavy
masses are preferred. Only in model points in which mtR , mQL3 > 1000 GeV are some
stops heavier than 1 TeV, which is a small section of the phase space. Many model
points with a stop under 1 TeV have either mQL3 > 1000 GeV with mtR < 1000 GeV,
or vice-versa. Some points, in which both parameters are over 1000 GeV, still produce
stops with masses of around 800 – 1000 GeV, which implies that the mass is also
influenced by at least one other parameter. It can be safely assumed that mtR and
mQL3 have the largest impact. The mixture also hardly plays a role when it comes
to influencing either the mass or the branching ratio for t̃1 ! ⌧̃1 b ⌫⌧ (see Fig. 4.1b).
For larger branching ratios (> 0.6), there seems to be slightly more model points with
left-handed mixtures, but the di↵erence is very small.
At is the trilinear coupling constant for the stop. While a very distinct distribution can
be seen in Fig. 4.1d, it mimics the distribution of At in physical model points, where
there are less physical models points the larger |At| gets (see. App. A.1). It’s unclear
why model points with small |At| are able to produce heavier stops than those with
large |At|.
The stau generally is not much heavier than around 700 GeV (see Fig. 4.3a), apart from
a few model points. There are much fewer points with m⌧L < 200 GeV compared to
m⌧R < 200 GeV. This is supported by the distributions of m⌧L and m⌧R (see Fig. 4.2).
The fact thatm⌧R tends towards smaller values whilem⌧L tends to larger values suggests
that there are more model points with right-like staus. Most staus have either a mostly
right- or mostly left-like mixture; in very few points is it evenly balanced (see Fig. 4.3c).
The branching ratio for ⌧̃1 ! G̃1 ⌧ is almost exclusively 1 in model points that contain
the simplified model (see Fig. 4.3b). It di↵ers in a few points, but even then it is by
an extremely small amount. The only other particles that are sometimes lighter than
the ⌧̃1 are the ⌫̃⌧1 and the �̃0

1. However the mass di↵erence is very small in these model
points, meaning that the kinematic phase space for a decay to one of these particles
becomes much less likely than a decay to the gravitino. This is likely why the decay
to a gravitino is so strongly preferred. The branching ratio tends to di↵er more for
left-like mixtures, which is likely due to decays to the ⌫̃⌧1 , which is strictly left-handed.
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(a) (b)

(c) (d)

Figure 4.3: ⌧̃1 mass parameters and mixture. Selection criteria: Simplified Model.
(a) Mass parameters. (b) Mixture with relation to the branching ratio for ⌧̃1 ! G̃1 ⌧ .
(R⌧̃1)

2 = 1 represents a left-like mixture. (c) Mixture with relation to the mass. (d)
Stau trilinear coupling constant with relation to the mass.

4.2 Competing Decay Modes

When looking into how a simplified model works, the decay modes that compete with
the simplified model have to be taken into account. The goal is to be able to suppress
other decay modes that particles in the simplified model could have. For example, in
the following snippet from a SPheno output file, it can be seen that the decay t̃1 ! ⌧̃1 b ⌧

has a branching ratio of around 0.69, where as the decay t̃1 ! G̃t (which should be
avoided) has a branching ratio of around 0.31.

DECAY 1000006 1.02394943E-08 # ~t_1

# BR NDA ID1 ID2

3.09970616E-01 2 1000039 6 # BR(~t_1 -> ~G t)

# BR NDA ID1 ID2 ID3

6.90029384E-01 3 -1000015 16 5 # BR(~t_1 -> ~tau^+_1 nu_tau b)

This is more of a fine-tuning step, as the idea is to further optimise the phase space of
model points that already contain the ATLAS-stau simplified model.

The most common competing decay is where the t̃1 directly decays to a gravitino (Fig.
4.4a). The di↵erences in the parameters, particle mass and mixtures were compared
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Figure 4.4: Competing decays for t̃1 ! ⌧̃1 b ⌫⌧ . Selection criteria contains the mass
hierarchy and the simplified model with a combined branching ratio > 0.1. Separated
into (a) and (b) for readability.
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Figure 4.5: Competing decays for ⌧̃1 ! G̃ ⌧ . Selection criteria: mass hierarchy and
simplified model with a combined branching ratio > 0.1. Light blue graph heavily
overlaps with the red graph.

between model points that contain the ATLAS-stau simplified model with BR(t̃1 !
G̃ ⌧) < 0.1, and model points that contain the ATLAS-stau simplified model with
BR(t̃1 ! G̃ ⌧) > 0.7. Only the mass di↵erence between t̃1 and ⌧̃1 has a clear impact on
the likelihood of t̃1 ! G̃ ⌧ having a large branching ratio, displayed in Fig. 4.6. Most
model points with BR(t̃1 ! G̃ ⌧) > 0.7 have m(t̃1)�m(⌧̃1) < 300 GeV. Many model
points with small a mass di↵erence also allow for small branching ratios. Clearly, other
parameters are influencing the branching ratio, but a clear combination of parameter
values that separates large branching ratios from small ones has not been found for
this decay mode.

Apart from the direct decay to a gravitino, the competing decay modes consist of a
slepton, a lepton and a b-quark (see Fig. 4.4b). Their distributions all have a similar
shape to the decay to a gravitino, but their counts are lower. The most prominent of
these decay modes is the decay to ⌫̃⌧ , ⌧ and b. Like with t̃1 ! G̃ ⌧ , to understand
this mode the model points have been split via BR(⌧̃1 ! ⌫̃⌧1 ⌧ b) < 0.1 and BR(⌧̃1 !
⌫̃⌧ ⌧ b) > 0.7 (see Fig. 4.7). Clearly, this decay mode prefers staus that are strongly
left-like, which most likely has to do with the fact that the ⌫̃⌧ is strictly left-handed.
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Figure 4.6: The mass di↵erence between t̃1 and ⌧̃1 has the largest impact on the
separation between large and small branching ratios for t̃1 ! G̃ ⌧ . Selection criteria:
ATLAS-stau simplified model, branching ratio denoted by the colour.

Figure 4.7: Most significant parameters di↵erentiating between small and large
branching ratios for ⌧̃1 ! ⌫̃⌧ ⌧ b. Selection criteria: ATLAS-stau simplified model
with BR(t̃1 ! G̃ ⌧) > 10�4 1.

Also, the closer the mass of the ⌫̃⌧ is to that of the stau, the greater the chance for
a large branching ratio is. There are model points in which the mass di↵erence is
negative (in other words, the tau-sneutrino is lighter than the stau), but in these cases
the di↵erence is very small.
There are obviously other parameters that influence the branching ratio, as there are
also model points with left-like staus and small mass di↵erences which have small
branching ratios. No other individual parameter has as significant of an e↵ect as the
mass di↵erence or the stau mixture. Therefore, it must be a combination of multiple
parameters that has a strong e↵ect on the branching ratio, which is hard to detect, as
there are many possible combinations.

The competing decays for ⌧̃1 ! G̃ ⌧ do not have very high branching ratios (Fig. 4.5).
Unlike the competing decays for the t̃1, which peak around 0 and then fall o↵, these
cases generally have secondary peaks after which the count falls to 0. The exact reason

1
10

�4
is the minimum branching ratio required for a decay mode to be added to the data of a

model point.



