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Abstract

At the ATLAS experiment, the top quark mass in the all-hadronic decay
channel has been measured to be 174.9 ± 2.1(stat.) ± 3.8(syst.) GeV. The
systematic uncertainties in this measurement is dominated by the light
and b-jet energy scale with a contribution of 2.1 GeV and 1.4 GeV, respec-
tively [1].
This thesis presents an approach to reduce the impact of these uncertain-
ties. In particular, the main focus of the analysis, which is solely based on
MC simulations, is to decrease the influence of the b-jet energy scale. For
that purpose two different top mass estimators are investigated. To de-
termine the b-jet scale factor an additional observable is introduced. The
top quark is reconstructed with a kinematic likelihood fit, while a template
method is used to determine mtop as well as bJSF. With this approach
the uncertainty on mtop, due to the b-jet energy scale, could be reduced to
80 MeV.
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1. Introduction

One great success of modern physics is the Standard Model of Particle Physics. This theory
is capable of describing the fundamental particles and their interactions. In contrast to other
theories like e.g. General Relativity, the Standard Model has not been devised by a single
mind, but is the result of a joint effort of physicists all over the world. In present-day, the
cooperation of numerous scientists is more important than ever, due to the sheer size of
modern particle physics experiments.
After being formulated in the 60’s and 70’s to a consistent theory, the Standard Model has
predicted various hitherto unknown features of nature. A recent example is the discovery of
the Higgs boson by the ATLAS and CMS experiments in 2012. [2;3] Also in case of the top-quark
it took years of extensive search till its existence finally had been revealed. After the discovery
of the τ -lepton at SLAC in 1975 [4] and the identification of the b-quark two years later at
Fermilab [5], it was obvious that there is a third fermion generation in nature. Therefore, the
Standard Model predicted the existence of a sixth quark, serving as the weak isospin partner
of the b-quark. Only in 1995, the top-quark had finally been discovered with the Tevatron
experiments CDF and D0. [6;7]. Since then its properties have been investigated intensively.
Besides many physics reasons, the top-quark mass is worth studying for its own sake. Since
Yukawa couplings of fermions to the Higgs field are free parameters in the Standard Model,
the mass of the top-quark can not be obtained from theory. The most precise measurements
yield a value of mtop = 173.07±0.52±0.72 GeV. [8] Since the uncertainty on mtop has reached
an accurateness of about 1 GeV, more and more elaborated techniques have to be applied to
further increase the precision of top-quark mass measurements.
One particular approach for such a measurement in the all-hadronic decay channel is presented
in this thesis. The text is divided into three main parts. The first introduces the theoretical
background, the second describes the ATLAS experiment, while the third is dedicated to the
actual analysis.
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2. Theory

In this chapter the Standard Model of Particle Physics is briefly described, while in the second
part the field of top-quark physics is summarised.

2.1. The Standard Model of Particle Physics

The Standard Model of Particle Physics, mainly developed in the 1960s and 1970s, is ex-
tremely successful in describing the fundamental particles and their interactions. Except for
the drawback, that the Standard Model doesn’t account for the force of gravity, it has up to
now met every experimental test to highest precision, all of its predictions are experimentally
verified. Even the last missing piece, the Higgs Boson, was discovered in 2012, nearly half a
century after its postulation.
All known particles can be subdivided into two groups. Particles with half-integral spin,
named fermions, and particles with integer spin, the so called bosons. In the framework of
the Standard Model matter consists of fermions where the fundamental forces are mediated
by bosons.
One remarkable feature of the fundamental fermions is, that they can be grouped into three
generations, each containing a so called up and down-type quark, one lepton and one cor-
responding lepton-neutrino. The interactions covered by the Standard Model, are the elec-
tromagnetic force, the origin of electricity and magnetism, the weak force, responsible for
nuclear β-decay, and the strong force, accountable for the binding of protons and neutrons in
the nucleus. All of these forces are mediated by so called gauge bosons. The particles of the
Standard Model are listed in table 2.1.
The Standard Model is described within the framework of Quantum Field Theory. As known
from classical mechanics, the dynamics of a system can be described in terms of a Lagrangian
function L by solving the Euler-Lagrange equation.
In Quantum Field Theory however, particles can no longer be described by discrete coordinates
and velocities. They have to be replaced by continuous probability densities, represented by
fields Φ(x, t). To account for that, the Lagrangian function is replaced by a Lagrangian den-
sity L , which is now a function of fields Φ, their derivatives ∂µΦ and space-time coordinates
xµ, with

