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Abstract

The Standard Model of particle physics performs well when describing fundamental physics
at a small scale. However, it is unable to account for some observed phenomena, which leads
to the conclusion that the current model needs to be extended. The investigation of the Higgs
boson and di-Higgs production processes offers opportunities to improve the understanding
of nature further. Di-Higgs processes are immensely rare and there is a large amount of back-
ground processes which make the measurement of these processes very difficult. A prominent
background for the di-Higgs production is the production of a Higgs and Z boson. These
processes are kinematically very similar since the two bosons have comparable masses and
both processes have close cross sections in proton-proton collisions. However, the Higgs boson
is a scalar particle while the Z boson has a spin of 1. The spin of the Z boson transfers to
the final state particle and ultimately impacts their direction.
To investigate the impact of the particle spin on the final states, a method based on the
Ellis-Karliner angle is applied. This observable was originally used on a three-jet system
consisting of massless partons and will be modified for massive particles. For this purpose,
two approaches are tested on generator level simulation data. Further, methods of improving
the jet selection are investigated. These selection methods show that a precise jet selection is
necessary to be able to distinguish between Higgs and Z bosons using spin correlations. The
results suggest that the use of a modified Ellis-Karliner angle provides an observable which is
applicable for the separation of the investigated di-Higgs processes from the specified back-
ground process.
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Chapter 1

Introduction

The Standard Model of particle physics provides a theory describing three out of the four
fundamental forces and possible interactions between elementary particles. While the current
model is very successful at describing nature to an incredible degree, there remain still many
unanswered questions. These include the nature of dark matter (1), dark energy (2) and the
apparent matter-antimatter asymmetry in the universe (3). In 2012, the latest addition to the
Standard Model, the Higgs boson, was discovered by the ATLAS and CMS collaborations
at CERN (4)(5). This massive particle was predicted by the Higgs-mechanism (6), which
provides a mechanism for the generation of the masses of the weak gauge bosons, W± and
Z0, and the fermion masses. Since its discovery, the properties of the Higgs boson have been
largely investigated. However, there are still further properties which have not been verified
experimentally yet. These include the interaction between several Higgs-like particles, which
is called self-interaction. Further, there are possible mechanisms producing two Higgs bosons
in the final state. However, these processes are predicted to be immensely rare and have not
been measured yet. Additionally, the trilinear self-coupling is one of the possible production
mechanisms of a di-Higgs whose existence diminishes the cross section of these processes
even more. Investigating the properties of the Higgs boson offers numerous opportunities
to further improve the understanding of nature, as well as for searches of Physics Beyond
the Standard Model. However, the large QCD background at the Large Hadron Collider
(LHC) at CERN in Geneva imposes challenges on the measurements of those rare di-Higgs
processes. Additionally, there are background processes resulting in similar final states as
the di-Higgs processes. This work investigates the background of single Higgs production
associated with a weak gauge boson, specifically the Z boson. Even though the main pro-
duction mechanism of di-Higgs processes at the LHC is via gluon fusion, its cross section
is immensely small and comparable to the cross section of the single Higgs production with
an associated Z boson. Additionally, the Higgs and Z bosons are similar in mass. These
similarities result in kinematic similarities of both processes. However, the Higgs boson was
found to most likely be a spin-0 particle while the Z boson has a spin of 1. Considering a fully
hadronic decay into bottom quarks, the spin of the Z boson will be transferred to its decay
products and ultimately impact their direction. Such an angular correlation could be used
to distinguish between both processes. This work investigates three-jet systems built from
massive bosons and their decay products based on the method of the Ellis-Karliner angle.
This observable was initially used on massless partons to verify the gluon spin (7). To use
a similar method, this work presents a possible modification of this observable for massive
particles, which will be evaluated for distinguishing the di-Higgs from its background process.

First, chapter 2 gives a brief overview of the theoretical background of particle physics needed
in later sections. Additionally, an outlook on other developments in the field is provided. Fur-
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2 CHAPTER 1. INTRODUCTION

ther, concepts of experimental particle physics at particle colliders are briefly introduced with
special focus on the LHC and the ATLAS experiment, which is an all-purpose detector at
CERN. Chapter 3 establishes an overview of the usage and the basic structure of a Neural
Network and introduces some of the most common challenges of using such networks. After-
wards, chapter 4 introduces the processes investigated in this work. Additionally, the basics of
the Monte Carlo framework used to generate the investigated data sets are briefly presented.
Further, the original method of the Ellis-Karliner angle, as well as a possible modification
are described. Chapter 5 covers the analysis of the investigated processes using spin correl-
ation. Additionally, methods to improve the jet selection and jet recombination are studied.
Lastly, this chapter evaluates the impact of the proposed observable on distinguishing the
processes by using a Neural Network. Chapter 6 finally summarizes the results of this work
and provides an outlook on possible next steps extending the presented analysis.



Chapter 2

Physics Background

Particle physics aims to explain the very fundamental forces of the universe. The smallest
building blocks of nature are called elementary particles and their properties and interac-
tions are described by a theory called the Standard Model. While this theory is already
very successful in describing physics at an elementary scale, there are still open questions
such as dark matter, leading to numerous new theories to extend the Standard Model. An
experimental apparatus able to collect data from high-energy collisions is required to measure
the properties of particles and to perform measurements to verify new physics models. Such
an experimental framework is given by the LHC and the ATLAS detector at the European
Organization of Nuclear Research CERN in Geneva.
This chapter establishes an overview of the theoretical background of particle physics needed
in later sections and provides an outlook on other developments in the field. Further, the
concepts of experimental particle physics at colliders are explained, with special focus on the
LHC and the ATLAS detector.

2.1 Theory of Particle Physics

Due to their energy and size, elementary particles exist in two physical regimes. Since they
are very small, they follow the rules of quantum mechanics. Additionally, they follow the
rules of relativistic mechanics, because they are highly energetic and move at speeds close to
the speed of light. A theory combining both these properties is called Quantum field theory
(QFT). It describes particles as excitations of an underlying field at a very small scale. These
fields interact via three out of the four fundamental forces of the universe.

Relevant aspects of the theory of elementary particles for this work are discussed in the
following sections. First, an overview of the theoretical background of elementary particles
and their interactions is provided. Afterwards, the Standard Model is briefly introduced and
an outlook on some of the unanswered questions is given. Additionally, the latest experiment-
ally discovered elementary particle, the Higgs boson, and its purpose is introduced. Lastly,
important concepts such as the particle spin and Lorentz transformations, which will be used
in the analysis presented in this work, are briefly described.

2.1.1 Elementary Particles

The smallest particles without any known substructure are called elementary particles, which
form all matter. They can be classified into two groups, fermions and bosons, depending
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4 CHAPTER 2. PHYSICS BACKGROUND

on spin quantum numbers, which are given in units of ℏ. Each elementary particle has a
corresponding antiparticle. While the majority of the quantum numbers are the same for
the corresponding antiparticle, charge-like quantum numbers change their sign. Particle-
antiparticle pairs can be created even in a vacuum. Further, particle-antiparticle pairs may
annihilate and thereby create energy in the form of a photon, as shown in the Feynman
diagram in figure 2.1 for electron-positron annihilation.

e−

e+

γ

Figure 2.1: An example Feynman diagram showing a particle-antiparticle pair, represented
by an electron and positron that annihilate and thereby create energy in the form of a photon.

Fermions are particles with half-integer spin while bosons have integer spin. Fermions can
further be divided into leptons and quarks. Both leptons and quarks are grouped into three
generations with similar masses, as shown in table 2.1. Lepton generations consist of a
negatively charged lepton and a massless and chargeless neutrino.

Quark pairs are grouped by their electrical charge in up-type and down-type quarks with
charges +2

3 and −1
3 . Quarks cannot exist as free particles in contrast to leptons. They

combine into bound states of either two or three quarks, called Hadrons. These decay into
lighter particles, for instance, lighter Hadrons, which may then decay again. This process
is repeated until a stable particle is produced. The phenomenon of quarks combining to
build Hadrons, which is called Hadronization, was observed experimentally (8) and led to the
theory of confinement (9).

1st generation 2nd generation 3rd generation

Quarks u d c s t b
Charge +2

3 −1
3 +2

3 −1
3 +2

3 −1
3

Mass 2.16MeV 4.67MeV 1.27GeV 93.4MeV 172.69GeV 4.18GeV

Leptons e νe µ νµ τ ντ
Charge −1 0 −1 0 −1 0
Mass 0.511MeV < 0.8 eV 105.658MeV < 0.19 eV 1776.86MeV < 18.2MeV

Table 2.1: The three fermion generations of leptons and quarks. The charges are given in
units of the elementary charge. Quarks are represented by the respective first letter and
leptons by e and the Greek letters mu µ and tau τ with their respective neutrino being
indicated by an additional nu ν. All masses are given as approximations in natural units of
electronvolts. Neutrinos are not completely massless which is presented by the upper bounds
but are treated as such in the Standard Model. The values in this table are taken from the
particle listings of the Particle Data Group (10).

The gauge bosons, which are elementary particles, are mediators of forces between particles.
For simplicity, units of c = 1 and ℏ = 1 are used, resulting in mass and energy in units of
electronvolts (eV). Since the influence of gravity is very small this force can be neglected
and only the three main forces are considered, which are electromagnetic, weak and strong
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interaction.
Both the description of elementary particles and their interactions are summarized by a
theory called the Standard Model of particle physics.(11)

2.1.2 The Standard Model

The Standard Model not only gives a detailed description of particles but also provides a the-
ory on the three fundamental forces in nature: electromagnetic, weak and strong interaction.
The fourth force in nature, gravity, is neglected since its influence is very small. Each interac-
tion is described by a Lagrangian, which is constructed to reproduce the common equations
of motion of the corresponding force, such as the Dirac equations. Furthermore, symmetries
play an important part in physical descriptions because of their close connection to conser-
vation laws. For example, Noether’s Theorem yields conservation of angular momentum for
rotational symmetry. Other symmetries, such as gauge and discrete symmetries, are relevant
as well.
Each of the fundamental forces acts on different particle properties. The electromagnetic
force acts on the electrical charge, the weak force acts on weak isospin and the strong force
on colour charge, which is solely a property of quarks. Fields mediating these interactions
are represented by gauge bosons, which act on characteristics of the respective force. The
Lagrangian describes the different processes related to the force, such as a gauge boson
propagating freely. Further, these Lagrangians describing the interactions need to be glob-
ally gauge invariant, which means that they are invariant under transformation performed
equally at every point in space-time. Due to this global symmetry, the Lagrangian is space-
time independent. Additionally, local gauge invariance is required, to allow for gauge bosons
to mediate the interactions. This leads to a term in the Lagrangian which describes an
interaction of a free particle with a gauge field.

Global gauge invariance can be seen by adding a divergence term ∂µM(Φi, ∂µΦ
i) to the

Lagrangian, which does not change the resulting equations of motion and therefore has no
impact on the physical meaning. Such a global invariance should also hold locally. This is
valid for particle physics as shown in the following. The Dirac Lagrangian

L = iΨ̄γµ∂µΨ−mΨ̄Ψ , (2.1)

reproduces the Dirac equation and can be modified to be invariant under a local gauge
transformation of the form Ψ → eiθ(x)Ψ. This is achieved by adding a term containing a
gauge field Aµ which transforms like Aµ → Aµ − ∂ θ(x)

q with coupling constant q.

L = [iΨ̄γµ∂µΨ−mΨ̄Ψ]− (qΨ̄γµΨ)Aµ (2.2)

The final term of the local gauge invariant Lagrangian of equation 2.2 can be interpreted
as the interaction of a fermion, which is given by its spinor Ψ, with a gauge field Aµ via
a coupling constant q which affects the strength of the interaction. The first term of equa-
tion 2.2 describes the propagation of the fermion while the second term describes its mass m.
Applying the same steps as shown above to an electromagnetic gauge boson field Aµ results
in an expression which cannot contain mass because a mass term contains a factor AµAµ,
which breaks local gauge invariance. Consequently, the gauge boson has to be massless.
Even though fermions can be massive, as seen in the Lagrangian in equation 2.2, they are
still treated as massless. This enables splitting right and left chiral parts of the spinor.
Treating these parts as separate particles may be used to differentiate between particles and
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antiparticles. The massless gauge boson would work for the electromagnetic and strong inter-
action since their respective gauge bosons, the photon and the gluon, are massless. However,
the weak interaction is mediated by the W± and Z0 bosons, which are massive and have been
observed experimentally(12)(13). Combining the electromagnetic and the weak interaction
to the electroweak interaction did not solve this issue. Therefore in electroweak theory, the
weak gauge bosons, W± and Z0, and the photon are created by a mixing of the massless
gauge fields B and W using an angle θ. In this way, only an explanation for the generation of
mass of the weak gauge bosons and the fermions is needed. A theory for that was provided
by Higgs in 1964 (6), who predicted a new boson, the Higgs boson, which was used to confirm
this theory in 2012.(11)(14)(15)

2.1.3 The Higgs-Mechanism

A drawback of the gauge boson Lagrangian described in chapter 2.1.2 is that it does not in-
clude the mass of the gauge bosons. Adding a mass term and applying a gauge transformation
would show, that including masses in the Lagrangian breaks local gauge invariance. However
experimentally it has been proven that the W± and the Z0 are massive. To include those
masses, a theory utilizing the concepts of spontaneous symmetry breaking is introduced (6).
The concept of spontaneous symmetry breaking is described by a Lagrangian exhibiting a
symmetry which is broken by the ground state. A simple analogy is a rotationally symmetric
ball rotating on the tip of a finger: once the ball falls the rotational symmetry is broken.

|Φ|

V (Φ)

|Φmin|

Figure 2.2: Cross section of the three dimensional Higgs potential V(Φ) of equation 2.6
showing the non-zero minima of the potential. By choosing a ground state |Φ|min, the
breaking of the rotational symmetry of the potential is achieved.

To find a modification that fulfils the requirements above of the local gauge invariance, a
potential term with a non-zero ground state is introduced to the Lagrangian. The following
Lagrangian

L =
1

2
(∂µΦ)(∂

µΦ) +
1

2
µ2Φ2 − 1

4
λ2Φ4 (2.3)

can be split into a ”kinetic” T and ”potential” V term
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L = T − V (2.4)

in which the potential is defined as

V (Φ) = −1

2
µ2Φ2 +

1

4
λ2Φ4 (2.5)

This leads to a visible invariance as Φ → −Φ. Determining the ground state for the Lag-
rangian of equation 2.3 requires calculating the minimum of the potential V (Φ), which is at
Φ ̸= 0. A Lagrangian including such a potential can be interpreted as the description of a
background field, which even exists in a vacuum. An example of such a field is the Higgs
field, which is essential for the creation of the mass terms in the Standard Model. Writing a
potential in a form similar to equation 2.5 by using a complex field Φ = Φ1 + iΦ2 in three
dimensions yields the following potential.

V (Φ) = −1

2
µ2(Φ⋆Φ) +

1

4
λ2(Φ⋆Φ)2 (2.6)

The parameters µ and λ are not fixed and have to be determined experimentally. This is
the simplest possible potential with the desired properties and it is visualized in figure 2.2.
Using the above notation for the Lagrangian of equation 2.3 leads to :

L =
1

2
(∂µΦ)

⋆(∂µΦ) +
1

2
µ2(Φ⋆Φ)− 1

4
λ2(Φ⋆Φ)2 (2.7)

The potential in equation 2.6 has a rotational symmetry and its minima lie on a circle of
radius

|Φ|min = ±µ

λ
. (2.8)

In order to use the following coordinate substitution for the real and imaginary part of Φ

η = Φ1 ±
µ

λ
and ξ = Φ2 (2.9)

which breaks the symmetry, one of the minima needs to be chosen as the ground state. The
second field ξ can be eliminated from the new Lagrangian by applying a gauge transformation
Φ → Φ′ and allowing the resulting field Φ′ to be real by demanding Φ2 = 0. This results in
a Lagrangian including a mass term for the gauge bosons, as well as a new massive particle
described by the field η, which is better known as the Higgs boson. While the exact shape
of the Higgs potential remains unknown, the principle of employing spontaneous symmetry
breaking to generate particle masses stays the same.(10)(11)

In 2012 the Higgs boson was confirmed to exist by the ATLAS and CMS experiments at
CERN (4)(5). In the following years, numerous measurements were conducted that con-
firmed the predicted couplings and branching ratios. For instance, the coupling of the Higgs
boson to the mass of fermions has already been confirmed and measured for the heavy top
and bottom quarks (10). Many major decay channels have been quantified as well. It was
found that the Higgs boson is most likely a spin-0 particle with even parity. Further, a
measured mass at around 125GeV implies a high probability for a meta-stable electroweak
vacuum. At the LHC, which is a proton-proton collider, the most likely production mechan-
ism is via gluon fusion with a cross section of 49 pb at the centre-of-mass energy of 13TeV,
which is rather small and makes Higgs events rare. The most dominant Higgs decays are
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H → bb̄ with roughly 58% and H → WW with roughly 21% but there are many more decay
channels (10). Currently, there are a considerable amount of measurements investigating the
properties of the Higgs boson and experiments on evaluating the Higgs sector and Standard
Model extensions.(10)

h

h

h

(a) h

h

h

h

(b)

Figure 2.3: Feynman diagrams of the Higgs boson self-couplings predicted by theory.
Figure2.3a is referred to as trilinear coupling and figure2.3b shows quadrolinear coupling.