4.2. COMPETING DECAY MODES 31

Figure 4.8: Influence of the mass di↵erence between the stau and the tau-sneutrino
on the branching ratio ⌧̃1 ! ⌫̃⌧ ⌧ ⌫⌧ . Selection criteria: ATLAS-stau simplified model
with BR(⌧̃1 ! ⌫̃⌧ ⌧ ⌫⌧ ) > 10�4.
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Figure 4.9: Decay modes for ⌫̃⌧ in model points that contain the ATLAS simplified
model. Selection criteria: Simplified Model. (a) Decay chain: t̃1 ! ⌫̃⌧ ⌧ b, ⌫̃⌧ ! G̃ ⌫⌧ .
(b) Decay chain: t̃1 ! ⌧̃1 ⌫⌧ b, ⌧̃1 ! ⌫̃⌧ ⌧ ⌫⌧ , ⌫̃⌧ ! G̃ ⌫⌧ .

for the sudden drop-o↵ in each distribution once the branching ratios reach certain
values is unclear. Although the mass di↵erence is very small in these model points, the
branching ratio increases as the stau gets heavier compared to the tau-sneutrino (see
Fig. 4.8). There is not an obvious reason as to why the branching ratio should increase
as the tau-sneutrino gets heavier relative to the stau.

The competing decays t̃1 ! ⌫̃⌧ b ⌧ and ⌧̃1 ! ⌫̃⌧ ⌧ ⌫⌧ are a bit problematic: if the ⌫̃⌧ were
to further decay to undetectable particles (which would result in missing energy in a
detector), then the signal in a detector would look like the simplified model. Therefore,
further studies on how to kinematically di↵erentiate a measurement of this decay mode
from t̃1 ! ⌧̃1 b ⌫⌧ would be required.

Since only decay chains which result in a tau, a b-quark and undetectable particles
are of interest, both the cases t̃1 ! ⌫̃⌧ b ⌧ and t̃1 ! ⌧̃1 b ⌫⌧ , ⌧̃1 ! ⌫̃⌧ ⌧ ⌫⌧ require
the tau-sneutrino to decay to undetectable particles. Only decay modes involving the
gravitino turn out to be significant (see Fig. 4.9). The first case (which is the ATLAS
equivalent to the CMS-sneutrino simplified model) has a low count, bearing in mind
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that there are 10626 model points that contain the ATLAS-stau simplified model. The
second case, in which a ⌧̃1 decays to a ⌫̃⌧ , which in return decays to a gravitino, turns
out to be extremely unlikely (see Fig. 4.9b), as hardly any of the ATLAS-stau model
points contain this decay chain. Therefore, the chance to get the same detector signal
whilst measuring a di↵erent model is very small.

4.3 Influence on the Mass of the Higgs Boson

For a model point to have a particle spectrum that could represent reality, the mass
of the Higgs boson (m(h)) is required to have the observed value of m(h) = 125.10 ±
0.14 GeV [8]. Therefore, it is important to understand which parameters have the
greatest influence over the Higgs boson mass and how their allowed regions of phase
space overlap with the phase space of the simplified models. The parameters that have
the strongest impact are tan(�), At and µ. This isn’t surprising, as all three parameters
are heavily linked to the Higgs boson: tan(�) is the ratio of the VEVs of the Higgs
fields, At is the coupling constant for the t̃1, which is generally very heavy, and µ is
the higgsino mass parameter.
The selection criteria imposed in the following is set in three steps: first, a look each pa-
rameters’ physical phase space by looking at physical model points. Second, the selec-
tion 122 < m(h) < 128 GeV is applied to the physical model points, to determine which
sections of the parameter’s phase space allow for Higgs bosons with masses around 125
GeV. The upper and lower boundaries have been chosen to be rather large, since not
many model points fulfil this criteria. The third selection criteria is for model points
that contain the ATLAS-stau simplified model and have have 122 < m(h) < 128 GeV.

The following section will mostly use violin plots instead of scatter plots, as they make
subtle di↵erences within distributions easier to see. The top and bottom of a bar
represents the highest and lowest values of the parameter on the y-axis, whereas the
width indicates how many model points are around a certain value of the y-axis (the
wider the bar, the more points). This means that a bin with 1000 entries could have a
bar with the same shape and size as a bin with only 100 entries, but the width would
represent a di↵erent number of model points. The number in parentheses underneath
a bin represents the number of entries in the bin.

4.3.1 tan(�) - Ratio of Higgs Field VEVs

The parameter tan(�) has influence over the masses of various particles, amongst them
the t̃1, ⌧̃1 and the Higgs boson. These three particles are mass eigenstates that are
formed through the mixing of gauge eigenstates, in which sin(�) and cos(�) play a
role. It is therefore possible that the phase space of tan(�) will most likely be limited
by the simplified models.
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While the distribution of the t̃1 mass doesn’t vary too strongly amongst all values of
tan(�) (see Fig. 4.10), the bins for higher and lower values of tan(�) tend to have fewer
entries.

Figure 4.10: E↵ect of tan(�) on the mass of t̃1. Selection criteria: ATLAS-stau
simplified model.

Regarding ⌧̃1, both its mass and the mass di↵erence between ⌧̃1 and ⌧̃2 are of interest.
Looking at the mass (see Fig. 4.11), it would appear at first that model points with
higher values of tan(�) are more inclined to have heavier ⌧̃1. However, in every bin
there are very few model points containing heavy ⌧̃1 (indicated by the thin part of the
bar). Therefore, it is very well possible that this di↵erence could arise from statistical
fluctuations. Overall, most model points have ⌧̃1 with masses around 150–450 GeV.

Figure 4.11: E↵ect of tan(�) on the mass of ⌧̃1. Selection criteria: ATLAS-stau
simplified model.

The mass di↵erence between ⌧̃1 and ⌧̃2 is interesting, for when its close to 0, the
likelihood that the t̃1 will decay to a ⌧̃2 increases. The di↵erence is not very large for
most model points (see Fig. 4.12). As a result, the mass of ⌧̃2 is often lighter than
t̃1, which can be seen in Fig. 4.13. This means that it possible for a competing decay
mode of t̃1 ! ⌧̃2 +X to take place (as seen in Sec. 4.2).

The influence of tan(�) on the mass of the Higgs boson can be seen in Fig. 4.14. Model
points with small values of tan(�) mostly contain very light Higgs bosons and even the
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Figure 4.12: E↵ect of tan(�) on the di↵erence in mass between ⌧̃1 and ⌧̃2. Selection
criteria: ATLAS-stau simplified model.

Figure 4.13: Mass of t̃1 compared to ⌧̃2. Selection criteria: ATLAS-stau simplified
model. Red line indicates equal masses. Below the line equates m(t̃1) > m(⌧̃2).

heaviest bosons for tan(�)  10 are barely heavier than 120 GeV. For a model point to
have a phase space that could reflect reality, a model point has to have a Higgs boson
with a mass that is equal to the measured value.

In Fig. 4.15, the selection criteria includes all physical points where the mass of the
Higgs boson is between 122 < m(h) < 128 GeV. Whilst lower values for tan(�) are
hardly able to generate Higgs bosons within the these bounds, higher values also have
very few points around 125 GeV. This is problematic for the secondary objective of
this analysis: to optimise the phase space to generate model points that fulfil modern
observations. Ideally, the selection criteria for the mass of the Higgs boson would be
much closer to 125 GeV, but to be able to make any significant conclusions much more
data would need to be generated.

In Fig. 4.16, the selection criteria for the simplified model is combined with the
limitation on the Higgs boson mass to 122 < m(h) < 128 GeV. The only remaining
bins that have a model point with m(h) ⇡ 125 GeV are those with tan(�) � 40,
but this could be a result of statistical fluctuations. Even though there are a small
number of model points that pass the selection criteria, it is quite clear that values of
tan(�) < 10 are very unlikely to produce model points that reflect real observations.
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Figure 4.14: E↵ect of tan(�) on m(h). Selection criteria: physical model points with
50 < m(h) < 140 GeV. Lower values split into multiple brackets for better visualisation.