L =

∫
L (Φ, ∂µΦ, xµ) · d3x (2.1)

Hence the Euler-Lagrange equation becomes

∂µ

(
∂L

∂ (∂µΦ)

)
− ∂L

∂Φ
= 0 (2.2)

2



2. Theory

The complete Standard Model Lagrangian reads

LSM = LQCD + LEW + LHiggs (2.3)

and splits up in three terms. The first two terms represent quantum chromodynamics, the
theory describing the strong force, and the electroweak theory, which explains the electro-
magnetic and weak forces. The last term is connected to the Higgs-mechanism, which is
responsible for the breaking of electroweak symmetry. [9;10]

fermions

first generation second generation third generation

flavor charge mass flavor charge mass flavor charge mass
[e] [MeV] [e] [MeV] [e] [GeV]

u 2/3 2.3 +0.7
−0.5 c 2/3 1275±25 t 2/3 173.1 ±0.9

d -1/3 4.8 +2.2
−1.7 s -1/3 95±5 b -1/3 4.18 ±0.3

e -1 0.511 µ -1 105.7 τ -1 1.777

νe 0 <0.002 νµ 0 < 0.19 ντ 0 < 0.018

bosons

name force mediated mass [GeV]

gluon g strong 0 (theory)

photon γ electromagnetic 0 (theory)

W±-boson weak 80.385± 0.015

Z-boson weak 91.188± 0.003

H-boson Higgs field 126.0± 0.6

Table 2.1.: The fundamental particles of the Standard Model, for all fermions there also exist
antiparticles with opposite charge-like quantum numbers [2;8]

2.1.1. Gauge invariance and renormalisation

The two basic principles of quantum field theories are gauge invariance and renormalisability.
Gauge invariance means that physics processes, thus the underlying basic equations, don’t
change under a certain transformation. This property can be shown in the case of quantum
electrodynamics, the field theory describing the electromagnetic interaction.
For illustrating the principle of gauge invariance one can start with the Dirac Lagrangian
which is

LDirac = iψ̄ /∂ψ −mψ̄ψ (x) (2.4)

3



2. Theory

where the Feynman slash notation(1)is applied. Inserting equation 2.4 into 2.2 yields the Dirac
equation (

i/∂ −m
)
ψ (x) = 0 (2.5)

which is the equation of motion of a spin 1
2 particle, like the electron, with mass m. This

equation is invariant under a global gauge transformation U(1)q
(2) which looks like

ψ (x)→ ψ′ (x) = eiαψ (x) (2.6)

Because of the global symmetry of the system, Noether’s theorem implies that there has to be
a conserved quantity, which, in this case, is the lepton number. However, (2.5) is not invariant
under a local gauge transformation, in which α becomes a function of space-time

ψ (x)→ ψ′ (x) = eiα(x)ψ (x) (2.7)

which one can see by inserting ψ′ into the Dirac equation (2.5)(
i/∂ −m

)
ψ′ (x) =

(
i/∂ −m

)
eiα(x)ψ (x)

=eiα(x)
((
i/∂ −m

)
ψ (x)− q∂µα(x)γµψ (x)

) (2.8)

In this equation the second term q∂µα(x)γµψ (x) 6= 0 spoils the invariance of the Dirac
equation.
In order to restore the invariance under a local transformation, the derivative ∂µ has to be
replaced by the covariant derivative Dµ

∂µ → Dµ = ∂µ + ieAµ(x) (2.9)

The covariant derivative introduces a new vector gauge field Aµ representing a four vector
potential for electromagnetism, which transforms as

Aµ(x)→ A′
µ
(x) = Aµ(x) +

1

e
∂µα(x) (2.10)

The crucial point is that by exchanging the derivative ∂µ with Dµ, under the condition of
(2.10), the Dirac equation is now invariant under a local gauge transformation of the form
(2.7). According to Noether’s theorem, this implies charge conservation.
This has been achieved by the introduction of a new vector field Aµ which turns out to
correspond to the photon. By replacing the derivative in the Dirac Lagrangian (2.4) and
adding an invariant kinetic term for the photon field, one gets the gauge invariant Lagrangian
of quantum electrodynamics