Higgs self-coupling

Spontaneous symmetry breaking does not only result in a massive Higgs boson, but also
in the appearance of terms in the Lagrangian that describe interactions of three or four of
these newly created particles. This means, that the Higgs boson has the ability to self-couple,
which implies that there are interactions between itself and other particles of its kind, which
is shown in figure 2.3. The terms describing self-coupling in the Lagrangian are proportional
to parameters of the potential µ and λ. Additionally, µ is proportional to the Higgs mass,
which opens up the possibility of investigating the Higgs potential in more detail by meas-
uring these parameters through self-coupling processes. Higgs self-couplings are one of the
possible production channels of Higgs pairs, which have not been measured yet. Searches
for Higgs pair production are important studies for probing the extensions of the Standard
Model. However, the existence of Higgs self-coupling diminishes the cross section even more,
which makes these processes extremely rare.(10)

2.1.4 Open Questions

While the Standard Model is verified at a high accuracy and very successful in describing
physics at an elementary scale and is, there are still phenomena in nature not explainable by
this theory alone. Examples of this are dark energy (2) and matter, postulated from astro-
nomical observations (1), and the fact that the majority of the universe seems to consist of
matter (3). Additionally, there are inherent deficiencies, such as the Standard Model not be-
ing able to describe the fourth fundamental force of gravity. These observations suggest that
the Standard Model needs to be extended in some way to explain nature more accurately.
These models are often referred to as Physics Beyond the Standard Model or New Physics.
Since the current model is able to describe nature to an incredible degree, it is difficult to
experimentally observe differences in this theory. This leads to a vast variety of searches for
Physics Beyond the Standard Model.
Since the experimentally found values can be explained by many different models besides
the Standard Model, the Higgs sector offers various opportunities to search for New Physics.
Additionally, some of the decay channels have not been measured yet because of experimental
challenges and it is still unclear if the Higgs boson is an elementary particle as opposed to a
composite one. Measurements for the Higgs self-coupling proposed by the Standard Model
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are of importance since they provide a way to measure the trilinear Higgs self-coupling, which
has not been experimentally verified yet. The resonant Higgs boson is a key part of many
Beyond Standard Model theories, for instance, some extensions predict its decay to potential
dark matter particles, hidden valleys or dark particles. Investigating the properties of the
Higgs boson further could lead to a more accurate understanding of nature.(10)

Without the guidance of the Standard Model, several new theories beyond the Standard
Model have been created. One example is the Minimal Supersymmetric Standard Model
which contains numerous new particles and parameters. Since these theories have not been
successfully verified yet, there is no specific direction for Beyond Standard Model extensions,
leading to many different theories being proposed as an extension to the current model.(16)

2.1.5 Lorentz Transformations

According to the principle of special relativity, the laws of nature take the same form in
every inertial frame of reference. This also holds for the equations of the Standard Model.
Time and space coordinates measured in different inertial frames of reference are related by a
Lorentz transformation. This leads to the relativity of simultaneity, Lorentz contraction, time
dilation and velocity addition as immediate consequences. Lorentz transformations relating
frames of references moving in arbitrary directions whose axes are parallel are called boosts.
A general Lorentz transformation between inertial frames of reference is a combination of a
rotation and a boost. A convenient notation is given by the position-time four-vector xµ with
µ = 0, 1, 2, 3 :

x0 = ct, x1 = x, x2 = y, x3 = z (2.10)

Writing the Lorentz transformation in terms of xµ results in the compact form

xµ
′
= Λµ

νx
ν (2.11)

where coefficients Λµ
ν are regarded as elements of a matrix Λ with β = ν

c :

Λ =


γ −γβ 0 0

−γβ γ 0 0
0 0 1 0
0 0 0 1

 (2.12)

The notation xµ is called a contravariant four-vector. To each contravariant four-vector, there
is an associated covariant four-vector xµ, which is obtained by applying a metric gµν on xν .

xµ = gµνx
ν (2.13)

The components of gµν can be stored in a matrix g

g =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (2.14)
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which is its own inverse. In principle, applying a metric on the contravariant four-vector
results in a covariant vector xν with spatial components of opposite sign.
In elementary particle physics, there is a distinction between the laboratory and the particle
frame of reference. Looking at the variable of time, it is most convenient to define a proper
time τ which is given by the time in the reference frame of the particle because it is invariant.
Other variables, such as energy and momentum, used need to be defined in such a way, that
the conservation laws hold in all inertial frames of reference. Introducing a velocity depending
on the distance travelled in the lab frame and the proper time τ , the momentum is defined
as

pµ = mηµ (2.15)

where η = γv is the velocity and m the mass. The four-vector pµ can be split into the time
component

p0 = γmc (2.16)

and the momentum three-vector

p = γmv =
mv√
1− v2

c2

(2.17)

with γ = 1√
1− v2

c2

. Similarly, the energy is defined as

E = γmc2 =
mc2√
1− v2

c2

(2.18)

which can be used to rewrite p0 as E
c . The energy and momentum build the energy-momentum

four-vector pµ = (Ec , px, py, pz). Using equation 2.15 to calculate the inner product leads to
the following equation, which is invariant in all inertial frames of reference.

pµp
µ =

E2

c2
− p2 = m2c2 (2.19)

Analyzing equation 2.17 and 2.18 for mass m = 0, the numerator vanishes and the equations
for momentum and energy become indeterminate at speeds close to the speed of light. As-
suming equation 2.19 still applies, then the energy is defined as E = |p|c for the massless
case. This definition is useful for describing the photons and neutrinos as they are massless
particles.(11)(14)

2.1.6 Spin

The particles in the Standard Model contain a quantum number called spin, which describes
the intrinsic angular momentum of an elementary particle. Half-integer spin particles are
fermions, which follow the Pauli exclusion principle, which states that there cannot be two
identical fermions simultaneously with the same quantum numbers at the same spot. The
bosons, which are integer spin particles, do not have such a restriction and can cluster in
identical states. Further, the spin of composite particles can differ from their component
particle spin. For example, the ground state of an atom may have a spin of 0 and behave like
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a boson while the quarks and leptons of which the atom consists are fermions.
Noether‘s theorem results in conservation laws that are associated with continuous symmet-
ries of the equations of motion. For example, rotational symmetry results in the conservation
of angular momentum. The tensor representing the relativistic angular momentum can be
separated into an extrinsic orbital part L and an intrinsic spin part S. While the conservation
of the total angular momentum has to hold, this does not have to be true for the orbital and
the spin parts separately. The intrinsic angular momentum, which is referred to as spin, can
be described as a rotation around an axis. Since an axis involves a direction, the spin does
not only have a magnitude but also a direction. This leads to either a + or − sign depending
on the direction the axis is pointing in.

Spin-1

(a)

Spin-0

(b)

Figure 2.4: Visualization of the direction of the particle spin in the decay of a spin-1 and
a spin-0 particle. The red line in figure 2.4a indicates the rotation around a vertical axis.
Depending on the polarization, the spin is either pointing up or down, which is represented
by the arrows of the red line symbolizing the rotation to the right or left respectively. In
the case of the spin-1 particle, there is a preferred direction for the particle spin as seen in
figure 2.4a. Here, the spin of the decay products points either towards or away from the
direction of the spin of the initial particle as visualized by the black arrows pointing upwards
or downwards. For a spin-0 particle, there is no preferred direction, as shown in figure 2.4b
by the black arrows.

Considering elementary particles, the total spin needs to be conserved in a decay. In the case
of a spin-1 particle, the spins of the final state needs to add up to one, which is for example
realised by two spin 1

2 particles. Depending on the polarization, the spin is either pointing up
or down symbolizing a rotation to the right or left respectively. Therefore, there are preferred
directions of spin of the decay products to achieve conservation of the total spin in case of
a spin-1 particle: These are either towards or away from the direction of total spin which is
visualized in figure 2.4a. Here, the red arrows indicate the rotation around a vertical axis
and the black arrows point either upwards or downwards representing the spin of the decay
products. For a spin-0 particle, like the Higgs boson, there are no preferred directions for
the decay since there is a vast amount of possibilities to achieve a spin of zero in the final
state.(11)(17)

2.2 The Experimental Framework

Particle colliders provide a high-energetic framework for high-energy processes by colliding
particle beams at speeds close to the speed of light. These collisions produce numerous
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particles such as hadrons which will mostly decay into lighter particles. The mostly stable
particles found in the final state can be investigated. Further, particles which are of interest
for certain studies can be produced directly and then investigated through the particles in
the final states of their various decay channels.
Several different collider experiments are located at CERN in Geneva, Switzerland. This
section will focus on the LHC and the ATLAS detector. This chapter will provide an overview
of the current methods and goals, past scientific achievements and future goals at CERN in
general and for the ATLAS detector in detail.

2.2.1 The LHC

The LHC is a 27 km long ring accelerator and collider installed in a tunnel below CERN
previously used for the Large Electron-Positron Collider LEP. In the LHC, two proton beams
travel in opposite directions and intersect at various collision points around the ring. The
beams are guided and focused by strong, superconductive dipole and quadrupole magnets.
Within the collision points, bunches of protons collide at a centre-of-mass energy of up to
13.6TeV (18). The output of one collision is called an event and the number of such events
per second at the LHC is given by

Nevent = Lσevent (2.20)

where σevent is the cross section of the event being studied and L the luminosity of the ma-
chine. To be able to measure rare events with a small cross section, high luminosities need to
be achieved at the LHC. The luminosity depends only on the properties of the beam which
means that high beam energies and intensities are required to achieve high luminosities.
The LHC consists of two high luminosity experiments, ATLAS and CMS, a low luminos-
ity experiment, LHCB, and an experiment operating with ion beams, ALICE. While LHCB
specialises on B-physics, CMS and ATLAS are all-purpose detectors collecting data of proton-
proton collisions.(19)

In 2012 the LHC achieved its goal of discovering the Higgs boson, which was found by both
the ATLAS and CMS collaborations independently (4)(5). This verified the theory that the
masses of the elementary particles are generated by the Higgs field. However, this is not the
only unsolved question in particle physics the LHC wants to answer. The LHC aims further
to explain Physics Beyond the Standard Model, such as the nature of dark matter and the
observed asymmetry of anti-matter and matter in the universe. For this purpose, CERN con-
ducts precision measurements to search for possible inconsistencies with the Standard Model.
These could hint at the nature of a new theory needed to explain the unanswered questions
and further understanding of the Higgs boson. Additionally, there are many analyses on
Physics Beyond the Standard Model at the LHC, aiming to find new particles associated
with new physics models, which help answer the open questions. A highly studied theory
proposes a Minimal Supersymmetric Standard Model with a Higgs sector containing a second
Higgs doublet. However after many years of research at the LHC, beyond Standard Model
particles have not yet been observed. Since there is currently no verified model extending the
Standard Model, there is still a large amount of various theories trying to answer the vast
amount of open questions.(16)(19)
The second phase of the LHC aims to increase the luminosity significantly, which will be
done by further improving the beam parameters. The High-luminosity LHC (HL-LHC) will
be able to increase the amount of data acquired which is expected to make studies on rare
decays easier. For the Higgs boson, the high luminosity will enable more precise results for
precision measurements. Additionally, it may allow studying rare Higgs decays and even
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di-Higgs production. Further, the mass reach for searches of new particles will be enlarged.
In total, it is expected that the large data sets provided by HL-LHC improve the ability to
detect new physics.(20)

2.2.2 The ATLAS Detector

In general, detectors are used to collect information about the particles in the final state of a
collision in order to analyze them afterwards. For this purpose, they consist of different layers
that serve different purposes. There are devices used for identifying particle trajectories,
measuring the energy of the particle and measuring the momentum. An example of such a
detector is the ATLAS detector at the LHC shown in figure 2.5 which is briefly described in
the following.
The innermost detector layer is the tracking detector using a strong magnetic field and
pixel detectors for momentum and vertex measurements, pattern recognition and electron
identification. The next layer after the inner detector is the electromagnetic calorimeter
used for precision measurements of photon and electron properties. Surrounding it is the
hadronic calorimeter. Here, hadrons decay and hadronize, thereby creating lighter hadrons
in the final state. These carry almost the same direction of travel as the initial particle which
causes that the created particles distribute within a cone surrounding the initial particle.
Processing data and estimating the properties of the initial particle is done by searching
for and combining close-laying final state particles into one. The results of this procedure
reproducing the initial particle is called a jet. In addition to measuring the hadronic decay
products, the measurement of missing transverse energy also takes place in the hadronic
calorimeter. Finally, the outermost layer is called the muon system, which is inside a magnetic
field similar to the inner detector. This detector part is used for muon identification and
measuring their tracks.

Figure 2.5: Cross section of the ATLAS detector with labels of the most important compon-
ents for particle tracking and measurements.(21)
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Since there is an enormous amount of data in every event far exceeding the possible data
recording rate, a trigger system is applied, split into three layers. Each layer refines the
decisions of the previous one and, if needed, applies additional selection criteria. The first
layer, for instance, searches for high transverse-momentum muons, electrons, photons, jets
and hadronically decaying τ -leptons. This ensures that collected data will most likely be of
interest for current measurements and analyses.
The coordinate system used by the ATLAS detector is described as follows: The origin of the
coordinate system is defined at the collision point while the z-axis points in the direction of
the beam, the x-axis towards the centre of the LHC ring and the y-axis upwards which means
that the x-y plane is transverse to the beam. Variables such as the transverse momentum pT ,
transverse energy ET and missing transverse energy Emiss

T are usually described in this plane.
The azimuthal angle Φ is defined around the z-axis and the polar angle θ describes the angle
from the z-axis. An additional coordinate often used is defined by the pseudorapidity η given
by

η = − ln

[
tan

(
θ

2

)]
(2.21)

which indicates where in the detector an event occurred. Small values of the pseudorapidity η
point towards events around the centre of the detector while larger values indicate a more
forward direction for the event. The difference ∆R in the pseudorapidity-azimuthal plane is
defined as ∆R =

√
∆η2 +∆Φ2.

Several of the intended measurements at CERN, such as the measurement of certain Higgs
decay channels needed for its discovery, were taken into account for the design and perform-
ance goals of the ATLAS detector. However, one of the main challenges of a proton-proton
collision is the large QCD background which makes the discovery of rare processes even
harder. This imposes additional requirements on future improvements of this experimental
framework.(21)



Chapter 3

Artificial Neural Networks

The term Artificial Neural Network defines a machine learning algorithm used for information
processing. While there have already been methods and models developed at an earlier
time, the use of such networks became more popular in recent years due to their capability
to process large amounts of information and successfully perform given tasks. Nowadays,
these information-processing structures are used in various fields, such as data analysis and
particle physics. The structure of these Artificial Neural Networks is inspired by the current
understanding of the human brain. This biological organ is a very complex structure built
of thousands of nerve cells, called neurons, and synaptic connections, which are necessary to
process immense amounts of information. The artificial counterpart aims to replicate this
structure by grouping neurons into layers and connecting them. To transmit information
through the network, each neuron receives and then generates an output, which will then be
propagated through the layers.
This chapter establishes a brief overview of the most common components of Neural Networks
used to evaluate the results of this work. After a brief motivation of the use of this technique,
an introduction to the structure of such a network will be given. Afterwards, calculation
methods used to achieve a good performance of the network are described. Lastly, a few of
the more widely known challenges of such neural networks are introduced.