Figure 4.15: E↵ect of tan(�) on m(h). Selection criteria: physical model points with
m(h): 122 < m(h) < 128 GeV

Figure 4.16: E↵ect of tan(�) on m(h). Selection criteria: ATLAS-stau simplified
model with m(h): 122 < m(h) < 128 GeV. Missing bins contain no entries.
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4.3.2 At - Trilinear Coupling Constant

Figure 4.17: Violin plot of At by m(h) (ATLAS). Number in brackets represent the
number of entries in each bin. Selection criteria: Physical model points.

At is the trilinear coupling parameter that links the Higgs boson to t̃1 and t̃2. In Fig.
4.17, the influence of At on the Higgs boson’s mass can be seen for physical model
points. Although the distribution is not quite symmetric, it is clear that both large
and small absolute values tend to generate Higgs bosons that are too light. Also, while
the bins with At < |1000| have the most entries, there are very few model points that
make it past 120 GeV. The outer bins (At > |3000|) have very broad distributions and
are more likely to produce Higgs bosons that are close to 100 GeV. While there are
much fewer entries in these bins compared to the others, they seem to have taken on
a distinctly di↵erent shape. It should be reminded that the lack of entries for larger
absolute values has to do with the generation of physical points, not to do with any
selection criteria.

Figure 4.18: Violin plot of At by m(h) (ATLAS). Selection criteria: Physical model
points with 122 < m(h) < 128 GeV.
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By implementing an additional cut on the mass of the Higgs boson (see Fig. 4.18), one
can see that the bins 1000–2000 and 2000–3000 have many more entries compared to
the others. Particularly, there are relatively many Higgs bosons with m(h) ⇡ 125 GeV
in the 2000–3000 range. Even though the most physical model points were generated
for At < |1000|, very few have passed the cut.

Figure 4.19: Violin plot of At by m(h) (ATLAS). Selection criteria: Simplified Model
with 122 < m(h) < 128 GeV. Missing bins have no entries.

Implementing the selection for the simplified model results in an interesting distribu-
tion (see Fig. 4.19). About two thirds of the remaining model points are in the bin
2000–3000, whereas almost all of the reset are in 1000–2000. None of the model points
in either of these bin contain a Higgs mass of m(h) ⇡ 125 GeV. Negative values for At,
on the other hand, are able to generate heavy SM Higgs bosons. Since the statistics
are so low for these bins, it is not possible to say if the heavy SM Higgs bosons are
fluctuations, or if the distribution does in fact tend to have more heavy SM Higgs
bosons. Since EasyScan HEP requires a single interval from which values will be ran-
domly chosen for the generation, the phase space could be reduced to At < |3000| to
increase the likelihood of generating a model point that would pass this criteria, but
model points with At < |1000| are not able to be avoided.

4.3.3 µ - Higgsino Mass Parameter

As stated in Sec. 4.1, the reason only positive values for the higgsino mass parameter µ
have been generated, is because negative values weren’t able to produce model points
with 122 < m(h) < 128 GeV. Therefore, only positive values were chosen to increase
the number of model points that pass the selection criteria regarding m(h). The dis-
tribution of m(h) is pretty much the same for all bins in Fig. 4.20, so it does not seem
to have an e↵ect on physical model points.

When limiting the physical model points with 122 < m(h) < 128 GeV, it becomes
clear that lower values of µ are more likely to produce heavier Higgs bosons. Not only
do more model points pass the selection criteria, but there are also more points with
m(h) ⇡ 125GeV .
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Figure 4.20: Violin plot of µ by m(h). Selection criteria: physical model points.

Figure 4.21: Violin plot of µ by m(h). Selection criteria: physical model points with
122 < m(h) < 128 GeV.

This changes when also applying the selection of the ATLAS-stau simplified model (See
Fig. 4.22): the range of 0–500 GeV is much less likely to contain the simplified model.
Instead, model points with 1000 < µ < 1500 GeV are the most common, followed by
500 < µ < 1000 GeV.
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Figure 4.22: Violin plot of µ by m(h). Selection criteria: ATLAS-stau simplified
model with 122 < m(h) < 128 GeV.

4.4 Dark Matter Relic Density

The distribution of the dark matter relic density for the ATLAS-stau simplified model
can been seen in Fig. 4.23a. The model points have been inclusively split by the
combined branching ratio of the simplified model to see if the branching ratio has
any e↵ect on the dark matter relic density. Of the 10626 model points that contain
the ATLAS-stau simplified model with a branching ration > 0.1, 9110 points have a
relic density below 0.3 and most of those points are well below the measured value of
⌦ch

2 ⇡ 0.12, which makes the ATLAS-stau model very promising in terms of fulfilling
the requirements of not producing too much dark matter.
One interesting question is what influence the mass of the LSP has on the distribution
of the relic density. To see the e↵ect of the mass of the gravitino, two more sets of data
were generated, one with m

G̃
= 10�8 GeV (Fig. 4.23b) and one with m

G̃
= 10�7 GeV

(Fig. 4.23c). Both of these cases only have around half the number of model points that
contain the ATLAS-stau simplified model, but the shapes of the distributions of the
relic densities hardly changes. The dark matter relic density seems to not be strongly
influenced by variances in the mass of light gravitinos.
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Figure 4.23: Dark matter relic density for the ATLAS model. Selection criteria:
ATLAS-stau simplified model (a) m(G̃) = 10�9 GeV, (b) m(G̃) = 10�8 GeV, (c)
m(G̃) = 10�7 GeV



Chapter 5

CMS-stau and CMS-sneutrino

5.1 CMS-stau

The complete phase space used for generating models points with m(G̃) = 1019 GeV
can be seen in Tab. 5.1.

Table 5.1: Phase space used to generate model points with m(G̃) = 1019 GeV.

tan (�) 1 – 60

|At|
|Ab| 0 – 4000 GeV

|A⌧ |
mtR

mQL3

m⌧L

m⌧R

100 – 1200 GeV

|M1| 0 – 1000 GeV

|M2| 0 – 3000 GeV

µ 0 – 3000 GeV

M3

mA

muR

mdR

mQL1

mbR

meL

meR

100 – 3000 GeV

To get a better comparison between the ATLAS-stau and CMS-stau model, the t̃1

generated in model points with heavy gravitinos are also limited to 1.2 TeV. The ⌧̃1
are limited to 1.2 TeV for the same reasons as discussed with the ATLAS-stau model.
Like the stau, the �̃+

1 needs to be lighter than the stop. Regulating the chargino’s
mass is more complicated, as it is influenced by M2 and µ (the wino and higgsino mass
parameters) which also influence the mass of the �̃0

1 (alongside M1). Therefore, the
phase spaces of M2 and µ are chosen to be broad for the generation and as a result,
the chargino’s mass can go up to 3 TeV. |M1| has been limited to 1 TeV, as early tests
showed that increasing the boundary reduced the chance of generating a model points
that surpassed the CMS-stau simplified model’s selection criteria, yet the distributions
for all other parameters maintained the same shapes. A more in-depth look as to
why this is the case is discussed later whilst looking at the mass and mixture of the
neutralino. The parameters generated in the range of 100–3000 GeV have had their

41
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(a) (b)

(c) (d)

Figure 5.1: t̃1 mass parameters and mixture. Selection criteria: Simplified Model. (a)
Mass parameters. (b) Stop mixture with relation to the branching ratio for t̃1 ! �̃

+
1 b.

(Rt̃1
)2 = 1 represents a left-like stop. (V11)2 represents the chargino mixture: (V11)2 ⇡ 1

wino-like, (V11)2 ⇡ 0 higgsino-like. (c) Mixture with relation to the mass. (d) Stop
trilinear coupling constant with relation to the mass of the t̃1.

upper and lower boundaries set for the same reasons as for the ATLAS-stau model:
the upper bounds can be chosen to be large without having any significant e↵ects on
model points that contain the simplified model and any lower than 100 GeV produces
unphysical model points.