LQED = ψ̄
(
i/∂ −m

)
ψ + eψ̄Aµψ −

1

4
FµνF

µν (2.11)

The first term describes a freely propagating electron, the second term represents the interac-
tion between electrons and photons and the last term is the kinetic term for the photon field
with

Fµν = ∂µAν − ∂νAµ (2.12)

(1)with /∂ = γµ∂µ where γµ denote the Dirac matrices and the Einstein summation convention is applied
(2)The U(1)q is part of the unitarity group U(n), where U(n) describes the set of n × n dimensional matrices

which satisfy U†U = 1. The subscript q denotes the conserved quantity in this gauge symmetry. One possible
representation is U(α) = e−iαG, where G is called the generator of the group.

4



2. Theory

Thereby, one is not allowed to write an additional mass term for the photon field, which would
be of the form 1

2m
2AµA

µ, since this would spoil again gauge invariance. This means that the
photon has to be massless, which agrees with the experimental upper limit for the photon
mass of mγ < 1 · 10−18 eV [8].
The need for a massless force carrier is crucial for gauge invariance, this will also be demanded
in quantum chromodynamics and in the electroweak theory. In the end the requirement of
massless gauge bosons gives rise to the Brout–Englert–Higgs mechanism, which will be dis-
cussed shortly. One could rise the question, whether it is necessary to care about gauge
invariance in the Standard Model, but in fact gauge invariance is an essential feature for
renormalisability. Renormalisability means that divergent terms which occur in the calcu-
lation of physical observables can be cured. Again, quantum electrodynamics serves as an
example, namely the electron electron scattering.
Calculating the leading order Feynman diagram for this process (fig. 2.1a) works fine, but
the answer is only approximate. In order to receive an exact solution, one also has to include
higher order corrections, such as the so called vacuum polarisation (fig. 2.1b). In this pro-
cess, something completely undesired happens: When calculating the corresponding matrix
element, one picks up a term which essentially looks like∫ ∞

m2

1

z
dz (2.13)

which clearly diverges for z → ∞. Consequently the corresponding matrix element would
equal infinity, which obviously contradicts the experiment. To prevent the integral from
divergence, an upper cutoff value M2 is introduced, which in a later step, can be send to
infinity, (2.13) becoming ∫ M2

m2

1

z
dz = ln

(
M2

m2

)
(2.14)

The essential point in renormalisation now is, that this term can be absorbed in physical
quantities, as for this example, the charge. The idea is, that the quantity of charge measured
in experiment, like in Thompson scattering, is not the same as the quantity of charge used in
the theory calculations. One rather has to distinguish between a bare charge e0, which enters
the calculation and a renormalised charge e measured in experiment with

e ≡ e0

(
1− e0

2

12π2
ln

(
M2

m2

)) 1
2

(2.15)

This way, the infinity introduced to the calculation of the matrix element is now absorbed in
e. Since the measured charge in experiment is finite, the absorbed infinity has to be cancelled
by a corresponding infinity in the bare charge e0.
A direct result of this, is the energy dependence of the coupling constants. In quantum
electrodynamics, the coupling constant α is given by

α
(
Q2
)

=
e2
(
Q2
)

4π
=

α
(
µ2
)

1− α(µ2)
3π ln

(
Q2

µ2

) (2.16)

where Q denotes a transferred four-momentum and µ is a reference renormalisation scale
related to the cut-off value M2. As it can be seen in figure 2.3, the coupling strength of quan-
tum electrodynamics increases with larger momentum transfer, which has been experimentally
verified. [11;12;13;14]
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2. Theory

e− e−

γ

e− e−

(a) leading order process

e− e−

e− e−

(b) vacuum polarisation

Figure 2.1: Electron electron scattering via the exchange of a virtual photon. The leading
order process is shown on the left, a higher order correction, where a virtual
photon splits up into an electron and positron pair which further annihilate again,
on the right.