3.1 Motivation for Artificial Neural Networks

In the brain, neurons are the fundamental unit of computation and are connected in com-
plex networks. Such an intricate structure is necessary to process the immense amounts of
information and complex relations of data points. Additionally, this large network is able to
establish new connections of neurons over time, improving its data-processing capabilities.
This intricate biological structure inspired neural network algorithms for machine learning,
aiming to reproduce their structure and information-processing abilities. Even though the
neuron models for such algorithms are idealized, the principle of a network learning by chan-
ging connections between neurons stays the same.

An artificial neural network consists of neurons grouped into layers. These then generate an
output transmitted to the next layer which is visualized in figure 3.1. After moving through
several layers of neurons, the information is then finally given to an output layer. As indicated
in figure 3.1, the information in such a network propagates from left to right without any
communication between neurons in the same layer. In order to generate an output, called
neuron value, the neurons need to be active. This is defined as an activation function con-
tained by the neuron. Such a function evaluates the strength of the reaction of a neuron to
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Figure 3.1: An example of a feed-forward neural network with one hidden layer. The input
layer is colored green, the hidden layer blue and the output layer red. The grey arrows depict
the connections between the neurons of the three layers. As indicated by the direction of the
arrows, the information flow is strictly from left to right.

the incoming information. Combining these components leads to an information-processing
structure which is called Neural Network (NN).(22)
While there were already various efficient learning methods and network structures developed
at an earlier time, the concept of Neural Networks became prominent only in recent years
through the introduction of ”Deep Learning”. This method, based on artificial NNs, exceeds
the abilities of data-processing of a NN by employing more complex structures. Such net-
works are able to process immense amounts of information and in recent times are relevant for
various fields, such as data analysis. Since the rise of the popularity of these techniques, the
usage of properly trained NNs has demonstrated significant success due to the large abilities
to capture details of given distributions.(23)

3.2 Learning in a Neural Network

NN are structures built from various parts of which each fulfils a different purpose to process
large amounts of data. To be able to capture details of the input distributions, neurons are
connected with each other. Each coupling differs in strength based on its importance for the
performed task. To ensure a good performance of the network, an error function is introduced
to compare the results of the learning process to the prediction. Further, this measurement of
the NN’s performance accuracy is used to improve the network by reevaluating the strength
of each coupling throughout the structure. Since the goal of using a NN is to successfully
perform a task, such as the classification of a target, a cross-checking procedure is applied.
This section will give a short overview of the basic components of a NN. First, introducing
the general structure and building blocks of a feed-forward network. Afterwards, a closer look
at the way a network improves itself is taken and lastly, a validation process is introduced.

3.2.1 Structure of a Neural Network

A NN is a structure that transmits information through a sequence of layers. Each layer
consists of a number of neurons, which only feed information to the neurons of the next layer.
There are no back-connections and no information is exchanged between the neurons of the
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same layer. Such a data processing network is called a feed-forward network. There are three
different types of layers: input layers, hidden layers and output layers. The input layer on
the far left of figure 3.1 receives the input data, while the output layer on the far right of
figure 3.1 generates an accessible output in its neurons, which can be interpreted according
to the given task. Each layer in between is called a hidden layer and its neurons are not read
out and only used for computational purposes. Each connection between neurons carries
a different weight, which represents the importance of the information transmitted via this
connection.

x

σ(x)

1

Figure 3.2: An example for a non-linear activation function defined by equation 3.1, the
sigmoid function. All input values are normalized to a range of 0 to 1. Once a certain
threshold is surpassed, where the values of the activation function are above zero, the neuron
is active.

Every neuron in a network contains a so-called activation function. Such a function needs to
be non-linear since applying a linear function in a hidden layer would not change the mapping
of the input to the output. Additionally, non-linearity is necessary to solve tasks with not
linearly separable input distributions. Further, these functions provide a measurement of
the strength of the reaction to the input data. An example of an activation function is the
sigmoid function shown in figure 3.2, which is defined as follows.

σ(x) =
1

1 + e−x
(3.1)

This function normalizes the values on a range of 0 to 1, indicating how the neurons react to
the input data. Additionally, the function is not symmetric around zero as seen in figure 3.2,
which means that the output values will be positive. Another widely used activation function
is called rectified liner unit, ReLU, function. Similarly to the sigmoid function, it is a non-
linear function. An advantage of the ReLU function is that not all neurons are activated
simultaneously which makes the ReLU function more efficient. As the network is trained via
gradient descent, which is proportional to the derivative of the activation function, derivatives
of simple form simplify and speed up the underlying calculations.

In the learning process of a NN, the input of each neuron is of different importance to train
the network. This is represented by the weight of the connection. When receiving the input,
the neuron computes a weighted average. For this purpose, all input values for that specific
neuron are multiplied by their respective weights and then added up as visualized in figure 3.3.
The result is then given to the activation function and the neuron value is calculated by

output = f(
∑
i

xiwi) (3.2)
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Figure 3.3: A schematic visualization of the computation chain of one neuron. The xi with
i = 1, 2, 3 represents the input the neuron receives with respective weights wi, reflecting the
strength of the connection. As indicated by the sum the weighted values are taken and added
up. This information is afterwards given to the activation function f of the neuron and an
output is generated.

Here, xi with i = 1, 2, 3 represents the input values with respective weights wi, the sum∑
i
xiwi the weighted average and f the activation function. During the learning process,

all these computations are performed several times and the weights of each connection are
reevaluated.(22)

3.2.2 Error Function

In a feed-forward network, the neurons are connected with each other and the information
is transmitted from left to right. Each of these connections is of different strength, reflecting
the importance of the transmitted information. To ensure a sufficient performance of the
NN, the weights are updated over the duration of the learning process. For this purpose,
error functions are introduced as a measurement of the network’s accuracy. To use such an
error function, a labelled data set is required. This means, that every data point has a target
value t, representing the output the network should produce. These numerical labels enable
a comparison of the network’s results to the prediction. To generate an output as close as
possible to the expected values, the error function is minimized. If the function is equal to
zero its minimum is reached, meaning that the network can correctly generate outputs equal
to the target value of every data point.(22)

Example: Cross-entropy loss
An example of such an error function is the cross-entropy loss defined by:

H = −
∑
i

[ti ln fi] (3.3)

Here, t corresponds to the target values of each neuron output i and f represents the activation
function used to generate the output fi of each neuron. If ti = fi the function is minimal
and the output generated is as good as the prediction. The results of the error function can
be interpreted as a probability of finding the target t = 1.(22)

3.2.3 Backpropagation and Gradient descent

As a measure of the network’s performance accuracy, error functions are introduced that
compare the output of a neuron to the prediction. In order to improve the classification
of targets in the input distribution, the error of the network needs to be minimized. This
minimization is then used to reevaluate the coupling strength of each neuron connection in
the NN. A method minimizing the error function and recursively correcting the coupling
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strengths is called gradient descent.
Each connection in the network carries a weight, which is a free parameter that represents the
importance of the transmitted information. These parameters are initialized using a random
distribution, which usually yields larger errors in the beginning. To improve the performance
of the network, the weights are adjusted from the last to the initial layer with the aim of
minimizing the error function. This method is called backpropagation.

To minimize the error function, gradient descent is applied, which minimizes the error func-
tion by adjusting the weights. For this purpose, the weights are adjusted in small steps
towards the direction of the gradient. This gradient step is then repeated until the minimum
is reached, which corresponds to the best possible set of parameters found during the train-
ing.
This means that the gradient of the error function H is calculated

∇H =

(
∂H

∂w1
,
∂H

∂w2
, ...,

∂H

∂wi

)
(3.4)

where H is the error function and i is the total number of weights in the network. In this
method, the weight updates are defined as

δwi = −η
∂H

∂wi
(3.5)

where η represents a parameter called learning rate. Since the gradient of the error function
is calculated, the activation function used must be differentiable and continuous. In order to
simplify and speed up the calculations during the learning process, the activation function
and its gradient need to be of a simple form.(22)
The learning rate represented by η in equation 3.5 also impacts the step size of the gradient
descent. While this parameter can be chosen freely, it should be relatively small to ensure
that the learning process is converging.(22)

By calculating the gradients of the error function with respect to the weights, backpropaga-
tion is achieved. However, compared to the direction of the feed-forward network, the errors
are updated from right to left. This backward motion through the network results from the
structure of the error function and the chain rule. The equations defining this behaviour
correspond to distributions that are given to the neurons. For instance, one distribution can
be fed to the network and backpropagation is applied to update the weights. Iterating this
step several times is called sequential training, where the number of iterations is defined as
epochs.(22)

3.2.4 Validation

The backpropagation method for updating the weights of every connection of neurons through
gradient descent leads to an optimization of the network by learning from its errors over time.
By choosing the correct activation function and error function for the specific task, a good
performance of the NN can be achieved. However, there is no proof that the network is
actually learning. After many iterations, the NN adapts to the properties of the input data
set which may be very specific to the given information. However, the goal of a NN is to
expand from the data it has been trained on to unlabeled data sets, meaning that the more
general properties of the input distributions are of interest. To ensure this generalization is
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possible, the labelled data set is split into two subsets, training and validation. Since both
subsets are taken from the same labelled data set, they may vary in noise but the general
properties of the original data set should be present in both. Even though the network is
learning by using the training subset, the error function of the validation subset is monitored
as well. As long as the network is learning the general properties of the input distributions,
the error functions of both subsets should decrease.
This method is useful to identify issues such as overfitting in a NN, which will be described
in section 3.3. Using such a cross-validation technique to ensure proper learning of the
network leads to a better generalization of the task to unknown data. Such a generalization
is desirable since the goal of using a NN is to correctly classify unlabeled input data, which
was, for example, obtained experimentally.(22)

3.3 Challenges of Neural Networks

A NN consists of many different components, each with its own purpose, to achieve the highest
possible accuracy of predictions during the learning process. While the previously introduced
structure and weight updating methods lead to a minimization of the error of the network,
there still needs to be cross-checks done to validate the results. This is done, as described
in section 3.2.4, by separating the labelled data set into validation and training subsets and
monitoring the error function of both. This section provides an overview of the most common
challenges of working with neural networks, such as underfitting, overfitting and data set bias.

Underfitting

The learning of certain properties of the input distributions is done by giving a pattern
to the neurons and iterating through the layers several times, specified by the number of
epochs. During the learning process, the weights are updated which means that the network
is learning from its errors over time. The complexity represented by the number of neurons
and hidden layers of a NN is a key factor in how well this learning process might work. If
the network is very minimal and not able to sufficiently capture the properties of the in-
put distribution it is called underfitting. This describes the challenge where the NN cannot
separate two classes in the data because a lot of the details of the input distributions are
missed, which is visualized in figure 3.4a. However, this may be easily fixed by changing the
number of neurons and layers and thereby effectively changing the number of parameters in
the network, which ultimately leads to a better performance.(24)

Overfitting

A NN can vary in complexity depending on the number of neurons in each layer and the
amount of layers in the network. In the previous section, the case of a minimal network
unable to sufficiently capture the details of the input distributions is discussed. However,
the more widely occurring challenge is that the network learns properties of the input dis-
tributions that are specific to only the given data set. This can result in fitting noise in the
training subset and is called overfitting. While underfitting can be fixed by modifying the
complexity of the NN, overfitting cannot be easily fixed. Since the complexity of a NN is
given by the number of parameters a network with high complexity is able to capture more
details of an input distribution. This is necessary in case of intricate tasks needing a lot of
information about the input data to correctly classify targets. Even though the complexity
might be lowered through the usage of fewer neurons and layers, the network might not be
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Figure 3.4: A schematic visualization of underfitting and overfitting in a network. The two
classes in the data set are represented by black and green circles. The achieved separation
of target classes in the input distributions is indicated by the red line. This schematic
sketch visualizes how the network is fitting to the input data with increasing complexity.
In figure 3.4a the case of underfitting is shown. Here, the network does not capture many
details of the input distributions due to insufficient numbers of hidden layers and neurons.
Therefore, it is not able to separate the two classes. Figure 3.4b indicates a good fit to
the input distribution. Here, a sufficient amount of details of the input data is captured to
correctly identify a large amount of data points. In figure 3.4c the case of overfitting is shown,
where the NN is too complex. In this case, the network fits details specific to a given data
set such as noise.

able to capture sufficient details on difficult input distributions. Due to this issue, overfitting
is a widespread challenge imposed on the usage of NNs.
Since the goal of NN is to be generalized to unlabeled data, this overly specific fitting to the
input data should be avoided as best as possible. For this purpose, the validation subsets,
introduced in chapter 3.2.4, are monitored. Once the error function of the validation sub-
set starts to saturate, as visualized in figure 3.5, the network is overfitting. However, since
overfitting is one of the main challenges of using a NN, so-called Regularisation techniques
are used. These are implemented into the network and are able to overcome the effects of
overfitting. Examples of these techniques are batch normalization and dropout.(22)(24)

Pre-processing of the Input Data

The complexity of the network is not the only challenge for a NN to learn correctly. While
there are methods of optimizing the weights throughout the training process of the network
and achieving a high classification accuracy, it might be useful to process the input data
before evaluation with the NN.

Firstly, the data can be shifted such that the mean ⟨xk⟩ vanishes since large mean values
may cause steep gradients in the error function for which gradient descent has difficulties
functioning properly. Further, high variance and mean may lead to large values of the activ-
ation function, meaning that the neuron would react more to this input compared to smaller
values. To ensure that the neuron reacts to the input with respect to its importance, the
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Figure 3.5: A schematic graph of the error function in case of overfitting. The data set is split
into training and validation subsets, which are both monitored during the learning process
of the NN. While the training subset still shows the network learning, represented by the
decreasing error function, the validation subset appears to behave differently. As seen in the
dashed line, the function saturates and stops decreasing. This indicates that the network fits
to the noise of the input data instead of learning general properties.

input data is normalized so that the variance is equal to unity, σ2 = 1. Additionally, a large
mean of the input data leads to difficulties for the network to differentiate. In total, it is
advisable to apply such a shifting and scaling method to the input data. However, this needs
to be applied to every other data set the network is supposed to classify.
To ensure the NN is learning the necessary properties for the task at hand, it needs to fre-
quently process unfamiliar data. In sequential training, the steps of receiving input data and
transmitting the information through every layer, besides the output layer, are iterated sev-
eral times. For the NN to receive unfamiliar data in these iterations, the data set is shuffled
so that the sequence of input patterns given with every epoch is random.(22)

Data Set Bias

This chapter already introduced many methods used to ensure a NN is learning as best
as possible and achieving high accuracy in classifying targets found in the data set. As dis-
cussed in the previous section, several techniques may be used to prepare the data in order
to achieve better training of the network. While this is already successful in improving the
performance accuracy, the impact of the given data set may need to be investigated further.