In Fig. 5.1a, the influence of mtR and mQL3 on the mass of the stop can bee seen
for model points that contain the CMS-stau simplified model. Unsurprisingly, heavy
stops are preferred. Only in model points with mtR , mQL3 > 1000 GeV have stops
heavier than 1 TeV, which is a small section of the phase space. Many model points
with a stop under 1 TeV have either mQL3 > 1000 GeV with mtR < 1000 GeV, or
vice-versa, much like the ATLAS-stau model. The distribution in Fig. 5.1b shows that
model points that have a high branching ratio for BR(t̃1 ! ⌧̃1 b ⌫⌧ ) tend to have
stops with a left-like mixture. For lower branching ratios, there seems to be a slight
bias towards right-like stops, but this could be due to low statistics. There is a very
clear relationship between the mixture of the stop, the mixture of the chargino and
the branching ratio t̃1 ! �̃

+
1 b. Model points with left-like stops have small branching

ratios when the chargino is higgsino-like, and large branching ratios when the chargino
is wino-like. For right-like stops it is the other way around.
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(a) (b)

(c) (d)

Figure 5.2: ⌧̃1 mass parameters and mixture. Selection criteria: Simplified Model. (a)
Mass parameters. (b) Stau mixture with relation to the branching ratio for ⌧̃1 ! �̃

+
1 b.

(R⌧1)
2 = 1 represents a left-handed mixture. (c) Mixture with relation to the mass.

(d) Stau trilinear coupling constant with relation to the mass.

The mass of the stau is limited by the mass of the chargino. As a result, the heaviest
staus are around 700 GeV (see Fig. 5.2a), but there are only very few. In almost all
model points either m⌧L or m⌧R is below 600 GeV, whereas the other parameter can
still go up to 1200 GeV. Therefore, in most model points the stau has either a strong
left- or right-like mixture (see Fig. 5.2c). The mixture has almost no e↵ect on the
branching ratio of the decay ⌧̃1 ! �̃

0
1 ⌧ and almost all points have a branching ratio

of 1. There are some cases where staus with left-like mixtures have branching ratios
slightly below 1, but the di↵erence is so small that it is negligible.

In Fig. 5.3a, M2 and µ are shown and the mass of the chargino is represented by the
colour. The selection criteria only allows for model points that contain the CMS-stau
simplified model. Clear boundaries are visible, showing that if either M2 or µ is over
1 TeV, then the other parameter has to be under 1 TeV. As can be seen in Fig. 5.3b,
if both parameters are over around 1 TeV, then the chargino will become heavier than
the stop and the simplified model won’t be able to exist. The lack of points with very
small values of either M2 and µ is partially a consequence of requiring the chargino to
be lighter than the stau, but this is also heavily influenced by the �̃0

1.

M1, M2 and µ all influence the mass (and mixture) of the �̃0
1. The mixture of the

�̃
0
1 in model points that contain the CMS-stau simplified model is almost always bino-

like (see Fig. 5.4). Whether a neutralino is categorised as bino-, wino- or higgsino-like
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(a) (b)

Figure 5.3: �̃
+
1 mass parameters. (a) Selection criteria: CMS-stau simplified model,

(b) Green dots represent model points where the �̃+
1 is lighter than the t̃1. Selection

criteria: physical points

Figure 5.4: �̃
0
1 mixture. Selection criteria: CMS-stau mass hierarchy. Most model

points are eliminated solely by this criteria and mostly those with bino-like �̃0
1 are left.

depends on the mixing components N11 (bino), N12 (wino) and N13, N14 (higgsino).
In this analysis, if (N11)2 > (N12)2 + ((N13)2 + (N14)2), then the neutralino is labelled
bino-like. The definition for wino-like is similar and for higgsino-like, ((N13)2 + (N14)2)
has to be the largest.

The mixtures and masses of both the neutralino and the chargino are influenced by
M2 and µ. Therefore, it can be assumed that there could be a connection between
the almost strict bino-like mixture of the remaining neutralinos and the mass and
mixture of the chargino. In Fig. 5.5, the mass of the chargino is compared to the
mixture and mass of the neutralino. The selection criteria for these plots requires
m(t̃1) >

�
m(�̃+

1 ) + m(b)
�
, m(�̃+

1 ) > (m(⌧̃1)+m(⌫⌧ )). The neutralino is ignored, since a
selection on either ⌧̃1 ! �̃

0
1 ⌧ or m(⌧̃1) >m(�̃0

1) would result in almost exclusively bino-
like neutralinos (such as in Fig. 5.4). In Fig. 5.5a, the green points represent model
points with a neutralino that has a large bino-like mixture. The di↵erence between the
masses of the chargino and the neutralino is largest in these points, which means that
it is more likely for a stau to exist with a mass that is between those of the chargino
and neutralino. The higgsino-like neutralinos can be seen in Fig. 5.5c. The masses of
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(a) Bino mixing parameter (b) Wino mixing parameter

(c) Higgsino mixing parameters

Figure 5.5: Comparison between the masses of the chargino ( ˜|chi
+

1 ) and the mass

of the ( ˜|chi
0

1), where the colour represents the (a) bino mixing parameter (b) wino
mixing parameter (c) higgsino mixing parameters. Selection criteria: m(t̃1) >�
m(�̃+

1 ) + m(b)
�
, m(�̃+

1 ) > (m(⌧̃1)+m(⌫⌧ )).

the chargino and neutralino are very close to one another in these points, but there
is still a bit of a di↵erence between them. This means that while it is unlikely for a
stau to exist with a mass necessary for the CMS-stau simplified model, it is still going
to appear in a few cases, which is what can be seen in Fig. 5.4. Finally, model points
that have wino-like neutralinos (see Fig. 5.5b) have very small mass di↵erences, to the
point where it is extremely unlikely for a stau to fit in.
Something noticeable about these plots is the lack of model points where the neu-
tralino is much heavier than the chargino. Although it looks like there is a cut-o↵ at
m(�̃+

1 ) >m(�̃0
1), this is not the case; there are very few points in which the neutralino

is heavier. It is unclear why the neutralino can only be marginally heavier than the
chargino.

In Fig. 5.6, the phase space of M1, M2, and µ compared to one another can be seen
with relation to the neutralino’s mass. The complete mass hierarchy of the CMS-stau
simplified model is used as the selection criteria (unlike in Fig.5.5) to get a better
understanding of how each parameter a↵ects the neutralino’s mass. Decay modes are
not of interest here, as the mass hierarchy alone defines which neutralino mixtures are
allowed, since both the neutralino’s mass and mixture are influenced by M1, M2, and µ.
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(a) (b)

(c)

Figure 5.6: Neutrino mixing parameters with relation to one another. Selection
criteria:CMS-stau Mass Hierarchy.

According to Fig. 5.6b, it looks like there are not any model points with |M1|<|M2|.
Further investigation shows that this is not quite true. In a few points, |M2| is smaller
than |M1 |, but then µ is smaller than |M2 |, which leads to the neutralino being
higgsino-like. However, there are a couple model points in which |M2| is smaller than
both |M1| and µ, yet the neutralinos still have very strong bino-like mixtures. In these
cases, |M2| is only marginally smaller than |M1|, therefore, it is most likely higher or-
der corrections that end-up having a larger influence on the mixture. A similar shape
can be seen around |M1|< µ in Fig. 5.6c, but it is not as sharp. This is not surpris-
ing, as it is more likely for a stau to have a mass between those of the chargino and
neutralino in model points with a higgsino-like neutralino, since they have a slightly
larger mass splitting compared to wino-like cases (see Fig. 5.5c). The two-dimensional
phase space for M2 and µ has the same shape as in Fig. 5.3a. There, it can clearly
be seen that M2 and µ have an influence on the mass of the chargino. However, the
correlation between M2, µ, and the neutralino’s mass is not obvious. The lower bounds
of |M2| and µ seem to be set by |M1|, whereas the upper bounds are set by the mass
of the chargino. This explains why model points with bino-like neutralinos can have
such a large mass splitting between the neutralino and chargino: as long as |M1| has
the lowest value of the three parameters, |M2 | and µ can be as large as the bounds
for the chargino mass allow. In wino- and higgsino-like cases, either |M2| or µ respec-
tively has to have a small value, which inadvertently decreases the mass of the chargino.