2.1.2. Quantum chromodynamics

The theory that describes the strong force is called quantum chromodynamics. It characterises
the interaction of particles with colour charge, namely gluons and quarks. There are three
kinds of colour charges: Red, green and blue which all can be understood as three axes of an
abstract internal space. Since there is no distinguished colour, transformations in this space
represent a symmetry. Such transformations are described by the SU(3)C symmetry group(3).
A SU(N) set has a total of n2 − 1 generators, which translates into eight bicoloured gauge
fields Gαµ, called gluons. The Lagrangian is then given by

LQCD = −1

4
GµνG

µν +
∑
k

q̄k
(
i /D −mi

)
qk (2.17)

where the sum runs over the different quark flavours. The corresponding covariant derivative
reads

Dµ = ∂µ + igs
λ

2
Gµ (2.18)

in which gs denotes the coupling and where λ and Gµ are vectors comprised of the group
generators and respectively the gluon fields. The field strength tensor is given as

Gµν = ∂µGµ − ∂νGµ − gsGµ ×Gν (2.19)

In addition to Fµν (2.12), this tensor contains a third term, which represents the fact, that the
mediators itself, the gluons, carry colour and can consequently couple to themselves. This is
a characteristic feature of quantum field theories, which are based on non-abelian symmetry
groups. The additional possible vertices are shown in figure 2.2.

(3)the set of SU(N) is a subgroup of U(N) additionally fulfilling the constraint of |U | = 1, in the case of SU(3)
the group generators can be represented by the Gell-Mann matrices λα
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2. Theory

g

g

g

g

g

g

g

Figure 2.2: Additional vertices, due to the self coupling of gluons

The fact that gluons carry colour results in a coupling constant which reads

αs
(
Q2
)

=
g2
s

4π
=

αs
(
µ2
)

1 + αs(µ2)
12π (33− 2nf ) ln

(
Q2

µ2

) (2.20)

where nf is the number of quark flavours. Compared to the coupling constant of quantum
electrodynamics (2.16), the striking difference is the sign of the logarithm. This means that
αs, in contrast to α, decreases for large four-momentum transfers Q2 while it increases for
small Q2, as it can be seen in fig. 2.3.
The regime of small distances(4) is called asymptotic freedom, since in this limit quarks behave
as quasi-free particles. However, at larger distances, quarks are strictly bound into colourless
objects, a phenomenon called confinement. The particles formed by quarks are called hadrons
and can be subdivided in two groups, mesons and baryons.
Mesons consist of a quark and an antiquark, where the colour of the quark compensates the
colour of the antiquark. Baryons, however, are made of three (anti-)quarks where each quark
carries one of the three (anti-)colours. Consequently both, mesons and baryons are colourless
particles. The process of quarks binding together to hadrons is referred to as hadronisation.
This means that in an experiment instead of quarks one observes so called jets, consisting of
uncoloured particles which were formed during the hadronisation process. [9;11;13;14;15]

Figure 2.3: The running coupling constants of the electromagnetic interaction [16] on the left
and strong interaction [8] on the right

(4)distance and energy are inversely proportional to each other

7



2. Theory

2.1.3. The electroweak theory

One of the tremendous achievements within the Standard Model is to show that both the
electromagnetic and the weak force are low energy representatives of a single interaction.
This interaction is described by the electroweak theory, based on a SU(2)L × U(1)Y gauge
group, which implies four different gauge fields. Three of them, W 1

µ , W 2
µ and W 3

µ , are associ-

ated with the SU(2)L and couple to the weak isospin(5), where the fourth field Bµ is affiliated
with the U(1)Y and couples to the weak hypercharge

Y = 2 (Q− I3) (2.21)

here Q denotes the electrical charge and I3 represents the third component of the weak isospin.
The Lagrangian of the electroweak theory is given by

LEW =
∑
k

iψ̄k /Dµψk −
1

4
WµνW

µν − 1

4
BµνB

µν (2.22)

where the sum runs over the fermion flavours. The covariant derivative and field strength
tensors are given by

Dµ = ∂µ +
1

2
igτWµ +

1

2
ig′Y Bµ

(6) (2.23)

Bµν = ∂µBν − ∂νBµ (2.24)

Wµν = ∂µWν − ∂νWµ − gWµ ×Wν (2.25)