Since a NN trains based on patterns in the input distribution, changes in the input data
may impact the classification accuracy. For instance, the labels of the target classes are set
before handing the data set to the network to validate the obtained output. However, if these
labels are incorrect, the patterns in the input distribution differ, leading to the NN training
based on inaccurate information, which ultimately impacts the obtained classification accur-
acy. This phenomenon is called bias. While there are different types, the above example
hints at specific bias in a data set. Even though the given example may be the most apparent
cause of such a data set bias, any restriction to the input data before handing it to the NN
should be handled with caution. For instance, certain analysis tasks may need to restrict the
data set prior to training with a NN due to the complexity of the task at hand. While this
does not necessarily lead to errors impacting the performance of the network, the patterns of
the input distributions are much more idealized. This will impact the classification accuracy
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for the task. Since these restrictions are based on subjective decisions prior to the training
process, every obtained result of a NN should be investigated and interpreted individually.
Further, such restrictions impose a challenge on generalizing from labelled to unlabeled data
sets, meaning that data set bias should be kept as small as possible. (24)
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Chapter 4

Methodology

As indicated in previous chapters, the Standard Model is able to describe nature to an
incredible degree. Its latest addition, the Higgs boson, provides a theory accounting for
weak gauge boson and fermion masses. Further, the Lagrangian describing its interactions
includes terms that describe interactions of several Higgs-like particles. Such a phenomenon
is called self-coupling. However, such a coupling has not been measured experimentally
yet. Additionally, Higgs bosons can be created in several ways including the production of
Higgs pairs. While the single Higgs production is already very rare, the cross section for
the production of a di-Higgs is even smaller. Further, the existence of trilinear self-coupling
as a production process for two Higgs bosons diminishes the cross section even more. Due
to its immense rarity Higgs pair production has not been measured yet. Additionally, the
measurement of these processes faces more challenges due to background processes and QCD
background at the LHC. An example process leading to a similar final state as the di-Higgs
process is the production of a Higgs and Z boson. While there are many similarities between
these processes, the spin is different for the Higgs and Z bosons. Before this work describes the
analysis based on the spin properties of the investigated particles, an observable describing the
impact of this property on the final state needs to be obtained. For this purpose, a method
originally proposed by Ellis and Karliner to find the gluon spin, called the Ellis-Karliner
angle (7), will be investigated. Further, this method will be modified to fit the desired
structure. Additionally, this analysis uses Monte Carlo generated events to investigate the
processes. Such simulated data opens opportunities to analyze the properties of rare events,
aiming to further improve the knowledge on them and to ultimately enable experimental
measurements.
This chapter gives a brief description of the two investigated processes, as a motivation of the
purpose of this analysis. Additionally, an overview of the most important steps of generating
the Monte Carlo data used in this work will be given. Lastly, an observable describing the
impact of the particle spin on the final state in a three-jet system will be introduced and
modified for investigation of the discussed processes.

4.1 Higgs-Pair Production and Background Processes

The Higgs boson is the latest addition to the Standard model and was finally discovered in
2012 (4)(5). While there have already been many measurements done on its properties since
then, there are still properties suggested by its Lagrangian, which have not been validated
yet. This includes the ability of the Higgs boson to couple with other particles of its type,
which is called self-coupling. Since this includes the production of two Higgs bosons, which
are expected to be very rare, this adds to the difficulty of measuring this property.
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Figure 4.1: Feynman diagrams for the dominant production mechanism of two Higgs bosons
at LHC, which are produced via gluon Fusion. The process in figure 4.1a includes trilinear
self-coupling of the Higgs boson with the strength depending on the coupling constant λ. In
figure 4.1b the Higgs bosons are produced independently with a strength proportional to the
Yukawa coupling.

The Higgs boson can be produced via different mechanisms. However, the dominating pro-
duction mechanism at the LHC is via gluon Fusion (ggF). While this process has the highest
cross section, the small cross section of about 49 pb (10) at 13TeV centre-of-mass energy
makes these processes rare. Measuring properties of the Higgs boson through the production
of a single Higgs boson is already useful for the investigation of the Higgs potential. How-
ever, trying to measure the production of two Higgs bosons would give access to the trilinear
self-coupling suggested by the Lagrangian. This property describes a Higgs boson coupling
to a like-wise particle either in a trilinear or quadrolinear coupling. Similarly to the single
Higgs production, there are numerous production mechanisms of which ggF has the highest
cross section. Even though the ggF is the most probable production mechanism at the LHC,
the cross section is about a thousand times smaller than the one for the single Higgs boson.
In the Standard Model, there are two non-resonant production modes through quark loops.
One includes a ”box”-shaped loop of mainly top quarks, while the other one includes trilinear
self-coupling. Both of these processes have a comparable amplitude. However, the diagrams
shown in figure 4.1 interfere with each other negatively, leading to a smaller production rate.
To measure the diagram on the right in figure 4.1 the contributions of both diagrams need
to be separated.(10)

Searches for the HH production investigate measurements of the various decay channels of
a Higgs boson. For a singular Higgs boson, the most prominent decay channels are the de-
cay into a pair of bottom quarks and the decay into W bosons, as already mentioned in
chapter 2.1.3. In the case of HH processes, the two Higgs bosons can decay via the same de-
cay channel or there can be mixtures of the various existing channels. Similarly to the single
Higgs production, the decay channel with the highest cross section includes Higgs bosons
decaying into pairs of bottom quarks. However, searches for these processes are restricted by
the immense amount of QCD background at the LHC. Additionally, the decay into bottom
quarks is sensitive to the production of a vector boson and a Higgs boson. Since the Higgs
boson and the weak gauge bosons are not stable, their decay channels need to be taken into
account, for instance, the Z boson can decay hadronically and may even decay into a pair
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Figure 4.2: The production mechanism of a single Higgs boson with associated production of
a weak gauge boson, which is the main production process for the HZ final state. The gauge
boson may either be a W or Z boson. Here, the Higgs boson is radiated off of the created
Z boson. This process is similar to the di-Higgs production via a self-coupling process in
figure 4.1, which makes them hard to distinguish.

of bottom quarks. One of the main production mechanisms of a single Higgs boson, besides
ggF, is the associated production with a gauge boson. In this production, shown in figure 4.2,
the Higgs boson is radiated off of the weak gauge boson, which may either be a Z or a W
boson. Even though the cross section of this process is small compared to the single Higgs
production via ggF, the cross section is comparable to the one of the HH production. This
imposes even more challenges on the measurements of the HH processes, since the decay into
pairs of bottom quarks may happen in the HZ process, leading to a background process very
similar to the desired HH process. Additional difficulties in distinguishing these processes
come from the comparable masses of the Higgs and Z boson, with a Higgs mass of about
mH = 125GeV and a Z boson mass of about mZ = 91GeV. Since the masses of the Z bo-
son and Higgs boson are not exact but lie on a distribution with a certain width, there are
overlaps between the masses of the two bosons experimentally observed. These kinematic
similarities impose many challenges on the separation of the HH production from this specific
background process. However, looking at further properties of the Higgs and Z boson, which
is in this work the spin, there might be additional information gained to eventually separate
these processes.(10)

4.2 Generation of Monte Carlo Data Using PYTHIA

Many processes investigated in current studies are very rare, making it difficult to measure
any properties of these processes and their contributing particles. Additionally, large QCD
backgrounds and background processes generating similar final states impose even more chal-
lenges on these measurements. In order to increase the probabilities of finding such processes,
data simulations are employed. While these are highly idealized, as they for instance ensure
the process is happening in every event and suppress background processes, they still offer
opportunities for analyzing the properties of the processes which then might lead to a higher
chance of experimentally measuring them. For this, frameworks able to do the necessary com-
plex computations are introduced. One of these is the POWHEG method, which combines
the calculations beyond leading order with a shower generator. It has already been used for
many processes including Higgs boson production associated with a vector boson. Further,
it does not depend on the showering generator used. This brief introduction is focusing on
the method called POWHEG BOX (25) used with PYTHIA 8 (26) for generating showering
processes.
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Figure 4.3: Feynman diagram of the entire process of HH production via ggF with self-
coupling, which includes both Higgs bosons and their decay into the pairs of bottom quarks
as a visualization for the purpose of FastJet. While the entire diagram up to the hadroniza-
tion process of the quarks is described by POWHEG BOX and PYTHIA, the jets indicated
as green cones are found and reconstructed by FastJet (27). Even though the chosen visualiz-
ation shows cones for the resulting jets, this is not a representation of the used jet algorithm
and was just drawn for simplicity.

The POWHEG BOX method, which is used to generate the HH and HZ processes discussed
in this work, uses a structuring method for all incoming and outgoing particles. The particles
are labelled from the incoming particles to the final state particles ordered by colour charge
and mass, with indices according to Particle Data Group conventions (25). This algorithm
then computes all necessary kinematic configurations to generate a process.(25) To generate
the showering process, a generator such as PYTHIA needs to be interfaced with POWHEG
BOX. Fortunately, POWHEG BOX does not depend on the details of the used parton shower.
The most intuitive approach is to look at the characteristics of the input event and start the
generation there. However, definitions of, for instance, the relative transverse momentum
might differ between POWHEG BOX and PYTHIA, leading to phase-space regions being
missed entirely while others are double-counted. To account for this issue, veto variables
are introduced in the PYTHIA framework to ensure better matching to POWHEG BOX,
which minimizes ambiguities.(28) After interfacing both code structures, PYTHIA is used to
simulate particle productions in as much detail as possible. Here, a scale is used to generate
the process from the hard scattering of the partons to, for instance, additional particles in
the final state arising from radiation processes. As indicated above, the parton level calcula-
tions are usually imported from a separate package and only simple processes are calculated
internally.
To generate a process, PYTHIA is structurally divided into three sections covering the com-
ponents of an event: process level, parton level and hadron level. The process level describes
the hard-scattering process, which is typically at high-energy scales. Parton level results in
a representation of a realistic parton structure including jets and describing the underlying
event. The last component, the hadron level, takes care of the hadronization as well as the
decay of unstable hadrons, leading to an output of a realistic event as it is observed in a
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detector.(26)
Lastly, the jets found in an event need to be accessible in order to analyze it. For this purpose,
another tool is introduced which is used for jet-finding and analysis. The tool focused on in
this work is FastJet (27). Since it is not sufficient to identify the jets visually, an algorithm
projecting particles onto a jet is defined. These jet definitions can, for instance, be applied
to particles. As visualized in figure 4.3 by green cones, this tool is only used after the process
is generated up to the level of a real event, which includes hadronization, to reconstruct jets
in the final state. Jet-finding algorithms can be classed into either sequential recombination
or cone algorithms.
Sequential algorithms identify pairs of particles which are close together and then recombine
them repeating that procedure until the stopping criterion is reached. The main difference
between different recombination algorithms is the distance measure and stopping criterion.
Cone algorithms define a specific conical region and combine the particles within this cone
into a jet. These stable cones tend to be close in energy and direction to the initial parton.
These algorithms differ in the strategy of finding such stable cones.(27)

The jet-finding method used in this work is a recombination algorithm, called kT algorithm (27).
It defines a distance measure between particle pairs depending on the transverse momentum
of a particle with respect to the beam and a difference in the rapidity and azimuthal angle.
Additionally, a jet radius defining the angular reach of the algorithm is included in the dis-
tance calculation.
There are two versions of this jet recombination algorithm: exclusive and inclusive. In the
exclusive case, the smallest distance is identified. If it is the distance between particles, they
are replaced with a single object and their momentum is added up. Such an object is called
a PseudoJet since it is neither a particle nor a full jet. If the smallest distance found is with
respect to the beam axis, then this particle is removed and contributes to the beam remnants.
This is repeated until a cut value is reached after which every particle belongs to the jet.
In the case of the inclusive version, there is no such cut value, the iterations continue until
there are no more particles remaining. Additionally, the final jets surpassing a set transverse
momentum value will be used.(27)

4.3 Spin Correlations

The HH and HZ processes introduced in chapter 4.1 are kinematically very similar. However,
taking a closer look at the properties of the Higgs and Z boson shows that these particles have
a different spin. As described in section 2.1.6, the particle spin may impact the direction of
spin for the final state particles. To investigate this behaviour, an observable was proposed
by Ellis and Karliner which describes a correlation between the spin of the initial particle and
the direction of its decay products (7). This angle was originally used on three-jet systems
that originate from e+e−-collisions to confirm the spin property of the gluon. While the decay
structure of the Higgs or Z boson shows a similar three-jet system, the original definition of
the Ellis-Karliner angle was derived for massless partons. In order to use such an approach,
this method needs to be modified to account for particle masses.
This section introduces the original method Ellis and Karliner used on a three-jet system that
consists of massless partons. Afterwards, an equation based on the original Ellis-Karliner
angle will be derived. This aims to include particle masses in a three-jet system to enable
investigations of HH and HZ processes based on the spin properties of Higgs and Z bosons.
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4.3.1 The Ellis-Karliner Angle

The spin quantum number described in chapter 2.1.6 is an intrinsic property of elementary
particles. In the case of the gluon, which is described by perturbative QCD, it was predicted
to be a spin-1 particle. While three hadron-jet events at the e+e−-collider PETRA showed the
desired behaviour, the spin property of the gluon still needed to be confirmed (29). For this,
the directions of the three jets and their correlations were investigated, providing information
about the nature of the gluon. A method using angular correlation to study the structure of
these three-jet events is described by the Ellis-Karliner angle.(7)(29)

q

g

q̄

Figure 4.4: An example of the investigated three-jet structure to confirm the spin of the
gluon.

The Ellis-Karliner angle is used to describe events consisting of quarks and a gluon as shown
in figure 4.4. For this purpose, an axis is defined along which the highest energetic jet is
aligned. After further analysis of possible three-jet events, a Lorentz boost is applied. After
applying the Lorentz boost on an event of the desired structure, the two less energetic jets
should be in their centre-of-mass frame and should be back-to-back. The angle θ was proposed
by Ellis and Karliner to define an observable describing the angle between these jets and the
previously defined axis. Calculating the distributions for the different proposed gluon spins
and comparing them to data allowed to determine the gluon spin as 1.(7)(29)
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Figure 4.5: A visual representation of the three-jet structure system investigated with angular
correlation. On the left, the directions of the jets are given by the angles θi with i = 1, 2, 3.
According to the method proposed by Ellis and Karliner, the system is then boosted back
to the rest frame of the two lower energetic jets. The variable θEK , describing the angle
between these jets and the axis along the direction of the highest energetic jet, is called the
Ellis-Karliner angle.

For the method proposed by Ellis and Karliner, the jets are sorted according to their energy
such that

x3 < x2 < x1 with xi =
2Ei

Ecm
(4.1)

with Ei the energy of the quark or gluon and Ecm the beam energy. Afterwards, a Lorentz
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boost back to the centre-of-mass frame of the jets 2 and 3 is applied as shown in figure 4.5.
Since the partons are massless, the observable takes the form

cos θEK =
(x2 − x3)

x1
(4.2)

where θEK is the Ellis-Karliner angle, which describes the angle between jets 1 and 2 in the
rest frame of the jets 2 and 3. Defining the cross sections for a vector and scalar particle and
integrating it, results in distributions of the Ellis-Karliner angle which show the differences
for different proposed spin properties of the gluon.

Figure 4.6: Comparison of the vector gluon described by QCD and the scalar gluon to the
measured distribution. Here, the shape of the cosine of the Ellis-Karliner angle defined
in equation 4.2 is visualized. As indicated in the legend, the dotted line represents the
scalar gluon showing an approximately constant distribution. The solid line representing the
vector gluon, which is spin-1, increases towards the right. Comparing the measurement data,
visualized by the squares in the figure, to both distributions, the resulting shape looks similar
to the vector gluon distribution. This comparison is taken from reference (30).

The results for investigating a measured distribution by comparison with the proposed scalar
and vector gluon are shown in figure 4.6. The scalar case, represented by the dotted line,
shows a rather constant distribution besides a decrease towards the far right of the interval.
The shape of the proposed spin-1 gluon, which is visualized by the solid line in figure 4.6,
shows an increase towards the right with a dip at the end of the interval of cos θEK . Com-
paring the distribution obtained from measurements to both versions, there are apparent
similarities to the vector gluon case which hints towards the gluons property of spin-1.(29)(30)

4.3.2 The Modified Ellis-Karliner Angle for Jet Systems

As described in section 4.1, there are many challenges in the measurement of the HH pro-
cesses. While the most apparent one is the small cross section of these processes, further
difficulties arise from the background of an event. Large QCD backgrounds at the LHC as
well as kinematically similar processes make the identification of HH processes much more
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challenging. An example of such a background process, which will be investigated in this
work, is the HZ production introduced in section 4.1. Due to the similar cross section and
the close masses of the Higgs and Z bosons, these processes are hard to distinguish. However,
taking a closer look at the properties of these particles, it is apparent that the spin is different.
As mentioned in chapter 2.1.6 there is a correlation between the spin of a particle and the
direction of the spin of the decay products. For the spin-0 Higgs boson, there is no prefer-
ence in the direction of the spin while for the spin-1 Z boson a preferred direction is found.
This leads to different angular correlations between the jets in the final state compared to
the spin-0 particle. Such a correlation of the angle between jets and the spin of the original
particle can be investigated.
An observable describing such angular correlations is defined by the Ellis-Karliner angle in-
troduced in the previous chapter. However, this method was originally introduced for the
confirmation of the gluon spin and is used on partons. Since partons are massless, equa-
tion 4.2 cannot be used on the system of a Higgs or Z boson, whose masses were mentioned
in chapter 4.1, decaying into a pair of quarks. Nevertheless, this method may be modified to
include massive particles.