At this point it still is not quite clear why M1 has the dominant e↵ect on the neu-
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Figure 5.7: Relation between M1 and the �̃0
1 mass using a di↵erent set of simulated

data with |M1|< 3000. Selection criteria: Mass Hierarchy.

tralino’s mass. When looking at Fig. 5.6b it is also unclear why |M1| is more or less
bound to be smaller than 750 GeV. To answer the latter, more data was generated
with |M1|< 3000 and the connection between M1 and the neutralino’s mass was looked
into. Fig. 5.7 shows two interesting things: first, M1 is still limited to small values.
Second, there seems to be a one-to-one correlation between M1 and the neutralino’s
mass (evidence for this could already be seen in Fig. 5.6b by looking at the distribution
of the colours). These two bits of information are related to one another; the mass
hierarchy of the particles requires the neutralino to be lighter than the stau. The stau
is required to be lighter than the stop, which is generated to have at most a mass of
1.2 TeV. Since |M1| has a linear correlation to the neutralino’s mass, only small values
will be able to generate a neutralino that is lighter than the stau.

The observation that |M1| has a linear correlation to the neutralino’s mass has been
predicted. Under the condition mZ ⌧ |µ ± M1 |, mZ ⌧ |µ ± M2 |, the masses of
⌧̃1, ⌧̃2, and ⌧̃3/⌧̃4 can be simplified to M1, M2, and µ respectively (minus higher order
corrections) [11]. Almost all model points, apart from a few outliers, that contain the
CMS-stau simplified model can be described with this simplification.

Another aspect of the CMS-stau simplified model which needs to be taken into con-
sideration is the relation between the mixture of the chargino and the mixture of the
stau. Since model points with a bino-like neutralino have a relatively broad 2-D phase
space for M2 and µ (see Fig. 5.3a), the mixture of the chargino can be wino-like or
higgsino-like. Also, the stau tends to be either left-like or right-like; there are not many
model points where it is evenly mixed. As a result, the question about whether the
combination of the mixtures has an e↵ect on �̃+

1 ! ⌧̃1 ⌫⌧ arises.

In Fig. 5.8a, model points containing the CMS-stau simplified model can be seen,
where the colour represents the branching ratio for �̃+

1 ! ⌧̃1 ⌫⌧ . Model points in which
the chargino is wino-like and the stau right-like have the highest branching ratios on
average, generally above 0.9, whereas the combinations wino-left and higgsino-right are
only around 0.5–0.6. It looks like there are not any model points with higgsino-left, but
this comes from the requirement that the simplified model has a combined branching
ratio > 0.1.
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(a) (b)

Figure 5.8: V11 = chargino mixing angle, R⌧̃1 = stau mixing angle. Selection crite-
ria: (a) CMS-stau Simplified Model, (b) CMS-stau Simplified Model, but selection on
combined branching ratio reduced to > 10�4.

Changing this selection to > 10�4 1 reveals that higgsino-left model points do exist,
but are suppressed. Clearly, some other decay modes are competing with �̃+

1 ! ⌧̃1 ⌫⌧ .
Fig. 5.9 shows the main three competing decay modes, where each plot represents a
di↵erent combination of the chargino and stau mixtures. Essentially, each plot focuses
on model points from one of the four corners of Fig. 5.8. In Fig. 5.9a, 5.9b and 5.9c
the combined branching ratio of the CMS-stau simplified model is > 0.1, whereas for
Fig. 5.9d it is > 10�4. The low statistics for �̃+

1 ! b̃1 t make it hard to make any
meaningful conclusions about the shape of its distribution. One of the reasons this
decay mode is much less likely to exist compared to the others has to do with the
phase space over which the model points are generated: mbR can take values from
100��3000 GeV, which means that the b̃1 (sbottom) can be very heavy. As a result,
the sbottom is often heavier than the chargino. The decay mode �̃+

1 ! �̃
0
1 W tends

to have higher branching ratios for higgsino-like charginos and �̃+
1 ! ⌫̃⌧ ⌧ almost only

appears for left-like staus. As a result, in higgsino-left model points the combination
of these decay modes suppress the decay �̃+

1 ! ⌧̃1 ⌫⌧ heavily.

The distribution for the branching ratio for �̃+
1 ! ⌫̃⌧ ⌧ in Fig. 5.9b takes on an

interesting shape, as it mostly consists of a large peak around 0.5. This comes from
the fact that the mixture of the ⌧̃1 is related to the mass of the ⌫̃⌧ (which is strictly
left-handed). To look into this further and to see what role the mass of the chargino
plays for this decay mode, the selection criteria for the scatter plots in Fig. 5.10 contain
the existence of the CMS-stau simplified model and the decay mode �̃+

1 ! ⌫̃⌧ ⌧ . By
not requiring on (V11)2 or (R⌧̃1)

2, such as in Fig. 5.9b, a bit more information about
the influence of the particles’ mixtures can be gained.
As can be seen in Fig. 5.10a, the more left-like the stau is, the closer the masses of the
stau and ⌫̃⌧ get to one another, until the ⌫̃⌧ even becomes a little bit heavier. The mass
of the chargino with relation to the branching ratio is depicted in Fig. 5.10b and it is
remarkable that the mass does not have much of an impact until the branching ratio
gets to around 0.52, where it suddenly drops rapidly. Because of this, the di↵erence

1
10

�4
is the minimum branching ratio required for a decay mode to be added to the data of a

model point.
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Figure 5.9: Competing decays for the di↵erent combinations of chargino and stau
mixtures. The summed branching ratio of the depicted decay modes with �̃+

1 ! ⌧̃1 ⌫⌧

is nearly always ⇡ 1. Selection criteria: CMS-stau Simplified Model with combined
BR> 0.1, apart from (d), which has combined BR> 0.

in mass between the chargino and either the ⌧̃1 or ⌫̃⌧ also decreases (see Fig. 5.10c) to
the point where the chargino’s mass is barely larger.
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(a) (b)

(c)

Figure 5.10: Entries: 314. Selection criteria: CMS-stau Simplified Model and
BR(�̃+

1 ! ⌫̃⌧ ⌧) > 0 (a) Mass di↵erence between ⌫̃⌧ and ⌧̃1 with relation to the
branching ratio of �̃+

1 ! ⌫̃⌧ ⌧ . (b) Comparing the mass di↵erence between ⌫̃⌧ and �̃+
1

with �̃+
1 and ⌧̃1. (c) Mass di↵erence between �̃+

1 and particle indicated by the colour
with relation to the branching ratio of �̃+

1 ! ⌫̃⌧ ⌧ .

5.2 Competing Decay Modes

The CMS-stau simplified model has three decay steps: t̃1 ! �̃
+
1 b, �̃+

1 ! ⌧̃1 ⌫⌧ and
⌧̃1 ! �̃

0
1 ⌧ .