In contrast to U(1)Y , SU(2)L is a non-abelian group, thus equation (2.25) includes a term
responsible for the self coupling of the gauge fields.
As already discussed, gauge bosons must not have mass, in order that equation 2.22 be
invariant under local gauge transformations. Yet as experiments show, only one of the four
gauge bosons of the electroweak interaction, the photon, is massless, while the W± and Z0

are massive (cf. tab. 2.1). In order to satisfy gauge invariance and to meet the experimental
data, the electroweak symmetry has to be broken.
Within the Standard Model this symmetry breaking can be achieved by the Higgs mechanism:
In the electroweak Lagrangian a new complex scalar field

Φ =
1√
2

=

(
φ+

φ0

)
(2.26)

is included. The additional terms of the Lagrangian then read

LHiggs = (DµΦ)† (DµΦ)− V (Φ) (2.27)

The potential V is given by

V (Φ) = µ2Φ†Φ + λ
(

Φ†Φ
)2

(2.28)

(5)since only left handed fermions and right handed anti-fermions carry a weak isospin unequal zero, this is the
same as saying the Wα

µ couple only to left handed particles and right handed antiparticles, which is known as
parity violation

(6)this holds for left handed particles, the derivative for right handed particles reads: Dµ = ∂µ + 1
2
ig′Y Bµ

8



2. Theory

and shown in figure 2.4. The minima of this potential depend on the choice of the parameter
µ2. If µ2 is selected to be larger than zero, the only minimum of V is at Φ = 0. However, if
one chooses µ2 < 0, the minima of the potential are shifted to

Φmin = ±
√
−µ2

λ
≡ ±ν (2.29)

where ν is called the vacuum expectation value of the Higgs field. By choosing one of the
Φmin particularly, the original symmetry of the potential is broken. This is referred to as
spontaneously symmetry breaking, since the choice of the minimum is completely arbitrary.
Expanding the potential around Φmin and rewriting the corresponding terms results in the
physical mass eigenstates of the electroweak gauge bosons with their corresponding masses.
By using the Weinberg angle θW = tan−1 g′

g , they can be written as

Aµ = sin θW W 3
µ + cos θW Bµ mγ = 0 (2.30)

W±µ =
1√
2

(
W 1
µ ∓ iW 2

µ

)
mW±=

gν

2
(2.31)

Z0
µ = cos θW W 3

µ − sin θW Bµ mZ0 =
mW±

cos θW
(2.32)

The two gauge fields of SU(2)L are now absorbed in the W± bosons. The photon and the Z0

are superpositions of the neutral W 3 and the gauge field Bµ of the U(1)Y symmetry group.
By adding an additional mass term to the Higgs Lagrangian, one can also account for fermions
masses. This term reads

g̃f

(
Ψ̄f
LΦΨf

R + Ψ̄f
LΦ†Ψf

R

)
(2.33)

where Ψf denote the left and right handed Dirac spinors(7) of a fermion f and g̃f its Yukawa
coupling. With

mf = g̃f
ν√
2

(2.34)

the mass of a fermion is defined by the corresponding Yukawa coupling to the Higgs field. [11;12;15;17]

Φ
0

V (Φ)
µ2 > 0 µ2 < 0

+ν−ν
Figure 2.4: The potential V (Φ) plotted for a one-dimensional scalar field Φ, for both cases,

µ2 > 0 and µ2 < 0.

(7)because of the parity violation in the electroweak theory the left-handed spinors are represented by isospin
doublets, while the right handed spinors are isospin singlets
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2. Theory

In summary, the Standard Model of Particle Physics is a gauge theory which is described by
a SU(3)C × SU(2)L ×U(1)Y symmetry group. In order to be renormalisable, the underlying
symmetry of SU(2)L × U(1)Y has to be broken. This electroweak symmetry breaking is
achieved by the Higgs-mechanism, which ultimately gives rise to the masses of gauge bosons
and elementary fermions.

2.2. The top-quark

The top-quark was discovered in 1995 by the experiments CDF [6] and D0 [7] at the Tevatron
accelerator. With a mass of mtop = 173.07± 0.52± 0.72 GeV [8] it is the heaviest elementary
particle known. The top-quark, mostly because of its high mass, plays an important role in
various fields. Focusing on the most popular:

• the top-quark is the only quark which is not bound in hadrons. With a lifetime of
∼ 10−24 s it decays before it can hadronise. Thus, the study of the top-quark offers an
unique possibility to measure bare quark properties.