Z
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Lorentz boost
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θEK

Figure 4.7: A visual representation of the three-jet system which includes the Z boson and its
decay products. Similar to the previous case in figure 4.5, which includes partons, a Lorentz
boost is applied so that the bottom quark pair is back-to-back. θEK indicates the desired
angle based on the method of the Ellis-Karliner angle.

To use the method of the Ellis-Karliner angle, the three-jet system needs to include the Higgs
or Z boson and the bottom quarks they decay to. Additionally, these systems need to be
altered to account for particle masses. For a description of the modification process, this
chapter focuses on the case of the Z boson presented in figure 4.7. The method to calcu-
late the angular correlation in this new system uses a very similar approach to the original
Ellis-Karliner angle. As described in the previous chapter 4.3.1, a Lorentz boost is applied
to the three-jet system in such a way that the bottom quarks in figure 4.7 are back-to-back.
Afterwards, the angle θEK is located between one of the lower energetic jets and the axis
defined by the direction of the highest energetic jet. Looking closely at the visualization in
figure 4.7, the positioning of the spin-1 particle changed compared to the original system.
This is because the Z boson is the highest energetic component of the investigated system.
Even though the approach resembles the original method proposed by Ellis and Karliner, the
underlying calculations are more complex since equation 4.2 only accounts for the massless
partons.
There are two approaches to modifying the Ellis-Karliner angle according to the system in
figure 4.7. Firstly, the Lorentz boost can be calculated by using the respective functions of
ROOT, which is an object-oriented framework used to analyse data (31). Secondly, a modi-
fication of the Ellis-Karliner angle may be investigated. This opens up the opportunity to
derive a compact formula, which might be usable in likelihood fits. While this work will use
and compare both approaches, this section will focus on the derivation of such a modified
Ellis-Karliner angle.
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Derivation of the modified Ellis-Karliner angle

For the derivation, the process of HZ production is split into two main parts. The first
one describes the production of the Higgs and Z bosons at rest, while the second part covers
the three-jet system, which includes a boson and its decay products. This derivation aims to
describe the angular correlation of a three-jet system with massive particles and is based on
the approach of the original Ellis-Karliner angle.

2 1
3

Figure 4.8: The first section of the process describes the production of the two bosons at
rest. To keep a consistent naming scheme, the Z and Higgs bosons are represented by 1 and
2 respectively while the Z boson from which they originate is represented by 3. This was
inspired by the original naming scheme of the investigated three-jet system (29).

Figure 4.8 visualizes the production of the Higgs and Z bosons at rest. Here, the original
boson is named 3 and the Higgs and Z bosons are 2 and 1 respectively. The purpose of
looking at the subsection of the process is to describe the energy and momentum of the Z
boson. Since the momentum of the two bosons produced at rest is the same, it can be written
as follows (10)

p1 = p2 =

√
(m2

3 − (m1 +m2)2)(m2
3 − (m1 −m2)2)

2m3
(4.3)

where mi with i = 1, 2, 3 represents the masses of the particles. Defining the energy of
particle 1 leads to the following expression in terms of the masses. (10)

E1 =
m2

3 −m2
2 +m2

1

2m3
(4.4)

The above equations defining the energy and momentum of the system in figure 4.8 will
become useful when investigating the decay into a pair of bottom quarks.

The system in figure 4.9 describes the second section of the process which covers the decay
of the Z boson, 1, to the bottom quarks, q1 and q2. When comparing this three-jet system to

1

q1

q2

Figure 4.9: A visual representation of the three-jet system building the second subsection.
Here, 1 represents the Z boson and q1 and q2 represent the quark pair from the decay of the
Z boson. This is the system, which will be ultimately boosted to the rest frame of the quark
pair.
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figure 4.5, it becomes visible, that the structure is very similar, which means that if a Lorentz
boost is applied, an angle comparable to the Ellis-Karliner angle should be found. To obtain
an equation describing this angle, the momentum and energy of the quarks are calculated.
Using conservation of energy and momentum, the following equations need to hold.

p1 = pq1 + pq2 (4.5)

E1 = Eq1 + Eq2 (4.6)

Additionally, the energy may be written as

Eq1 =
√
m2

q1 + p2q1 (4.7)

where mq1 is the mass of quark q1 and pq1 its momentum. For simplicity, c = ℏ = 1 is used.
The conservation of energy may be written as follows.

E2
1 = E2

q1 + E2
q2 + 2(Eq1Eq2) (4.8)

Substituting Eq1 using equation 4.7 leads to:

E2
1 = m2

q2 + p2q2 + E2
q1 + 2(Eq1

√
m2

q2 + p2q2) (4.9)

Further, using conservation of momentum and rewriting the momentum of q1 in terms of mass
and energy and simplifying the expression results in the following equation for the energy of
quark q1:

Eq1 =
E2

1 −m2
q2 +m2

q1

2E1
(4.10)

Similarly, the energy for the second quark is obtained as:

Eq2 =
E2

1 +m2
q2 −m2

q1

2E1
(4.11)

Additionally, the momentum of the quarks can be derived using a similar approach. Starting
with the conservation of the momentum in equation 4.5 and rewriting one of the quark
momenta using equation 4.7 leads to the following equation.

p21 = p2q1 + E2
q2 −m2

q2 + 2pq1

√
E2

q2 −m2
q2 (4.12)

Substituting the energy of quark q2 with the previously obtained expression results in the
following expressions for the momentum of quarks q1 and q2:

pq1 = p1 −
1

2E1

√
(E2

1(E
2
1 − 2m2

q1 − 2m2
q2)) + (m2

q1 −m2
q2)

2 (4.13)

pq2 =
1

2E1

√
(E2

1(E
2
1 − 2m2

q1 − 2m2
q2)) + (m2

q1 −m2
q2)

2 (4.14)
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Since energy and momentum are easily accessible from the Lorentz vectors defined for the
jets in an event, these expressions will not be used for the remainder of the derivation. Addi-
tionally, it is useful to keep the final equation of cos θEK as compact and simple as possible.
However, these expressions will be used in a cross-check for the derived expression at the end
of this chapter.

1

q̃1

q̃2

θEK

Figure 4.10: The investigated three-jet system after applying the Lorentz boost. According
to the naming scheme in this work, the Z boson is represented by 1 and the quarks by q̃1
and q̃2 respectively. The angle θEK describes the angle between q̃1 and the axis defined by
the direction of 1. This is the desired observable to calculate the correlation of the Z boson’s
spin and the direction of its final state jets.

Boosting the three-jet system in figure 4.9 to the rest frame of the quark pair results in
the quarks being back-to-back, as seen in figure 4.10. The angle indicated by cos θEK in
figure 4.10 represents the desired observable describing the correlation of the spin and the
direction of the final state jets. To obtain an equation for this angle, the Lorentz transform-
ation is calculated. Defining quantities such as the boost velocity β and the Lorentz factor γ
as β1 =

p1
E1

and γ1 =
E1
m1

results in:

β1 = −
√

(m2
3 − (m1 +m2)2)(m2

3 − (m1 −m2)2)

m2
3 −m2

2 +m2
1

(4.15)

γ1 =
m2

3 −m2
2 +m2

1

2m3m1
(4.16)

The sign for β1 depends on the direction of the Lorentz boost. Since the system is boosted
back to the rest frame, the direction of the boost velocity is opposite, leading to a sign
change. This may be included in the equations for the Lorentz boost. However, for simplicity
in handling the expressions, the sign may be included in the boost velocity itself as well.
The Lorentz boost is generally defined by

p = γp̃− βγẼ (4.17)

E = γẼ − βγp̃ (4.18)

which is applied to the system. Additionally, the momentum vector is projected onto the x-y

plane by p⃗ = p

(
cos θ
sin θ

)
. The quantities γ and β of the above equations represent the Lorentz
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factor and the boost velocity respectively. In the case discussed in this work, the boost is
applied to the rest frame, which means in the opposite direction. To distinguish between the
rest frame and the laboratory frame, the values in the rest frame will be indicated by a tilde
as used in figure 4.10. The boost is calculated along the longitudinal direction only, leading
to the following equations for the momentum and energy:

−→pq̃1 =

(
γ1pq1 cos θ − β1γ1Eq1

pq1 sin θ

)
(4.19)

Eq̃1 = −β1γ1pq1 cos θ + γ1Eq1 (4.20)

−→pq̃2 =

(
−γ1pq2 cos θ − β1γ1Eq2

−pq2 sin θ

)
(4.21)

Eq̃2 = β1γ1pq2 cos θ + γ1Eq2 (4.22)

The minus signs found in the expressions for quark q̃2 are due to the projection to the x-y
plane. Looking at figure 4.10, the quark q̃2 lies in negative direction compared to quark q̃1.

To project this vector onto the x-y plane, it will be multiplied by p⃗ = p

(
− cos θ
− sin θ

)
. Further,

the expressions depend on the energy and momentum of the respective quark, as well as on
the Lorentz factor and boost velocity obtained from the boson 1.

The desired angle is found in the expressions describing the Lorentz boost and represen-
ted as θ. To obtain an expression for this angle, the invariant masses are calculated. These
are defined as follows:

M1/q̃1 = m2
1 +m2

q1 + 2(p1pq̃1) (4.23)

The above expression is specifically for the case of boson 1 and quark q̃1. In the last term,
p1 and pq̃1 describe the energy-momentum four-vectors. These can be rewritten using the
definition found in section 2.1.5 as follows:

M2
1/q̃1

= m2
1 +m2

q1 + 2(E1Eq̃1 − |−→p1||−→pq̃1 | cos θ1/q̃1) (4.24)

This expression depends on the energy and the absolute value of the momentum of the
contributing particles, boson 1 and q̃1. Additionally, a factor describing the angle between
the two particle jets is represented by cos θ1/q̃1 , which is the desired observable and from this
point on called cos θEK . Since mass is a Lorentz invariant quantity, the particle masses are
still represented by the original particles. Simplifying the above expression and dividing the
invariant masses of quarks q̃1 and q̃2 results in:

M2
1/q̃1

M2
1/q̃2

=
m2

1 +m2
q1 + 2(−β1γ1pq1E1(cos θEK − cos θEK

2)− β2
1γ1E1Eq1 cos θEK + γ1Eq1E1)

m2
1 +m2

q2 + 2(β1γ1pq2E1(cos θEK − cos θEK
2)− β2

1γ1E1Eq2 cos θEK + γ1Eq2E1)

(4.25)

This expression only depends on quantities found in the non-boosted system in figure 4.9
as visible through the naming scheme. This was obtained by replacing the energy and mo-
mentum Eq̃i and pq̃i for i = 1, 2 by using equations 4.19 to 4.22. The above expression can
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be rearranged in such a way, that it leads to an equation defining cos θEK . However, equa-
tion 4.25 contains terms of quadratic order in cos θEK , meaning this expression needs to be
rearranged such that the quadratic formula can be applied. The final derived equation takes
the following form:

cos θEK =

−
(
−

M2
1/q̃1

M2
1/q̃2

β1Eq1
pq2

+
M2

1/q̃1

M2
1/q̃2

pq1
pq2

+
β1Eq2
pq2

+ 1

)
2

(
−1−

M2
1/q̃1

M2
1/q̃2

pq1
pq2

) +

[(
−

M2
1/q̃1

M2
1/q̃2

β1Eq1
pq2

+
M2

1/q̃1

M2
1/q̃2
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The above expression consists of two main parts originating from the form of the quadratic
formula. The most intricate contribution to equation 4.26 stems from a square-root term,
which is indicated by the term in square brackets to the power of 1

2 . Due to the properties of
the quadratic formula, this may have either a plus or a minus sign in front. However, the pos-
itive sign found in equation 4.26 stems from the cross-check applied to the derived expression.

To validate the definition found for cos θEK , the massless limit is investigated. This should
bring the three-jet system for massive particles back to the original structure of the Ellis-
Karliner angle seen in figure 4.5. Further, such a limit may be investigated to validate the
derived expression, as it should result in equation 4.2.

mq1 ,mq2 ,m1 −→ 0 (4.27)

The massless limit in expression 4.27 is applied by setting the masses of the three-jet structure
to zero. This already leads to vanishing terms in equation 4.26. However, the energy and
momentum of the quarks need to be investigated. For this purpose, equations 4.10, 4.11 and
4.13, 4.14 for the energy and momentum respectively are used. Setting the masses to zero
leads to an immense simplification of these expressions. Replacing the energy and momentum
of equation 4.26 and rewriting β1 leads to an expression simplifying to

cos θEK =
M2

1/q̃1
−M2

1/q̃2

M2
1/q̃1

+M2
1/q̃2

(4.28)

In the massless case, the invariant masses correspond to the particle energy. Further, the
energy of boson 1 is defined as the sum of the quark energies. Comparing this to the original
expression of equation 4.2 the massless limit reproduces the original definition of the Ellis-
Karliner angle.

Even though the original expression of the Ellis-Karliner angle may be reproduced by ap-
plying a massless limit to the system, the derivation might still have to be verified due to
its complex expressions. Additionally, it becomes apparent, that the three-jet system in fig-
ure 4.9 is in need of a more intricate description due to the particle masses. This leads to
a lengthy expression for the desired observable of the correlation between particle spin and
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the direction of the decay products. The next chapter will investigate the derived expression
as a possible differentiation between HH and HZ processes. Further, it will compare it to
a different method, the application of a Lorentz boost. The goal of this derivation was to
ultimately find an expression applicable in likelihood fits. The usability of the modification
found for this purpose will be evaluated throughout the next chapter.



Chapter 5

Investigation of HH and HZ
Processes Using Spin Correlation

To investigate the impact of the spin on distinguishing the HH and HZ final states two
approaches based on the Ellis-Karliner angle are tested. For this purpose, HH and HZ pro-
cesses are studied separately. This chapter describes the initial analysis of the modified
Ellis-Karliner angle introduced in section 4.3.2 and an additional approach applying an ex-
plicit Lorentz transformation which is briefly mentioned in section 4.3.2. Further, methods to
improve the jet selection or the HZ processes are investigated. Lastly, the achievable accuracy
of distinguishing between HH and HZ final states for the selected events is tested using a NN.

5.1 Analysis of HH Processes

At the LHC, Higgs bosons are mainly produced via ggF. Even though this is the most promin-
ent production mechanism for both single Higgs bosons and HH processes, the cross sections
are rather small. This leads to Higgs boson processes being immensely rare. Additionally,
the cross section of HH processes is diminished due to the destructive interference with the
self-coupling process of the Higgs boson. However, investigating the properties of the Higgs
boson and the trilinear self-coupling is of large interest to further the understanding of nature.
While experimental measurements already face many challenges due to the rarity of HH pro-
cesses, possible similarities to background processes make measurements even more difficult.
An example of such a background was already introduced in chapter 4.1. This specific ex-
ample imposes challenges on measuring the HH process due to the kinematic similarities.
Further, the decay into bottom quarks leads to very similar final states for the investigated
processes. Additionally, one of the most apparent challenges at a proton-proton collider for
hadronic final states is the large QCD background. These challenges lead to a large number
of analysis topics investigating properties of the Higgs boson to ultimately be able to identify
such HH processes. This work focuses on the spin of the particles involved.

The Higgs boson is most likely a spin-0 particle while a Z boson has a spin of 1. This
work will investigate the impact of the spin on the direction of the final state jets as a meas-
ure for distinguishing HH processes from the HZ background. For this purpose, the approach
based on the Ellis-Karliner angle described in chapter 4.3.1 is used. More specifically, the
three-jet system found by a boson decaying into a pair of bottom quarks is boosted back into
the rest frame of the quark pair. This ultimately results in an angle between either quark
jet describing the desired angular momentum correlation. While this method was originally
used for massless partons to find the gluon spin, this work covers two approaches utilizing a
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Figure 5.1: A schematic visualization of all possible combinations of the four final state jets.
The jets are represented by numbers 1 to 4. Each bracket on the right indicates a possible
recombination.

similar method. Firstly, in section 4.3.2, an equation describing a three-jet system of massive
particles was derived defining a modified version of the Ellis-Karliner angle. Even though the
derivation was focused on a system describing the Z boson decaying into quarks, the resulting
expression is not specific to the Z boson but can be used for both processes. Secondly, the
Lorentz boost resulting in the quarks being back-to-back may be implemented into a code
structure by using built-in functions of the analysis framework ROOT. This chapter will focus
on the comparison of both approaches and their challenges.