The most common competing modes for the t̃1 all consist of direct decays to a neutralino
and a quark (see Fig. 5.11a). The flavour of the quark plays a large role in both how
often the competing decay appears, but also how likely it is for the branching ratio to
be large. The decay to �̃0

1 b is far more likely to have a high branching ratio compared
to the decay modes with heavier neutralinos and a t-quark. The decay mode to �̃+

2 ,
which is the heavier chargino, and a b-quark is not very common. This has to do with
the particles’ masses: �̃+

2 is generally heavier than the t̃1 (see Fig. 5.12), therefore this
decay mode is suppressed.

One of the down-sides of having a neutralino as the LSP is that the stop will often
directly decay to the neutralino. Although it is not necessary for either the CMS-
stau or CMS-sneutrino model, the relation between the neutralino’s mixture and the
branching ratio of t̃1 ! �̃

0
1 t is worth looking into. Fig. 5.13 shows that only model
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Figure 5.11: (a) Competing decays for t̃1 ! �̃
+
1 b. Selection criteria: mass hierarchy

and simplified model with a combined branching ratio > 0.1. (b) Competing decays
for �̃+

1 ! ⌧̃1 ⌫⌧ . Same selection criteria.

Figure 5.12: Comparison of the mass of the t̃1 to the mass of the �̃+
2 . Selection

criteria: CMS-stau Simplified Model. Red line indicates equal masses. The mass of
the �̃+

2 can have a negative phase, therefore the absolute value is taken.

points with bino-like neutralinos have large branching ratios. Yet, at the same same
time, model points with small branching ratios are also mostly bino-like. Wino- and
higgsino-like points tend to have a branching ratio of around 0.2–0.3. it is unclear
why the branching ratio behaves so di↵erently with bino-like neutralinos compared to
wino- or higgsino-like neutralinos. Nevertheless, the CMS-stau model contains bino-
like neutralinos, so it is important to find out what separates model points with small
branching ratios for t̃1 ! �̃

0
1 t from model points with large ones.

Fig. 5.14 represents model points that contain the CMS-stau simplified model in which
BR(t̃1 ! �̃

0
1 ) > 10�4

t. The colour of the histograms represents whether the branching
ratio for t̃1 ! �̃

0
1 t is high or low. Clearly, model points with a left-like stop tend

to have lower branching ratios for t̃1 ! �̃
0
1 t compared to right-like stop.This corre-

lates with Fig. 5.1b, in which left-like stops are shown to be more likely to decay to a
chargino and a b-quark with a high branching ratio. However, as discussed previously,
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Figure 5.13: Branching ratio for t̃1 ! �̃
0
1 t compared to the mass di↵erence between

the t̃1 and the �̃0
1. Selection criteria: m(t̃) > (m(�̃0

1)+m(t)) and BR(t̃1 ! �̃
0
1 t) > 10�4.

Figure 5.14: Relation between the stop mixture and the branching ratio for t̃1 ! �̃
0
1 t.

Selection criteria: CMS-stau simplified model with BR(t̃1 ! �̃
0
1 t) > 10�4.

the mixture of the stop is also tied to the mixture of the chargino. Unfortunately, it is
not clear whether the preference for right-like stops for the decay mode t̃1 ! �̃

0
1 t is a

result of the preference for left-like stops for t̃1 ! �̃
+
1 b, or if right-like stops somehow

have a stronger connection to neutralinos than left-like stops.

There are only two competing decay modes for �̃+
1 that stand out (see Fig. 5.11b).

Both of these decays have already been discussed at the end of Sec. 5.1 whilst studying
how the mixture of the chargino a↵ects its decay modes.
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Figure 5.15: Decay modes for ⌫̃⌧ in model points that contain the CMS simplified
model. Selection criteria: Simplified Model.

5.3 Influence on the Mass of the Higgs Boson

The parameters that influence the mass of the Higgs boson are independent of the
simplified model. Therefore, tan(�), At and µ still have the strongest influence over the
Higgs boson’s mass. The cross section between model points containing the CMS-stau
simplified model and model points with 122 < m(h) < 128 GeV is small: only 63 of the
748 model points containing the simplified model come within 122 < m(h) < 128 GeV.
The distributions of the parameters seem to take-on the same shapes as wit the ATLAS-
stau model, however, this could be due to statistical fluctuations, since the statistics
are very low.

5.4 Dark Matter Relic Density

It is not easy to make any significant claims for the CMS-stau simplified model. Most
model points have dark matter relic densities much larger than the observed value of
⌦ch

2 ⇡ 0.12. Only 564 model points are shown in Fig. 5.16b as a cut-o↵ at ⌦ch
2 = 5 has
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Figure 5.16: Dark matter relic density for the CMS-stau model. Selection criteria:
CMS-stau simplified model.
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(a) Bino-like (b) Wino-like

(c) Higgsino-like (d) Combined

Figure 5.17: Cold dark matter relic density depending on the mass and mixture of
the �̃0

1. Selection criteria: physical points with ⌦ch
2
< 0.3.

been implemented to improve the readability. The model points have been inclusively
split by the combined branching ratio of the simplified model to see if the branching
ratio has any e↵ect on the dark matter relic density. As only 127 models points, around
a sixth of the model points that contain the CMS-stau simplified model, have a relic
density lower than 0.3, the statistics are too low to be able to receive an insightful
distribution.

A more distinguishable e↵ect can be seen when looking at the di↵erent �̃0
1 mixtures. As

discussed in Sec. 5.1, the mass of the �̃0
1 is strongly a↵ected by its mixture. Therefore,

by exclusively looking at single mixture types, a relation between the LSP mass and
the dark matter relic density, alongside a relation between the mixture type and the
relic density, can be established.

It was shown in Sec. 5.1 that with the current choice of phase space, only model points
with bino-like �̃0

1 pass the selection, because wino- and higgsino-like �̃0
1 are almost

always too heavy. This means that Fig. 5.17a represents the connection between the
LSP mass and the dark matter relic density that applies to this analysis, which is
very broad. The limits of the phase space could of course be extended, generating
heavier particles which would allow for model points with heavier neutralinos to pass
the selection. It could still be possible for the CMS-stau simplified model to exist with
wino- or higgsino-like �̃0

1 and it could have a very concise shape for the dark matter
relic density, but that is outside of the scope of this work.
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5.5 CMS-sneutrino

5.5.1 Phase Space

The CMS-sneutrino simplified model, in which the t̃1 decay via ⌫̃⌧ instead of ⌧̃1, occupies
a slightly di↵erent phase space. The search for this simplified model uses the same data
as the CMS-stau simplified model, since the generation was performed over a broad
phase space.
The two most significant di↵erences between a ⌧̃1 and a ⌫̃⌧ are that the ⌫̃⌧ has no charge
and that its mixture is strictly left-handed. The left-handedness strongly influences the
phase space of m⌧L . Model points with the CMS-sneutrino simplified model generally
have small values for m⌧L (see Fig. 5.18a), which coincides with previous examples of
a particle’s mixture generally being defined by the mixing parameter with the lowest
value. m⌧R occupies the same phase space as the CMS-stau simplified model. The
mass of the ⌫̃⌧ is dependent of the mixture of the ⌧̃1, as shown with model points that
contain the CMS-stau simplified model in Fig. 5.18c. In model points containing the
CMS-sneutrino model, the ⌧̃1 generally has a left-like mixture, which causes the ⌫̃⌧ to
be light.
Only 506 model points contain the CMS-sneutrino simplified model, which is about
two thirds less than the CMS-stau simplified model. This can largely be explained by
comparing Fig. 5.18a with Fig. 4.3a: because of the limitations to m⌧L , only about two
thirds of the phase space of the CMS-stau model is taken up by the CMS-sneutrino
model.