• the Yukawa coupling of the top-quark is on the order of unity, therefore it could play
an essential role in electroweak symmetry breaking.

• the top-quark is related to the question whether the vacuum is stable or not. Cur-
rent results [18] point to a metastable vacuum, but for a final answer a more precise
measurement of the top-quark mass is required.

• top-quarks are a major background for various processes in particle physics. A precise
understanding of the top-quark properties is therefore crucial for the study of such
processes.

To sum up, almost twenty years after its discovery, the research of the top-quark is far from
over. With a wide range of analyses still ongoing and more being added continuously. In
the next sections the production of top-quarks at particle accelerators and the corresponding
decay topologies are discussed.

2.2.1. CKM matrix

For an appropriate discussion of top-quark production and decay, the CKM matrix has to
be introduced. The CKM matrix, named after N. Cabibbo, M. Kobayashi and T. Maskawa,
describes the mixing between the mass and the weak eigenstates of particles. The mass
eigenstates represent the physical particles, with the weak eigenstates being the states the
W± bosons couple to. Since the electroweak symmetry is broken (cf. sec. 2.1.3), the two
eigenstates are not identical. The weak eigenstates, denoted by a prime, can be written as
superpositions of the mass eigenstates and vice versa, the relation between both is given by
the CKM matrix:
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d′s′
b′

 =

Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

ds
b

 (2.35)

The CKM elements are measured to be [8]:

VCKM =

0.97427± 0.00015 0.22534± 0.00065 0.00351+0.00015
−0.00014

0.22520± 0.00065 0.97344±−0.00016 0.0412+0.00011
−0.00005

0.00867+0.00029
−0.00031 0.0404+0.0011

−0.0005 0.999146+0.000021
−0.000046



Focusing on the top-quark, the main point is that the probability for an electroweak process
to change a quark flavour from i to j, is given by the particular CKM matrix element, as |Vij |2.
As can be seen, the diagonal entries of the CKM matrix are almost unity, which means that
a W -boson will preferably couple to quarks of the same generation.
For top-quarks, the corresponding CKM matrix elements give |Vts|2 = 7.5 · 10−5, |Vtd|2 =
0.0016 and |Vtb|2 = 0.998. This means that if there is a top-quark involved in an electroweak
process, in 99.8 % of the cases the top-quark is accompanied by a b-quark, instead of a d or
s-quark. [13;19]

2.2.2. Top-quark production

To produce a top-quark, the minimum amount of energy needed is equal to the rest mass
of the top-quark. On earth, this energy is, besides cosmic rays, only available at particle
accelerators. The only collider having a sufficient centre-of-mass energy to produce top-
quarks, is the LHC(8).
There are two main mechanisms to produce top-quarks at hadron colliders. The first one,
which is referred to as single top-quark production, is mediated via the electroweak interaction,
while the second one is the production of a tt̄ -pair by the strong force.

2.2.2.1. Single top-quark production

Single top-quark productions can occur in three different channels. In the t-channel a top-
quark is produced by a flavour excitation process. A virtual W -boson is radiated by a quark
and couples to a b-quark, where the b-quark is either a sea quark from one of the hadrons or
has its origin in a gluon splitting into a bb̄ -pair, thereby producing a top-quark.
The second production mechanism is the s-channel process, here an up-type quark annihilates
with a down-type antiquark, or vice versa, to produce a virtual W -boson. This boson further
splits up into a b and a top-quark.
The third and last mechanism is the associated production of a top-quark with a W -boson,
referred to as Wt-channel. In this case either a b-quark is excited by a gluon, which hence
has sufficient energy to decay into a W -boson and a top-quark, or a b-quark splits up into
a virtual top-quark and a W -boson. The virtual top-quark then couples to a gluon, thereby

(8)as already mentioned, the top-quark was discovered at the Tevatron accelerator. Since the Tevatron has been
shut down in 2011, the LHC is presently the only collider being able to produce top-quarks.
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2. Theory

becoming real. The theoretical cross sections and Feynman graphs for the three processes can
be found in table 2.2 and figure 2.5, respectively.

t-channel [pb] s-channel [pb] Wt-channel [pb]