Since neither the Higgs nor the Z boson are stable particles, their decay products need to be
investigated. Recombining the bosons via their decay channels yields opportunities to meas-
ure the properties of the initial particle. In the case of a Higgs boson, the most prominent
decay channel is a pair of bottom quarks, which will be investigated in this work. This decay
results in jets in the final state, which are identified and recombined to form the initial Higgs
boson. While the decay channel with the highest branching ratio for HH processes includes
decays to bottom quarks as well, this imposes an additional challenge on the measurement
of these processes. Since quarks do not appear individually and undergo a process called
Hadronization, the first quark initializing the jet cannot be measured. This means that the
jets resulting from each boson need to be identified to recombine them. However, in an
experimental measurement, it is not known which jet belongs to which decay. This work
investigates Monte Carlo generated data. However, the challenge of the jet selection is still
apparent. In the generated events, the jets are identified and recombined by a jet reconstruc-
tion algorithm similar to jet reconstructions in an observed event. Such algorithms only group
together close-laying particles into a jet without any information on the decay they originate
from. In this work, the events are generated as briefly introduced in chapter 4.2. To achieve
the best possible recombination of the Higgs or Z boson, events with at least four final state
jets are investigated. Further, the four jets containing the highest transverse momentum are
used. These are then combined into all possible pairs of jets to find the best match for the
boson masses. Figure 5.1 shows the six possible combinations of four jets, indicating each
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combination by a bracket. After building these pairs, their masses are determined. Compar-
ing those to the Higgs and Z boson mass leads to finding a combination fitting the hypothesis
the best in each case. The jet reconstruction in this work uses the kT algorithm with a radius
R = 0.4 unless stated differently.
The selected jet pairs are then used to build the three-jet systems for the decay of the Z and
Higgs bosons. Their structure is of the form described in figure 4.4 of chapter 4.3.2. The
highest-energetic jet, here the boson, is aligned along the axis. The quarks build an angle to
this axis as indicated in chapter 4.3.2, figure 4.9. To obtain the system that is boosted back
to the rest frame for the quark pair, two approaches can be used. The first uses equation 4.26.
This expression describes an implicit Lorentz boost such that the quarks are back-to-back
and defines the angle between a jet and the axis. The second approach uses functions of
the analysis framework ROOT. These functions use the energy-momentum four-vector of the
initial boson to calculate the components of its boost velocity β. This boost is then applied
to the quark jets. Lastly, the angle between the jets and the axis may be obtained by the
following expression.

cos θEK =
p⃗1p⃗q1

|p⃗1||p⃗q1 |
(5.1)

Here, p1 and pq1 represent the momenta of the boson and one of the quarks respectively.
These two approaches should lead to the same results for cos θEK . However, comparing the
distributions for the Higgs and Z bosons may show differences. As described in chapter 4.3.1,
a scalar particle would result in an almost constant distribution while the vector particle
shows an increase towards larger values of cos θEK . However, compared to the original Ellis-
Karliner angle the structure of the three-jet system changed slightly. The three-jet system
investigated in this work is described in chapter 4.3.2, where the boson is the highest-energetic
particle aligned with the axis. The changed placement of the spin-1 particle leads to the de-
creasing distribution for cos θEK .

cosθEK

#Entries

1

(a)

cosθEK

#Entries

1

(b)

Figure 5.2: A schematic visualization of the expected distributions for cos θEK for a scalar
and a vector particle. Figure 5.2a describes the vector particle, which is in this work the
Z boson. The distribution decreases towards larger values of cos θEK , showing a preference
for small values of cos θEK . While the original description of the Ellis-Karliner angle showed
an increase, the placement of the spin-1 particle in the used three-jet system was changed
leading to the change in the distribution. Figure 5.2b represents the scalar particle, which is
in this work the Higgs boson. Here, the distribution is a constant, showing that there are no
preferred directions for the final state jets.

Figure 5.2 visualizes the results expected for a scalar and vector particle distribution. The
sketch in figure 5.2a shows the spin-1 particle, which is in this work the Z boson, while
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figure 5.2b represents the scalar particle, which is the Higgs boson. These schematic dis-
tributions represent the expected results for the Higgs and Z boson in an idealized version.
Further, their shapes are used to evaluate the obtained distributions during the analysis.
While the previously described steps to obtain jet pairs and determine cos θEK are used for
both the HH and HZ processes, this chapter will focus solely on the HH processes.

(a) (b)

Figure 5.3: Distributions of cos θEK for the Higgs boson obtained by MODEK and ROOTEK.
Figure 5.3a shows the distribution achieved from MODEK while figure 5.3b shows the dis-
tribution using ROOTEK. Both show the desired ”box” shape expected for a scalar particle.
However, figure 5.3a shows an earlier decrease, leading to overall less entries.

After selecting the jet pairs that fit the boson masses best in each event, the modified Ellis-
Karliner angle (MODEK) and the explicit Lorentz transformation using ROOT (ROOTEK)
are calculated and a distribution for each is obtained. Figure 5.3 shows the resulting distribu-
tions without any further restrictions applied. Figure 5.3a represents the derived expression of
MODEK while figure 5.3b shows the same using ROOTEK. Both distributions show a rather
constant function with a ”box” shape as seen for the expected distribution in figure 5.2b.
However, comparing both histograms, it becomes visible that the number of entries differs.
Figure 5.3b shows about 1000 Entries throughout almost the entire interval of cos θEK with
fluctuations due to statistics and a decrease only very close to cos θEK = 1, which is the
end of the phase-space. However, figure 5.3a starts to decrease at around cos θEK = 0.8
and does not reach cos θEK = 1 at all. This hints at differences between both approaches.
However, investigating the distributions more closely it becomes visible that figure 5.3a has
fewer overall entries than figure 5.3b, hinting at issues regarding MODEK.

This behaviour is not as expected. Even though MODEK uses the Lorentz transforma-
tion implicitly to get to the derived expression, the steps taken to boost the system back
to the rest frame of the quark pair are the same as in an explicit Lorentz transformation.
Due to this, both approaches should yield the same results. However, the difference only
occurs at higher values of cos θEK . This hints at the issues arising only towards the end of
the phase-space. To investigate this further, the phase-space needs to be separated. For this,
the pseudorapidity η introduced in chapter 2.1.5 is used. As described in chapter 4.1, there
are two options to produce an HH using ggF. The Feynman diagrams in figure 4.1 show both
production mechanisms. The process including trilinear self-coupling produces HH from a
single spot. This results in the two Higgs bosons having no preferred direction they might
move to. Due to this, these events are expected to be isotropic and also appearing in the
centre of the detector, which means that they have small values of η. The production of
HH via a box loop produces Higgs bosons at different vertices. These Higgs bosons carry
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information about the initial direction of the gluons. Therefore, the processes are expected
to have a rather forward direction, which corresponds to larger values of η. Due to the con-
servation of total angular momentum, both processes may lead to similar results for the final
state directions. Finding a threshold for η may aid in the evaluation, in which subset of the
phase-space, the issues regarding MODEK appear.

In order to split the phase-space any value for the pseudorapidity η might be tested. However,
a starting point may be given at η ≈ 1 since this is near the end of the pseudorapidity region
covered by the barrel calorimeters and an approximate starting point of the end-cap calori-
meters (32). Additionally, an interesting value separating the phase-space is given by η ≈ 2.5.
This value indicates the limit of the pseudorapidity region for precision measurements.(32)(33)
Testing various values of η to find a subset of the phase-space, where especially MODEK shows
a distribution closer to the expectation, leads to a threshold at η = 2.5. While values above
this may have slight improvements, any threshold below η = 2.5 showed a worsening of the
comparability between MODEK and ROOTEK and to the expectation.

(a) (b)

Figure 5.4: The distributions of cos θEK in the subset of the phase-space covering the re-
gion η < 2.5. Figure 5.4a shows the result for MODEK while figure 5.4b shows the result
for ROOTEK. Both show the desired ”box” shape. However, figure 5.4a decreases earlier,
showing no improvement in this region.

Figure 5.4 shows the results for the phase-space subset using η < 2.5, where figure 5.4a repres-
ents the MODEK distribution and figure 5.4b the ROOTEK results. Similarly to figure 5.3,
both show a very ”box”-like shape. However, the distribution in figure 5.4a starts decreasing
much earlier than the distribution in figure 5.4b. This behaviour was already visible in the
initial distributions, showing no improvement to the previous results. The main change of
this pseudorapidity region is the shift in entries from 1000 in figure 5.3 to around 800 in
figure 5.4.

Figure 5.5 shows the results of cos θEK in the phase-space subset covering η ≥ 2.5. Figure 5.5a
shows the distribution for MODEK, here decreasing much later and slower. This leads to the
shape fitting the expectations of an almost constant function better. Figure 5.5b shows the
results for ROOTEK, which already fit the expected shape for the previous results. However,
this distribution starts decreasing later, leading to an even better fit to the almost constant
function expected. Further, both results show no entries at cos θEK ≈ 1. This region of the
interval is only reached at values around θEK = 180◦ or θEK = 360◦. Such cases describe
a system where the quark jets are either very strongly boosted, leading to them being very
close to the axis defined by the initial particle, or the jets are moving backwards according
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(a) (b)

Figure 5.5: The resulting distributions of cos θEK in the subset of the phase-space covering
η ≥ 2.5. Figure 5.5a shows the result for MODEK, while figure 5.5b shows the result for
ROOTEK. Further, figure 5.5a decreases considerably later compared to previous results,
showing an improvement of this distribution in this region. Additionally, the results of both
approaches are more equal in shape.

to the direction of the initial particle, which would require a very slow boson. However, even
the strongly boosted scenario is rather rare leading to only little values effectively reaching
this end-region of the phase-space. Ultimately, the distributions for both approaches show
the desired ”box” shape for a scalar particle. Additionally, the results of MODEK are much
closer to ROOTEK and do not show as many missing entries as before. This hints at the
equation derived in MODEK working more reliably in a subset of the phase-space covering
large η regions. While this indicates that MODEK might work better for the HH production
mechanism using the box loop, this imposes challenges for possible future applications due
to precision measurements of ATLAS currently being restricted to regions of η < 2.5.

Even though the obtained results for MODEK show an improvement when separating the
phase-space using η ≥ 2.5, looking closely at the distributions in figure 5.5 shows that there
is still a slight difference between both approaches. The results from MODEK still have fewer
entries compared to ROOTEK. To find the reason for this persisting difference, the properties
used in MODEK can be investigated. However, studying the behaviour of the energy and
momentum of the quark jets did not lead to an explanation of this issue. Further, quantities
explicitly used in MODEK and ROOTEK may be investigated and compared.

ROOTEK calculates the boost vector used to define a boost velocity β. This quantity is
also found in the derived expression for MODEK, hinting at differences possibly arising from
quantities used in both approaches. Figure 5.6 shows a comparison between the boost velo-
city obtained from ROOTEK and MODEK. MODEK defines β using information from the
energy-momentum four-vector of the recombined boson, while ROOTEK uses a vector de-
scribing the boost velocity obtained by calculating the boost of the initial particle. However,
since both approaches are based on a Lorentz boost to the rest frame of the quark-pair, both
should result in the same boost velocity for the system. Figure 5.6 indicates this desired beha-
viour by showing a distribution of boost velocity pairs from MODEK and ROOTEK building
a diagonal due to both approaches having the same values for β. This boost velocity is one
possible example of comparable quantities between ROOTEK and MODEK. Investigating
the behaviour of each variable found in both approaches always shows the desired behaviour
presented in figure 5.6. The studied quantities do not show any behaviour explaining the
arising differences between MODEK and ROOTEK.
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Figure 5.6: A comparison between the boost velocity used in MODEK and ROOTEK. The
boost velocity obtained from MODEK is drawn on the x-axis and β from ROOTEK on the
y-axis. The β pairs build a diagonal, showing that both approaches result in the same boost
velocity of the system.

Further, equation 4.26 can be investigated to identify the origin of this issue. Entries not
found in the given interval may be either too small or too large. However, the drawn quantity
in each figure uses the absolute value of cos θEK . Additionally, a larger interval up to values of
100 has been drawn, showing no entries above cos θEK = 1. This means that the issue arises
from undefined values of cos θEK . These may be caused by a division by zero or a negative
value under a square-root. Investigating equation 4.26 shows that the large square-root term
leads to these undefined values. While a negative value for the term in the square-root may
be due to uncertainties, figure 5.7 shows that even values of around −10 may be reached.
These large negative numbers are not caused by rounding errors and hint at issues regarding
the expression itself.

Investigating the expression under the square-root in equation 4.26, it becomes visible that
the first term is always positive while the second term may be negative. This means that
there are cases where the absolute value of the second term is larger than the first term
and the actual value is negative, leading to an overall negative value under the square-root.
Further, studying the behaviour of the second term by investigating each contribution shows

that the pre-factor defined by the invariant masses
M2

1/q̃1

M2
1/q̃2

is always equal to one. This results

in the following part of equation 4.26 becoming very small or even vanishing.

M2
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1/q̃2

(
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2β1γ1Eq2E1

)
−
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m2

q1 +m2
1

2β1γ1Eq2E1

)
(5.2)

This further shows that the sign of the second term under the square-root in equation 4.26
is determined by the quark energies Eq1 and Eq2 . If Eq1 is sufficiently smaller than Eq2 , the
second term might result in a large enough negative value to lead to an overall negative value
under the square-root. This consequently leads to undefined values for cos θEK .
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Figure 5.7: A distribution showing the range of values resulting from the term under the
square-root in equation 4.26. This visualizes the cause of the undefined values for cos θEK .
While values close to zero may be due to uncertainties in the calculation, larger negative
values hint at issues with the derived expression itself.

While both approaches show a distribution close to the expectation for a scalar particle,
the results between MODEK and ROOTEK differ. Investigating subsets of the phase-space
by employing the pseudorapidity η leads to a better comparison of MODEK and ROOTEK
in the region η ≥ 2.5. This even leads to results closer to the expected ”box” shape for
both approaches. However, the results for MODEK still show fewer entries, leading to fur-
ther investigation of the used quantities and the derived expression. This showed that the
square-root term of the expression is negative if the energy of Eq2 is large enough. This
observation may result from challenges of the derivation, but the detailed investigation of the
origin of this behaviour was beyond the scope of this work. Therefore, this work will focus
on the results obtained by ROOTEK, which produced distributions fitting the expectation
for a scalar particle even without using subsets of the phase-space.

5.2 Analysis of HZ Processes

A prominent background process of HH processes is the HZ production described in chapter 4.1.
As already mentioned, this process may produce very similar final states to HH → bb̄bb̄. Ad-
ditionally, both processes are kinematically very similar. However, the Z boson is a spin-1
particle. This particle spin may be transferred to the final state particles, impacting their
direction. Such a correlation between particle spin and the direction of their decay products
is investigated using approaches based on the Ellis-Karliner angle, MODEK and ROOTEK.
However, based on the results from the previous chapter, only ROOTEK will be investigated
for the remainder of this work.
The HZ processes use the procedure introduced at the beginning of chapter 5.1 for the HH
processes. Jet pairs are selected based on their combined mass to reconstruct Higgs and
Z bosons. While the process discussed in the previous chapter only involved Higgs bosons,
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this chapter now needs to find both Higgs and Z bosons. For this purpose, distinct mass
intervals for the Higgs and Z bosons need to be chosen. Even though these intervals may
overlap due to the similar mass of the bosons, the interval chosen in this analysis excludes
such an overlap by using ImZ = [80, 100]GeV for the Z boson and ImH = [115, 135]GeV for
the Higgs boson. Additionally, a pre-sorting is applied such that the mass of the recombined
Higgs boson should generally be higher than the recombined Z boson mass. While this is not
necessarily the case for every Higgs and Z boson, this further helps to distinguish between the
Higgs and Z bosons based on the tools used in this work. Further, the phase-space separation
introduced for the HH processes will be used for a better comparison of the results of both
processes.

(a) (b)

Figure 5.8: The distributions of cos θEK for the Higgs and Z boson in the HZ processes in
the phase-space subset covering η ≥ 2.5. Figure 5.8a shows the distribution for the Higgs
boson, which fits the expected ”box” shape. Figure 5.8b shows the result for the Z boson,
which looks like an almost constant distribution. However, the expected shape would show
a decrease towards larger values of cos θEK .