5.5.2 Comparison between CMS-sneutrino and CMS-stau

To get a better idea of how each parameter a↵ects the CMS-stau and the CMS-sneutrino
simplified models di↵erently, further comparisons are made by searching for the simpli-
fied models in model points in which both are kinematically possible. This means that
the chargino has to be heavier than both the stau and the tau-sneutrino individually,
which in return need to be heavier than the neutralino. It should be noted that this
does not mean that both simplified models have to exist in each of these model points.
it is possible, for example, that in one of these model points a chargino does not decay
to a tau-sneutrino, when it does decay to a stau. As long as all decay modes from both
simplified models are kinematically possible, the model point is accepted.

In Fig. 5.19, each graph represents model points in which both simplified models are
kinematically possible, but only one of the models is searched for. Which model is
search for is indicated by the colour. It is quite interesting to see that there are 485
model points containing the CMS-sneutrino simplified model compared to the 316
model points with the CMS-stau simplified model. Without the requirement that both
simplified models are kinematically possible, there are 506 model points with CMS-
sneutrino and 748 with CMS-stau. This means that almost all model points that
contain the CMS-sneutrino simplified model also kinematically allow for the CMS-
stau simplified model, whereas less than half of the model points with the CMS-stau
simplified model kinematically allow the CMS-sneutrino model.
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(a) (b)

(c)

Figure 5.18: (a) Phase space of m⌧L and m⌧R with relation to the ⌫̃⌧ mass. (b)
Distribution of the mixture of the ⌧̃1. (c) Visualisation of the relation between the
mixture of the ⌧̃1 and the mass of the ⌫̃⌧ using model points containing the CMS-
stau simplified model. Selection criteria: (a), (b) CMS-sneutrino simplified model, (c)
CMS-stau simplified model.

The three parameters with the most noticeable di↵erences are M2, µ and m⌧L . The
shape of the distributions are very similar for certain sections of the phase space, imply-
ing that both simplified models are found in most model points in these sections. But,
for smaller values of µ and m⌧L and for larger values of M2 there are many more model
points containing the CMS-sneutrino model. Since the tau-sneutrino is left-handed,
it is not too surprising to see that there are many model points with CMS-sneutrino
with small values for m⌧L . Small values for µ and large values for M2 imply that the
di↵erence between the number of model points between the two simplified models could
have something to do with the chargino, specifically higgsino-like charginos.

Fig. 5.20 shows the relation between the mixture of the chargino and the mixture of
the stau. Fig. 5.20a and Fig. 5.20b depict model points that contain the CMS-stau
simplified model, whereas in the latter, the model points also allow for the CMS-
sneutrino simplified model kinematically. The first plot shows that the branching ratio
of the chargino to the stau when the chargino is wino-like and the stau right-like is
mostly > 0.9. Model points with higgsino-like charginos and right-like staus and points
with wino-like charginos and left-like staus do not generally have very high branching
ratios, but model points with higgsino-like charginos and left-like staus are suppressed,
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Figure 5.19: Selection criteria: Model points in which both CMS-stau and CMS-
sneutrino are kinematically possible. Graphs represent model points in which the
respective simplified models are found.

which was discussed with Fig. 5.9. Once the chargino is required to be heavier than the
tau-sneutrino (and the tau-sneutrino to be heavier than the neutralino), most model
points with a right-like stau are removed. The fact that the CMS-sneutrino model
also exists when the chargino is higgsino-like and the stau is left-like (see Fig. 5.20d)
explains why this simplified model is found in many more model points in which both
models are kinematically possible.

The phase space for model points containing the CMS-sneutrino simplified model with
122 < m(h) < 128 GeV is the same as the CMS-stau model, which is in return the
same as the ATLAS-stau model. It could be expected that there would be a di↵erence
in the the phase space for µ, but the statistics are even lower for the CMS-sneutrino
model, thus a comparison can not be made. The CMS-sneutrino model has the same
problems as the CMS-stau model when it comes to the dark matter relic density.
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(a) (b)

(c) (d)

Figure 5.20: V11 is the �̃+
1 , R⌧̃1 is the ⌧̃1 mixture. Selection criteria: (a) CMS-stau

simplified model, (b) CMS-stau simplified model, but CMS-sneutrino is kinematically
possible, (c) CMS-sneutrino simplified model (d) CMS-sneutrino simplified model, but
CMS-stau is kinematically possible.
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Conclusion

This work has compared three simplified models in the context of the pMSSM, with
the goal of achieving a better understanding of how the parameters of the pMSSM
influence the particle spectrum. This was done by scanning over all 19 parameters, al-
lowing for the generation of model points, where each point represents a configuration
of particle masses and decay modes.

Apart from having problems with the Higgs boson’s mass, the ATLAS-stau model has
shown to have a large phase space without many constraints on the sparticles’ masses
or mixtures. Having only two decay steps, where the second step has a branching
ratio of nearly exclusively 1, results in 10626 of the 81132 physical model points with
light gravitinos containing the simplified model. Optimising the pMSSM’s phase space
to increase the likelihood for a model point to contain this simplified model mostly
relies on limiting five parameters: At, mtR , mQL3 , m⌧L and m⌧R . Limiting |At|  2000
would greatly increase the number of physical model points, and would also increase
the number of model points containing the simplified model. mtR , mQL3 , m⌧L have
all been limited to 1200 GeV, to generate t̃1 with masses that are within the limits of
the ATLAS detector. The simplified model does not show a clear preference for the
mixture of the t̃1, but it does prefer right-like ⌧̃1. The main competing decay modes
are ⌧̃1 ! G̃ ⌧ and ⌧̃1 ! ⌫̃⌧1 ⌧ b, the first being di�cult to suppress. While model points
containing the simplified model are generally within the bounds of the dark matter
relic density, very few model points contain Higgs bosons with 122 < m(h) < 128 GeV.
Due to the large phase space and few constraints, the ATLAS-stau simplified model
has proven to be a much more promising model for a search with real experimental data.

The CMS-stau model has the disadvantage that it has three decay steps, which makes
the mass hierarchy much more restrictive. Implementing mass hierarchy by itself re-
duces the 83594 physical model points down to 2737. Only 748 of those model points
contain the CMS-stau simplified model. However, the phase space used for the gen-
eration of the model points was not optimised for the mass of the �̃+

1 , meaning that
the �̃+

1 is heavier than the t̃1 in many model points, greatly reducing the number of
model points that can contain the simplified model. The simplified model is strongly
influenced by the mixtures of the t̃1, �̃

+
1 and �̃

0
1. Left-like t̃1 and wino-like �̃+

1 are
strongly preferred for the first decay step t̃1 ! �̃

+
1 b to have a high branching ratio.

59
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For �̃+
1 ! ⌧̃1 ⌫⌧ , right-like ⌧̃1 are preferred along with the wino-like �̃+

1 . The �̃
0
1 is almost

exclusively bino-like, which has to do with how the mixture and mass of the �̃0
1 are

influenced by one another. The strongest competing decay for the CMS-stau simplified
model is t̃1 ! �̃

0
1 t, which can be partially suppressed by the mixture of the ⌧̃1. The

phase space for model points that contain a HIggs boson with 122 < m(h) < 128 GeV
is the same as for the ATLAS-stau model. Model points that contain the CMS-stau
simplified model tend to have dark matter relic densities that are much larger than the
observed value.