σt 41.7+1.8
−0.8 3.17+0.14

−0.11 7.8+0.5
−0.6

σt̄ 22.5+0.9
−1.0 1.42+0.06

−0.07 7.8+0.5
−0.6

Table 2.2.: Theoretical cross section predictions for single top-quark production at the LHC
with

√
s = 7 TeV and mtop = 173.0 GeV [20;21;22]

It is worth mentioning, that at the LHC, the t-channel and s-channel cross sections for pro-
ducing a top or an antitop-quark are different. This is caused by the structure of the proton
itself, which is composed of one d and two u valence-quarks. In the case of the t-channel pro-
duction the difference in cross sections can be understood in the following way: Since there
applies charge conservation at each vertex, if radiating a W -boson, the u-quark has to emit a
W+, whereas the d-quark is obliged to radiate a W−. Subsequently this W -boson, which is
now W+ or W−, annihilates either with a b-quark resulting in a top-quark or with a b̄-quark
producing an antitop-quark. As the number of u quarks in the proton is twice as large as the
number of d-quarks and the sea quarks b and b̄ occur at same rate, the production cross sec-
tion for top-quarks is roughly twice as large as the cross section of antitop-quark production.
A similar argument holds for the s-channel. Since there are more u-quarks than d-quarks in
the proton, the virtual W -boson, which is exchanged, will rather be a W+ than a W−. This
again leads to an enhanced cross section for top-quark production.
Taking these effects into account, the total predicted cross section of single top-quark produc-
tion at the LHC is σt/t̄ = 84.4+2.2

−1.7 pb (cf. tab. 2.2).
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Figure 2.5: Production mechanism of top-quarks via the electroweak interaction
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2.2.2.2. Top-quark pair production

In contrast to single top-quark production, the creation of a tt̄ -pair happens via the strong
interaction. The leading order processes are shown in figure 2.6 and can be classified in
three different categories, the s-, t- and u-channel. Similar to section 2.2.2.1, the s-channel
production describes the annihilation of a quark and an antiquark under the emission of a
gluon. The gluon subsequently splits up into a top and an antitop-quark. In contrast to
the electroweak s-channel however, there is a supplementary process possible. As discussed
in section 2.1.2, the gluons carry colour charge on their own and consequently couple to
themselves. This allows the additional process, in which two gluons annihilate under the
emission of a virtual gluon, again splitting up into a tt̄ -pair.
The t-channel, however, explicitly requires two gluons in the initial state. Under the exchange
of a virtual top-quark, a new tt̄ -pair is created. The u-channel has in principle the same
initial and final state particles as the t-channel, but it reverses the assignment of the top and
antitop-quark to the initial state gluons.

s-channel

q̄

q
g t

t̄

s-channel

q̄

q
g t

t̄

t-channel
g t

g t̄

u-channel
g

tg

t̄

Figure 2.6: Feynman graphs of the leading order tt̄ -pair production mechanisms

In addition to the leading order diagrams, one can also include higher order processes, which
for next-to-leading order are shown in figure 2.7.
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Figure 2.7: Feynman graphs of the next-to-leading order tt̄ -pair production
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A simple case of such a correction is the initial or final state radiation, which means that a
gluon is radiated by one of the ingoing or outgoing partons. The second is the production of
a tt̄ -pair with an extra final state parton, which is referred to associated production. This
can happen by the radiation of a gluon from the virtual top-quark in the t-channel, where the
gluon appears as a final state particle. Another possibility is the associated quark production,
which is in close analogy to one of the Wt-channel processes in figure 2.5. A tt̄ -pair with
associated quark is produced, if an incoming quark radiates a virtual gluon, which combines
with a virtual top-quark, originally emitted by an initial state gluon. [23]

In total, the cross section for tt̄ -production with 177+10
−11 pb(9) is roughly twice as large as the

combined cross section of the electroweak production, and therefore the main mechanism for
top-quark production at the LHC.