Reconstructing the Higgs and Z boson by selecting jet pairs fitting the hypothesis best results
in the distributions seen in figure 5.8. While figure 5.8a shows the expected ”box”-shaped
distribution for a scalar particle, figure 5.8b does not match the expectation shown in fig-
ure 5.2a. The distribution of cos θEK for a vector particle should decrease for larger values.
However, figure 5.8b shows a rather constant distribution hinting that further analysis of the
system involving the Z boson is required. For this purpose, the three-jet system consisting of
a Z boson and a pair of bottom quarks may be adapted to match the structure of the three-jet
system originally used for the Ellis-Karliner angle. As indicated in chapter 4.3.2, the pos-
itioning of the spin-1 particle was changed due to the Z boson being the highest-energetic
particle. Altering the structure such that the axis is aligned along one of the quark jets,
as can be seen in figure 5.9, would result in the original form of the three-jet system used
to calculate the Ellis-Karliner angle. The resulting distribution for the system on the right
of figure 5.9 would then increase for large values of cos θEK , as described in chapter 4.3.1.
However, the results obtained for this structure of the three-jet system shows a sharp distri-
bution at cos θEK = 1 for the scalar and vector particle and does not lead to an improvement.
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Figure 5.9: A visual representation of the change of placement of the spin-1 particle, the Z
boson, in the three-jet system.

5.2.1 Investigation of the Impact of b-Tagging

Further, it needs to be investigated if the necessary information on the particle spin is avail-
able from the event generation. As described in chapter 4.2, the simulated data is obtained
from a conjunction of different frameworks. In this work, POWHEG BOX interfaced with
the PYTHIA showering generator was used to generate the Monte Carlo data. Definitions
of quantities, such as the transverse momentum, may differ between the showering generator
and POWHEG BOX. While veto variables are introduced in PYTHIA to combat this, such
differences may still cause uncertainties on the transferred information. If these uncertain-
ties are large enough, they may ”wash out” the details of the quantities such as the particle
spin. Further, jet reconstruction algorithms group close-laying particles together without any
information on the origin of the particles, the four-vectors obtained from these jets contain
large uncertainties. Each of these uncertainties might make it difficult to obtain the neces-
sary precision to distinguish between Higgs and Z bosons. To investigate the availability of
the spin information in the generation of an event, cos θEK may be calculated for the first
daughter particles of Higgs and Z bosons. For this purpose, a list of particles provided by
PYTHIA is iterated to find the pairs of bottom quarks initializing the final state jets.

(a) (b)

Figure 5.10: The distributions using the first daughter particles of each boson to calculate
cos θEK . Figure 5.10a shows the distribution obtained for the Higgs boson. The shape
fits the expectation of being almost constant for a scalar particle. Figure 5.10b shows the
resulting distribution for the Z boson. On particle level, the distribution decreases, showing
a preference for small values of cos θEK , which fits the expectation for a spin-1 particle.

Using this so-called ”truth” information on the bottom quarks originating from either boson
results in the distributions seen in figure 5.10. Figure 5.10a shows the obtained distribu-
tion for the Higgs boson, which fits the expected shape shown in figure 5.2b for a scalar
particle. Additionally, figure 5.10b shows a rapid decrease starting already at small values



5.2. ANALYSIS OF HZ PROCESSES 49

of cos θEK . This behaviour indicates a preferred direction of the final state particles and fits
the expectation for a spin-1 particle. This means that the information about the particle
spin is available for each generated event. However, it seems to become less apparent when
using reconstructed jets. This may indicate, that the issue arises from the uncertainties of
jet reconstruction or the approach used to select jet pairs building Higgs and Z bosons.

Since Higgs bosons couple preferably to heavy objects or are produced in association with
heavy quarks, it is useful to correctly identify b-hadrons at ATLAS. For this purpose, an
algorithm identifying b-jets is used. Such algorithms make use of the lifetime of b-hadrons
causing a displacement of its decay particle to the collision point.(34) However, this informa-
tion is not provided by the generated events. To mimic this b-tagging procedure, the position
of the jets is compared to the position of the bottom quarks. While such a comparison may
also be done using the energy of the jets and the bottom quarks, this work uses the spatial
difference ∆R =

√
∆Φ2 +∆η2.

(a) (b)

Figure 5.11: Additionally to restricting the phase-space using η, the jet selection may be
improved by using the spatial difference between the bottom quark and the jet, which is given
by ∆R. The distributions shown use the minimal difference to select the jet originating from
a given quark. Figure 5.11a presents the results for the scalar Higgs boson and figure 5.11b
the distribution for the Z boson. While the previous results already fit the expectation for a
scalar particle, the result for the spin-1 particle significantly improved. This hints at better
jet selections improving the achievable results for a spin-1 particle.

To find the jet fitting each bottom quark best, ∆R is calculated for every combination of jet
and quark. Then, a threshold is applied and if the spatial difference of a jet is lower than
this selected value, it will be set as the jet originating from the bottom quark. Depending
on the value of this threshold, jets close to multiple quarks need to be excluded after being
selected once. To find a measure of how well this method may work, the minimal spatial
difference ∆R is investigated. Here, the difference of each of the four jets in the final state
to a quark is calculated. Then, these are compared and the minimal difference is used to
select the jet corresponding to the given quark. Using this approach results in the distri-
butions shown in figure 5.11 for cos θEK . Figure 5.11a presents the results for the Higgs
boson while figure 5.11b shows the distribution for the Z boson. As seen in previous results,
the distribution of the scalar particle fits the expected shape in figure 5.2b, even though
there is a decrease at the end of the phase-space. However, figure 5.11b shows a signific-
ant improvement to results seen in figure 5.8. The expected decrease becomes much more
prominent, hinting that the minimal spatial difference would select the correct jet and quark
pairs. This shows that a small distance on the η − Φ plane most likely corresponds to an
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accurate jet selection. The distributions obtained use ”truth” information about the origin of
the quarks, which is not available in a measurement. However, investigating the spatial dif-
ference further to find a threshold for ∆R may improve the results of cos θEK for the Z boson.

5.2.2 Mimic b-Tagging

Figure 5.12: The distribution for ∆R obtained by using the minimal spatial difference between
jet and quark for the jet selection. A significant amount of entries can be found at values
below ∆R = 0.5. However, there are many entries at larger values even reaching values above
∆R = 1, which correspond to large spatial differences.

Since the distributions obtained on particle level and the minimal spatial difference show
that the results expected for Higgs and Z bosons are achievable, the jet selection can be
further investigated. However, using ”truth” information about the bottom quarks restricts
the evaluation of the ROOTEK approach for possible analyses due to restrictions of experi-
mental measurements. In order to improve the jet selection in this work, a threshold for ∆R
may be used. For this purpose, figure 5.12 shows the distribution of ∆R obtained from the
distributions in figure 5.11. Here, the results for the minimal spatial difference are used to
find the best possible threshold value according to a good jet selection. Investigating the
distribution for ∆R in figure 5.12 shows a broad region for ∆R with a significant amount of
entries at small values. Further, larger values around ∆R ≈ 1 describe a large distance of jet
and quark in the η − Φ plane. The pairings selected with such large spatial differences may
result in incorrect jet selections. In order to achieve sufficient jet selections, a smaller distance
between the jet and the quark should be achieved. However, selecting a small threshold value
may lead to low statistics for the investigated events. For further investigations, a value of
∆R ≤ 0.5 is chosen which ensures sufficient statistics and a good jet selection. However, as
seen in figure 5.12, there are several entries for values of ∆R that are considerably larger; to
improve the jet selection further, the jet substructure may be investigated.
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5.2.3 Pruning of Jets

Since jets group together close-laying particles, they may be including, for instance, particles
from the QCD background. These impact the properties of the resulting jets, including the
jet masses. These jet masses are of importance in this work to select the jet pairs matching
the Higgs and Z bosons. To remove this contamination from the jets, tools investigating
the substructure of a reconstructed jet are used. Examples of such tools are: Pruning,
Trimming and Mass Drop Taggers.(35) This work focuses on the use of Pruning. This tool is,
for example, used to improve the reconstruction of heavy particles.(36) For this, criteria on
kinematic variables are introduced to determine if a branching in the jet is likely to represent
a correct reconstruction of the heavy particle. These criteria are introduced in the form of
cuts that need to be passed or else, the branch is vetoed and the recombination does not
occur. These cuts are represented by an angle between the daughter particles ∆R and the
ratio of the minimum daughter transverse momentum and the parent transverse momentum
called z.

z ≡
min(pTi , pTj )

pTi+j

< zcut (5.3)

∆Rij > Dcut (5.4)

The expressions above define the criteria for pruning with i and j being the particles invest-
igated at the recombination step. Dcut and zcut define the parameters specifying the impact
of the pruning and need to be selected.
Pruning is applied on reconstructed jets. For each jet, another reconstruction algorithm is
applied, which may even use a different recombination algorithm than the one initially used.
However, this algorithm needs to be a recombination algorithm. At every step of the recom-
bination, the above criteria are tested. If both cuts are passed, the combination is discarded.
The resulting jet is called a pruned jet, which may be compared to the initial jet.(37)(36)

The method described above may lead to a better reconstruction of the Higgs and Z bo-
son by reducing the effects of inaccurate jet reconstructions. Further, such a tool changes the
properties of the resulting jet, which may not only impact the jet masses, but help achieve
a better jet selection as well. Since the four-vector describing a jet is ultimately changed
after applying pruning, this may impact the spatial difference between jet and quark. To
investigate the impact of pruning on the jet selection, different cut values may be tested.

First, pruning is applied using the kT recombination algorithm, which was used to recon-
struct the initial jets. Further, the restriction ∆R ≤ 0.5 is used for the jet selection. In
order to study the impact of different strengths of pruning, the cut values are varied. Using
a small zcut and large Dcut leads to only minimal or even no impact on the jet. However,
leaving values of zcut small and making Dcut gradually lower shows that small changes in
the jet properties can be achieved. This leads to small shifts for the jet masses and small
shifts in ∆R between the pruned jet and quark. While this leads to a slight improvement
for the distribution of cos θEK , it is not yet producing the expected shape for the Z boson.
However, using ”truth” information to identify the correct jet and quark pair, it seems like
this pruning is able to discard some of the branches representing an incorrect reconstruction
of the Z boson. Iterating over several zcut values shows that large zcut results in stronger
shifts in jet mass and ∆R. Combining a small Dcut and large zcut leads to a significant shift
towards lower values of ∆R. Figure 5.13 shows the impact of small pruning in figure 5.13a
and a stronger pruning in figure 5.13b. As visible by comparing both figures, using zcut = 0.7
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(a) (b)

Figure 5.13: A comparison of different pruning criteria showing the impact on ∆R between
jet and quark. On the x-axis, ∆R of the pruned jet is drawn and on the y-axis, ∆R of the
corresponding non-pruned jet is drawn. Figure 5.13a was obtained by applying zcut = 0.05
and Dcut = 0.05. Here, it is visible that there is no significant clustering towards lower values
of ∆R. Figure 5.13b was obtained using zcut = 0.7 and Dcut = 0.05. This resulted in a large
shift in ∆R leading to a significant clustering towards smaller values.

and Dcut = 0.05 significantly impacts the properties of the pruned jet. These harsh cut values
result in clustering at small ∆R, which possibly leads to an improved jet selection due to the
small spatial difference. Additionally, the jet masses are largely shifted to smaller values.

(a) (b)

Figure 5.14: Distributions of cos θEK for the Higgs and Z boson using pruning with zcut = 0.7
and Dcut = 0.05. These distributions were obtained by using ∆R ≤ 0.5 for the jet selection
and additionally combining the jet pairs by using ”truth” information on the origin of the
bottom quarks. Figure 5.14a shows the results for the Higgs boson, fitting the expected
shape seen in figure 5.2b. The distribution for the Z boson in figure 5.14b shows the expected
decrease for larger values of cos θEK .

Since the jet masses are shifted using the strong pruning mentioned above, information on the
origin of the quarks is used to obtain the distributions for cos θEK . Since ”truth” information
on the origin of the bottom quarks is available, the jet pairs can be selected according to
the origin of the corresponding quarks. Using this information to build the three-jet system
instead of the mass of the combined jets, results in the distributions shown in figure 5.14.
The resulting distribution shown in figure 5.14a fits the expected ”box” shape of cos θEK for
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a scalar particle. Figure 5.14b shows the distribution for the Z boson, which decreases for
larger values of cos θEK . This result was previously obtained on particle level and for the
minimal spatial difference, showing that a more accurate jet selection is able to improve the
results for cos θEK .

(a) (b)

Figure 5.15: The distributions for cos θEK using the same approach as for figure 5.14 using
the Cambridge-Aachen algorithm and anti-kT algorithm for the recombination of the jets.
Figure 5.15a shows the results using the Cambridge-Aachen algorithm and figure 5.15b was
obtained using the anti-kT algorithm. Both distributions are approximately the same and
very close to the results obtained by using the kT algorithm.

As mentioned in the introduction of pruning in section 5.2.3, the recombination algorithm
used may be different to the initial jet reconstruction algorithm. For example, the Cambridge-
Aachen algorithm (CA) and the anti-kT algorithm may be used. CA is a kT -like jet recon-
struction algorithm which investigates pairwise four-vector inputs. However, this algorithm
uses the transverse momentum with respect to the beam axis instead of the transverse mo-
mentum pT (38). Further, anti-kT uses a similar approach compared to the kT . The difference
arises from a sign change between both algorithms which leads to the anti-kT algorithm being
the inverse of the kT algorithm (39). Since there are small differences in the distance meas-
ures used in the different recombination algorithms, the resulting distributions might differ
slightly. Testing CA and anti-kT for the same pruning criteria leads to the results shown in
figure 5.15. Both distributions, figure 5.15b and figure 5.15a, were obtained using the same
approach as for figure 5.14 and show approximately the same results as the kT algorithm.

5.2.4 Re-scaling Pruned Jet Masses

As mentioned earlier, pruning may change the jet properties such as the mass. In the case of
small pruning, this will only slightly shift the jet masses. However, a stronger pruning, such
as the one discussed above, may significantly shift the jet mass depending on the substructure
of the jet. The impact of pruning using Dcut = 0.05 and zcut = 0.7 is shown in figure 5.16.
Here, the mass of the combined jet pairs are drawn. While the selected jet pairs are supposed
to reconstruct the Higgs or Z boson, the masses are shifted to a much lower region due to
pruning. Since information on the first daughter particles of each boson is accessible, this
”truth” information may be used to select the jets corresponding to the quarks as well as
for selecting the correct pairs. However, this information is not available for a measurement.
To mimic the scenario of an experimental measurement, only a minimal amount of ”truth”
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Figure 5.16: The distribution for the mass of the jet pairs reconstructing the Z boson. Here,
pruning with zcut = 0.7 and Dcut = 0.05 was applied to the jets. Additionally, ∆R ≤ 0.5 was
used for the jet selection and ”truth” information about the origin of the bottom quarks was
used to select the correct jet pairs. While the mass of the reconstructed Z boson should be
around 90GeV, this distribution shows a significant shift to lower mass regions due to the
applied pruning.

information should be used. While this work uses the spatial difference, which requires the
four-vector of the bottom quarks, this is solely used to mimic b-tagging. Omitting any
additional information on the origin of the jets would require a variable used to select the jet
pairs. This work previously used the mass of the combined jets and compared them to the
boson masses. Choosing the pair closest to the Higgs or Z boson in mass was then used to
build the three-jet system. However, using the pruning specified above imposes a challenge
on this selection method. To be able to further use the mass as a selection criterion for the
jet pairs, the four-vector after pruning may be scaled in such a way that its mass is shifted
to the correct mass window for Higgs and Z boson again. This scaled jet is then solely used
for the selection of the jet pairs while the pruned jets are used in the computations.