The CMS-sneutrino model shares most of the same phase space as the CMS-stau model.
Three parameters, M2, µ and m⌧L , have many more model points in certain regions of
their phase spaces, but otherwise there isn’t much di↵erence in terms of the complete
phase space. Since the mass of the ⌫̃⌧ is strongly dependent on the mixture of the
t̃1, the phase space of m⌧L is reduced. Model points that contain the CMS-sneutrino
model are more likely to kinematically allow for the CMS-stau model than vice-versa.
Model points with Higgs bosons masses within 122 < m(h) < 128 GeV share the same
phase space as those with the CMS-stau model and the dark matter relic density has
the same problems. The phase spaces of the CMS-stau and CMS-sneutrino models
are much more limited compared to the ATLAS-stau and combined with the fact that
model points containing either simplified model struggle to stay within the bounds of
the dark matter relic density suggests that these two simplified models are less optimal
for a search with real experimental data.
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Appendix A

A.1 Configuration for EasyScan HEP

Configuration for EasyScan HEP for generating model points with a light gravitino.
This includes the configurations for SoftSusy and SPheno:

BLOCK MODSEL # Model selection

1 0 # nonUniversal

#

BLOCK SMINPUTS # Standard Model inputs

1 1.27908970E+02 # alpha_em^-1(M_Z)^MSbar

2 1.16637870E-05 # G_F [GeV^-2]

3 1.18400000E-01 # alpha_S(M_Z)^MSbar

4 9.11876000E+01 # M_Z pole mass

5 4.18000000E+00 # mb(mb)^MSbar

6 1.73200000E+02 # mt pole mass

7 1.77700000E+00 # mtau pole mass

#

BLOCK MINPAR # Input parameters - minimal models

#

BLOCK EXTPAR # Input parameters - non-minimal models

0 -1.00000000E+00 # Set

1 ES_M_1 # M_1(MX)

2 ES_M_2 # M_2(MX)

3 ES_M_3 # M_3(MX)

11 ES_AT # At(MX)

12 ES_Ab # Ab(MX)

13 ES_Atau # Atau(MX)

23 ES_MU # mu(MX)

25 ES_tanb # tanb(MX)

26 ES_mA # mA(pole)

31 ES_meL # meL(MX)

32 ES_meL # mmuL(MX)

33 ES_mtauL # mtauL(MX)

34 ES_meR # meR(MX)

35 ES_meR # mmuR(MX)

36 ES_mtauR # mtauR(MX)

41 ES_mqL1 # mqL1(MX)

42 ES_mqL1 # mqL2(MX)

43 ES_mqL3 # mqL3(MX)
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44 ES_muR # muR(MX)

45 ES_muR # mcR(MX)

46 ES_mtR # mtR(MX)

47 ES_mdR # mdR(MX)

48 ES_mdR # msR(MX)

49 ES_mbR # mbR(MX)

1000039 1.00000000E-09 # gravitino

#

Block SOFTSUSY # Optional SOFTSUSY-specific parameters

0 1.000000000e+00 # Calculate decays in output (only for RPC (N)MSSM)

# The default is that without this, SOFTSUSY will only calculate the spectrum

1 1.000000000e-03 # Numerical precision: suggested range 10^(-3...-6)

2 0.000000000e+00 # Quark mixing parameter: see manual

3 0.000000000e+00 # Additional verbose output?

4 1.000000000e+00 # Change electroweak symmetry breaking scale?

5 1.000000000e+00 # Include 2-loop scalar mass squared/trilinear RGEs

6 1.000000000e-04 # Numerical precision

7 3.000000000e+00 # Number of loops in Higgs mass computation

10 0.000000000e+00 # Force it to SLHA***1*** output?

11 1.000000000e-09 # Gravitino mass

12 0.000000000e+00 # Print spectrum even when point disallowed

13 0.000000000e+00 # Set a tachyonic A^0 to zero mass

# 19 1.000000000e+00 # Include 3-loop SUSY RGEs

# 20 3.100000000e+01 # Include 2-loop g/Yuk corrections: 31 for all

# 22 1.000000000e+00 # Include 2-loop sparticle mass thresholds

# 23 0.000000000e+00 # No expansion of 2-loop gluino terms

24 1.000000000e-06 # If decay BR is below this number, don’t output (default: 1.0e-06)

25 1.000000000e+00 # If set to 0, don’t calculate 3-body decays (1=default)

#

Block SPhenoInput # SPheno specific input

1 -1 # error level

2 0 # SPA conventions

11 1 # calculate branching ratios

12 1.00000000E-04 # write only branching ratios larger than this value

21 0 # calculate cross section

Configuration for EasyScan HEP for generating model points with a heavy gravitino:

BLOCK MODSEL # Model selection

1 0 # nonUniversal

#

BLOCK SMINPUTS # Standard Model inputs

1 1.27908970E+02 # alpha_em^-1(M_Z)^MSbar

2 1.16637870E-05 # G_F [GeV^-2]

3 1.18400000E-01 # alpha_S(M_Z)^MSbar

4 9.11876000E+01 # M_Z pole mass

5 4.18000000E+00 # mb(mb)^MSbar

6 1.73200000E+02 # mt pole mass

7 1.77700000E+00 # mtau pole mass



A.1. CONFIGURATION FOR EASYSCAN HEP 67

#

BLOCK MINPAR # Input parameters - minimal models

#

BLOCK EXTPAR # Input parameters - non-minimal models

0 -1.00000000E+00 # Set

1 ES_M_1 # M_1(MX)

2 ES_M_2 # M_2(MX)

3 ES_M_3 # M_3(MX)

11 ES_AT # At(MX)

12 ES_Ab # Ab(MX)

13 ES_Atau # Atau(MX)

23 ES_MU # mu(MX)

25 ES_tanb # tanb(MX)

26 ES_mA # mA(pole)

31 ES_meL # meL(MX)

32 ES_meL # mmuL(MX)

33 ES_mtauL # mtauL(MX)

34 ES_meR # meR(MX)

35 ES_meR # mmuR(MX)

36 ES_mtauR # mtauR(MX)

41 ES_mqL1 # mqL1(MX)

42 ES_mqL1 # mqL2(MX)

43 ES_mqL3 # mqL3(MX)

44 ES_muR # muR(MX)

45 ES_muR # mcR(MX)

46 ES_mtR # mtR(MX)

47 ES_mdR # mdR(MX)

48 ES_mdR # msR(MX)

49 ES_mbR # mbR(MX)

1000039 1.00000000E+19 # gravitino

#

Block SOFTSUSY # Optional SOFTSUSY-specific parameters

0 1.000000000e+00 # Calculate decays in output (only for RPC (N)MSSM)

# The default is that without this, SOFTSUSY will only calculate the spectrum

1 1.000000000e-03 # Numerical precision: suggested range 10^(-3...-6)

2 0.000000000e+00 # Quark mixing parameter: see manual

3 0.000000000e+00 # Additional verbose output?

4 1.000000000e+00 # Change electroweak symmetry breaking scale?

5 1.000000000e+00 # Include 2-loop scalar mass squared/trilinear RGEs

6 1.000000000e-04 # Numerical precision

7 3.000000000e+00 # Number of loops in Higgs mass computation

10 0.000000000e+00 # Force it to SLHA***1*** output?

11 1.000000000e+19 # Gravitino mass

12 0.000000000e+00 # Print spectrum even when point disallowed

13 0.000000000e+00 # Set a tachyonic A^0 to zero mass

# 19 1.000000000e+00 # Include 3-loop SUSY RGEs

# 20 3.100000000e+01 # Include 2-loop g/Yuk corrections: 31 for all

# 22 1.000000000e+00 # Include 2-loop sparticle mass thresholds

# 23 0.000000000e+00 # No expansion of 2-loop gluino terms

24 1.000000000e-06 # If decay BR is below this number, don’t output (default: 1.0e-06)

25 1.000000000e+00 # If set to 0, don’t calculate 3-body decays (1=default)
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#

Block SPhenoInput # SPheno specific input

1 -1 # error level

2 0 # SPA conventions

11 1 # calculate branching ratios

12 1.00000000E-04 # write only branching ratios larger than this value

21 0 # calculate cross section
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A.2 Phase space of Physical Model Points

In the following plots, the left plots are for m(G̃) = 10�9 GeV and (the right plots are
for m(G̃) = 1019 GeV.
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