The scaling of the jet mass after pruning may be applied to either the mass of the jet directly
or to the components of the four-vector of the jet. Further, it is useful to investigate if
an event-wise scaling is sufficient rather than applying a separate scaling for every jet in
an event. Calculating a mass ratio for the corresponding pruned and non-pruned jets and
multiplying the jet masses by this value is able to shift the masses to the correct region.
However, scaling every jet mass by its respective mass ratio reproduces the mass distribution
obtained by the non-pruned jets. This may be used to select the jet pairs and results in
similar distributions compared to figure 5.17. This jet-wise scaling has the same effect as
simply using the mass of the non-pruned jets for the selection. To investigate if it is possible
to optimize scaling, the components of the four vectors of the jets may be scaled. For this
purpose, ratios of the jet momenta and energies can be calculated for every pruned jet and
its corresponding non-pruned version. Further, such a ratio may be calculated event-wise or
jet-wise. For event-wise scaling, the mean of the momentum ratios and energy ratios needs to
be computed and each component of the vector is multiplied by its respective scaling factor.
While this may be able to shift the jet mass, there is no apparent improvement compared
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Figure 5.17: These distributions for cos θEK were obtained by applying a pruning with Dcut =
0.05 and zcut = 0.7 to the reconstructed jets. Additionally, the four final state jets were
selected using ∆R ≤ 0.5. In order to select the jet pairs reconstructing the heavy bosons the
jet mass was scaled to fit the mass window of the Higgs and Z boson. Figure 5.17a shows
the distribution for the Higgs boson. Similar to previous results, it fits the expected ”box”
shape for a scalar particle. Figure 5.17b shows the distribution obtained for the Z boson,
showing a significant improvement to previous results not applying pruning. Such results
were previously obtained by using ”truth” information for the jet selection or computing
ROOTEK on particle level, showing that the scaled mass combined with pruning is able to
significantly improve the jet selection.

to simply using the masses of the non-pruned jets. Jet-wise scaling is the most detailed
scaling tested for this work. Here, every four-vector component is multiplied by scaling
factors obtained by comparing the pruned jet to the non-pruned one. Here, the momenta of
pruned and non-pruned jets give the resulting scaling factor for the momentum components.
Additionally, the energy of the jets is compared, which provides a scaling factor for the energy
component of the four-vector. This scaling produces a four-vector similar to the non-pruned
jet and ultimately results in a mass distribution close to the non-pruned jet masses. This
leads to results similar to using the mass of the non-pruned jets to select the correct pairs
reconstructing the Higgs and Z bosons. Figure 5.17 shows the distribution resulting from
applying the strong pruning specified earlier as well as ∆R ≤ 0.5 and the scaled mass. Here,
the pruned version of the jets is used to test the ∆R threshold and select four jets which
correspond to the bottom quarks. These jets are afterwards combined in every possible way
and their scaled mass is computed, which is then used to select the combination that fits the
hypothesis best. Afterwards, the pruned jets corresponding to the selected jet pair are used
for the computation of ROOTEK. Figure 5.17 shows that this method is able to improve the
distribution for the Z boson significantly, producing results similar to figure 5.14, which uses
the available information on the origin of the quarks.

5.2.5 Study of Larger R Jets

While pruning the existing jets and scaling the jet masses provides significant improvements
to the obtained results for the Z boson, there is still room for further improvement of the
distribution of cos θEK obtained by ROOTEK. This work so far applied a jet reconstruction
algorithm with an R parameter of R = 0.4. However, there are analyses using large-R jets
to identify the jets reconstructing the Higgs boson.(40) Using a larger R parameter for the
initial jet reconstruction may open the opportunity for even stronger pruning without risking
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Figure 5.18: The distributions shown draw ∆R for the pruned jets on the x-axis and ∆R for
the corresponding non-pruned jets on the y-axis. To obtain figure 5.18a, pruning with zcut =
0.7 and Dcut = 0.00005 is applied showing clustering at small values of ∆R. Figure 5.18b
results from using pruning with zcut = 0.9 and Dcut = 0.00005 leading to an even stronger
clustering at small values of ∆R.

lower statistics. To investigate this effect, R = 1 defining a larger angular reach is tested.
Comparing the same pruning applied to R = 0.4 and R = 1 jets shows an increase in the
statistics found for ∆R ≤ 0.5. Figure 5.18 presents two prunings of different strengths applied
on large-R jets. Here, pruning with lower Dcut was used. Additionally, figure 5.18a applied
zcut = 0.7 and figure 5.18b zcut = 0.9. Both show clustering at low ∆R values, indicating a
better jet selection achieved by strong pruning. Further, comparing both distributions visu-
alizes higher statistics in figure 5.18b, which used stronger pruning. This shows that using
large-R jets may improve the jet selection. However, this needs to be investigated further.

As an indication of the possible impact of large-R jets, the pruning used for the previous
results is applied in addition to ”truth” information on the origin of the quarks. This results
in the distribution shown in figure 5.19a for ∆R of pruned and non-pruned jets. This figure
shows a much larger number of entries in the region ∆R ≤ 0.5 than previously, resulting
from the larger angular reach of the initial jet reconstruction. Additionally, the majority
of the entries are clustered around small values of ∆R. This will ultimately improve the
selection of the four jets corresponding to the quarks. Afterwards, the ”truth” information
is applied instead of using the scaled mass to select the jet pairs reconstructing the heavy
bosons. Ultimately, the obtained distribution of cos θEK in figure 5.19c for the Z boson is
improved compared to the initial results.

Even though the distributions of cos θEK can be improved significantly by using a better
jet selection, further improvements are required. Another method for the selection of the
four final state jets would make use of the jet constituent with the highest transverse mo-
mentum. For this purpose, the constituents of the jet are iterated to find the contribution
with the highest pT . The four-vector of this is then compared to the quarks in the same
way as before. Then, either ”truth” information or the scaled mass may be used to select
the jet pairs. However, further investigations on how to correctly combine pruning with the
highest pT constituent of the jets need to be done to achieve an improved clustering towards
low values of ∆R.
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Figure 5.19: This distribution in figure 5.19a shows the spatial difference of jets and quarks
using large-R jets. On the x-axis, ∆R of the pruned jets is drawn and on the y-axis, ∆R of the
corresponding non-pruned jets. Here, the R parameter for the initial jet reconstruction is set
to R = 1. Additionally, pruning is applied with Dcut = 0.05 and zcut = 0.7. Further, ”truth”
information on the origin of the quarks is used to select the jet pairs. This distribution shows
large clustering towards lower values of ∆R, which may ultimately improve the jet selection.
Figure 5.19b and figure 5.19c show the results achieved for cos θEK using large-R jets in the
initial jet reconstruction. Further, the same selection criteria as for figure 5.19a are applied.
Figure 5.19b shows the results for the Higgs boson and figure 5.19c for the Z boson, which
shows an improvement compared to the initial results.

5.2.6 Conclusion

While even the initial distribution for the Higgs boson showed the ”box”-shaped distribution
for cos θEK as expected for a scalar particle, the initial results for the Z boson did not fit the
decreasing distribution expected for a spin-1 particle. Due to this, the jets used to reconstruct
the boson were investigated using different approaches. These proposed approaches led to an
improvement of the jet selection, which then ultimately improved the resulting distribution
of cos θEK . The work in this section shows that the four final state jets identification needs
to be precise to be able to distinguish between the Higgs and Z bosons in the HZ processes.
If this selection is sufficiently good, the jet pairs can then be selected by using mass intervals
for the Higgs and Z bosons.
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5.3 Separation of HH and HZ Processes Using a Neural Net-
work

While the previous analyses of the HH and HZ processes provided methods to improve
ROOTEK to enable distinguishing between Higgs and Z bosons using this observable, other
kinematic quantities remain very similar for both massive bosons. Due to this, the separation
of these processes requires an algorithm able to capture details of various distributions ob-
tained for the Higgs and Z bosons. Such an information-processing algorithm is provided by
Neural Networks introduced in chapter 3 which is implemented in Python 3.7 using a plugin
called PyTorch (41). Before the actual classification of final states using a NN, variables able
to distinguish HH and HZ final states need to be found. This chapter presents some of the
variables hinting at useful characteristics to become included in a network data set. Addi-
tionally, the achieved accuracy for the classification of HH and HZ final states is discussed
and the impact of the investigated spin correlation is evaluated.

The variables used in a network data set can be grouped into properties of the reconstruc-
ted bosons and properties of the final state jets. As introduced in the previous chapter 5.1,
the jet masses are used to identify the possible reconstructed Higgs and Z bosons. For this
purpose, all possible combinations are built and compared to the boson masses. Further,
in the analysis of HZ processes, an additional selection criterion ∆R is included in the jet
selection. This is used to improve the jet selection. Further, it ensures selecting jets that
most probably originated from bottom quarks used to reconstruct the Higgs and Z bosons in-
stead of randomly combined jet pairs. While the mass distribution of the Higgs and Z bosons
overlap slightly, the analysis presented in this work uses separate mass intervals. Due to this,
the masses of the selected jet pairs may be a useful quantity to distinguish between Higgs
and Z bosons. Additionally, the masses of the corresponding pruned jet pairs may be used.
Even though there is a significant overlap between the mass distributions of the pruned jet
pairs for Higgs and Z bosons, there are some cases for the reconstructed Higgs boson, where
the pruned jet pairs have a mass around 125GeV. Additionally, pruned jets were used for
the jet selection, meaning that their properties may provide further useful characteristics to
distinguish between the final states. Further, slight differences in the transverse momentum,
which is defined in the x-y plane, as well as the energy of Higgs and Z bosons may provide
additional details for the classification and provide a measure to distinguish between HH and
HZ final states. The angular coordinates Φ and η of the reconstructed bosons may be used.
However, these variables prove to be more useful when investigated between the jet pairs.
While ∆η between the combined jets shows an immense overlap, the difference ∆R, as well
as ∆Φ, show significant differences for the jet pairs of the Higgs and Z boson.

Figure 5.20 presents the distributions of ∆Φ for the Higgs and Z boson in the HZ processes.
To obtain these distributions the bosons are reconstructed using ”truth” information on the
origin of the quarks. While both show peaks at about ∆Φ = ±4, the results for the Z bo-
son in figure 5.20b show more narrow peaks and additional side maxima close to 0. These
significant differences result in ∆R differing for the Higgs and Z bosons. This makes both
angular differences a useful property to become included in a network data set. However,
using ∆R does not lead to improved results. While most variables will not show a significant
difference between the Higgs and Z bosons, the obtained distributions for inaccurate jet pairs
randomly having the correct mass may differ largely, making these variables good indicators
of a correct jet pair selection.

All previously mentioned variables may be written into the network data sets for HH and HZ
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Figure 5.20: The distributions for ∆Φ, measured between the jet pairs reconstructing the
Higgs and Z bosons. Figure 5.20a shows the distribution resulting for the Higgs boson and
figure 5.20b for the Z boson. While both show peaks in the same area, the peaks for the jet
pairs of the Z boson are more narrow.

processes in addition to cos θEK . These are then fed to a NN with one hidden layer. The error
function used is the cross-entropy loss briefly introduced in chapter 3 with a ReLu activation
in the hidden layer and softmax activation in the output layer. Additionally, the input data
is normalized using the mean and the standard deviation. As mentioned in chapter 3, the
input data set contains a column specifying the target values and is split into a training and
validation subset. Lastly, a batch size of 600 and 150 epochs are used.

The data set which is given to the NN was generated for the strongly pruned jets. Addi-
tionally, a threshold of ∆R ≤ 0.5 and mass scaling are applied. As shown in figure 5.21,
the network was able to correctly classify the HH and HZ final states for about 76% of the
data points, which indicates a good performance of the network. However, the data points
were selected by applying several restrictions. Firstly, the Monte Carlo data with initially
1.2million events is limited to events consisting of at least four jets. Afterwards, these jets
are pruned and a ∆R criterion is applied. If for all four bottom quarks, there is a jet that
fits the threshold, the event is used, which further limits the data set. Lastly, the mass of the
jet pairs is tested. Since the jet masses lie on a distribution with a certain width, there may
be events which do not contain jet pairs with a mass fitting in the selected mass intervals.
However, cos θEK is obtained by ROOTEK, which does not need phase-space restrictions.
These applied criteria result in a selection of events which might show an idealized version of
the obtainable distributions. This may impact the performance accuracy of the NN, which
means that a value of 76% might not be achievable in a less restricted data set. Additionally,
all of the previously mentioned selection criteria reduce the amount of data points. Chapter 3
describes that NNs need to process as much unfamiliar information as possible to ensure a
good performance. While the number of batches iterated over in an epoch or the number of
epochs can be changed, the information obtainable from the network data set is limited by
its number of data points. The evaluation of the NN’s results for different data sets shows
that the performance of the network is sensitive to the size of the input data set. While the
input data set for the results of figure 5.17 achieves a classification accuracy of 76% a case
with fewer data points due to a different pruning achieves a far lower accuracy. Currently,
these results hint at a sensitivity to the size of the data set but this needs to be investigated
further. Further, the NN can be tested with data sets not containing cos θEK which may
indicate the impact of this variable on the classification accuracy. However, current results
do not show a difference in the resulting accuracy. Since there are no immense differences
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Figure 5.21: The classification accuracy is drawn as a function of the number of epochs. The
model used is able to correctly classify HH and HZ final states for 76% of the data points of
the selected events.

in the distributions of Higgs and Z bosons for this variable, only minor differences would be
expected. The impact of cos θEK on the learning of the network needs to be studied fur-
ther. For instance, distributions obtained using ”truth” information might hint at the best
achievable separation of HH and HZ processes using cos θEK . However, first tests showed the
NN not learning properly using the ”truth” information for the jet pair selection. Further
tests to evaluate the potential of cos θEK might use the scaled mass for the jet pair selection
and use ”truth” information only for cos θEK . Here, challenges may arise from inaccurate
correlations between the input variables which arise from the different methods to obtain
the distributions. If it is possible to find an approach which can mimic the best achievable
separation in cos θEK for the Higgs and Z bosons which can be tested in a NN, the maximum
allowed error in the jet pair selection can be tested by gradually increasing the error of this
selection and monitoring the performance of the NN. Additionally, the performance of the
network may be improved by increasing the statistics of the input data and investigating
further possible variables which can be used to distinguish the Higgs and Z bosons.

Overall a good separation between HH and HZ final states can be achieved for the selec-
ted events including cos θEK . However, further testing and improvements are necessary to
be able to evaluate the usability for analyses in the field of HH production.



Chapter 6

Summary

This work investigated the impact of the spin on the direction of the final state jets for HH and
HZ processes. For this purpose, two approaches were introduced: MODEK and ROOTEK.
While both should in general lead to the same results, results obtained by MODEK con-
tained fewer entries in every distribution. Investigating subsets of the phase-space showed a
better agreement between MODEK and ROOTEK for large pseudorapidity regions, η ≥ 2.5.
However, there were remaining disagreements between MODEK and ROOTEK. Further in-
vestigations presented perfect agreements for variables such as the boost velocity β used
in both approaches which hinted at issues within the derived expression for MODEK. For
certain cases, non-defined values for cos θEK arise from the square-root term in MODEK.
Since ROOTEK produced reliable results for the HH processes, the investigation of the HZ
processes focused on this approach. Initial results did not present the expected distribution
for the Z boson. However, calculating cos θEK on the particle level showed that the necessary
information about the particle spin is available in the generated data. In order to improve the
distribution for the spin-1 particle, various methods to improve the jet selection are applied.
Ultimately, a combination of a ∆R threshold between jets and quarks, strong jet pruning
and mass scaling provided the best results for the Z boson. This shows that a precise jet
selection is necessary to be able to distinguish between Higgs and Z bosons using cos θEK .
Additional tests to improve the jet selection were briefly introduced which need to be invest-
igated further. Lastly, the achievable classification accuracy was obtained using a NN. This
shows that a good classification of HH and HZ final states is achievable for the selected events.

Future work could focus on the investigation of the jet selection to evaluate the precision
which is needed to use cos θEK to distinguish between HH and HZ final states. Additionally,
further tests on the impact of cos θEK on the performance of the NN can be performed. Ad-
ditionally, the expression obtained for MODEK can be investigated further in order to find
an equation which may be usable in likelihood fits. Further, the tests so far were conducted
on purely simulated data without any noise or background processes, which means, that ad-
ditional work to test the presented approach for these circumstances is required.

In general, it was presented that the used approach provides a variable which can be used
to distinguish between HH and HZ final states with a sufficient jet selection. However, both
approaches tested in this work require further improvement to make the usage for an analysis
possible.
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