2.2.3. Top-quark decay

The top-quark decays via the electroweak interaction into a W -boson and a down-type quark.
As already discussed in section 2.2.1, this down-type quark is mainly a b-quark. For a tt̄ -pair
decay one can distinguish three different decay channels, characterised by the decay of the
involved W -bosons.
A W -boson can either decay into a lepton plus a corresponding neutrino, which is referred
to as leptonic decay or into an up-type quark and a down-type antiquark, and vice versa,
called hadronic decay. Another main point is that although the process W → tb is technically
allowed, it is prohibited by the high rest mass of the top-quark, which is roughly twice as
large as the W -mass. The corresponding branching fractions, which are ≈ 1/3 for a leptonic
decay and ≈ 2

3 for a hadronic decay, are given in table 2.3.

decay mode W → eνe W → µνµ W → τντ W → qq̄′

branching ratio (10.75± 0.13) % (10.57± 0.15) % (11.25± 0.20) % (67.60± 0.27)%

Table 2.3.: W -boson decays with the corresponding branching fractions Γi/Γ[8]

Therefore the three modes of the tt̄ -decay are:

• the dileptonic channel, in which both W -bosons decay into leptons and neutrinos

• the semileptonic channel, in which one W -boson decays hadronically and the other
one leptonically

• the all-hadronic channel, where both W -bosons decay into quarks

The corresponding probabilities for the different channels are shown in figure 2.11.

(9)The tt̄ cross section for pp collisions at a centre-of-mass energy of
√
s = 7 TeV is σtt̄ = 177+10

−11 pb for a top-
quark mass of 172.5 GeV. It has been calculated at next-to-next-to leading order (NNLO) in QCD including
resummation of next-to-next-to-leading logarithmic (NNLL) soft gluon terms with top++2.0 [24;25;26;27;28;29].
The PDF and αS uncertainties were calculated using the PDF4LHC prescription [30] with the MSTW2008 68%
CL NNLO [31;32], CT10 NNLO [33;34] and NNPDF2.3 5f FFN [35] PDF sets, added in quadrature to the scale
uncertainty.

14



2. Theory

2.2.3.1. The dileptonic channel

With a probability of roughly 33 % for a
W -boson to decay leptonically, the pre-
dicted branching ratio of this channel is
10.5% (10). Therefore it has the small-
est branching ratio of the three channels.
Its final state signature is characterised by
two b-quarks, two high energetic leptons
and large Emiss

T (cf. fig. 2.8). Since there
are two neutrinos in the final state, a kine-
matic reconstruction of the tt̄ -pair in this
decay is not possible. To measure quark
properties in this channel elaborated tech-
niques have to be applied. Despite the
low branching fraction and a minor back-
ground mainly from single top-quark pro-
duction, the dileptonic decay offers a very
clean event topology.

l̄

νl

W+

b

t

b̄

ν̄l

l

W−

t̄

Figure 2.8: The dileptonic tt̄ -decay

2.2.3.2. The semileptonic channel

The theoretical chance that a tt̄ -pair de-
cays semileptonically is 43.8% (10). In this
channel the final state consists of two b-
quarks and two light-quarks, one high en-
ergetic electron and one neutrino (cf. fig.
2.9). In contrast to the dileptonic chan-
nel, the kinematic reconstruction of the tt̄
-decay is still feasible, although a neutrino
is present. The main background in this
channel origins in W + jet production,
while a minor contribution comes from
QCD multijet. Since the semileptonic de-
cay channel is well-balanced between a
clean event signature and a large branch-
ing fraction, it is the preferred channel for
many top-quark measurements.

q̄′

q
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b

t
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ν̄l

l
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Figure 2.9: The semileptonic tt̄ -decay

(10)These numbers include the contribution from all three leptons [8]. Since τ -lepton decays are to roughly 65%
hadronic and furthermore always accompanied by a ντ , most analyses exclude τ leptons from their top-quark
measurements. This reduces the branching fractions to ≈ 4.7% and ≈ 29.2% in the dileptonic and semileptonic
channel, respectively.

15



2. Theory

2.2.3.3. The all-hadronic channel

In the all-hadronic channel both W -
bosons decay hadronically. This results
in a probability of 45.7% for this channel.
Therefore it has the largest branching ra-
tio of the three channels. The event sig-
nature is described by four light and two
b-quarks (cf. fig. 2.10). In contrast to
the other two channels there are no high
energetic leptons or neutrinos in the fi-
nal state. The absence of neutrinos has
the advantage that all decay particles of
the tt̄ -system can be detected, allowing
a full reconstruction. The predominant
background for the all-hadronic channel
is QCD multijet production. Due to the
absence of leptons or Emiss

T the rejection
of these background events is very chal-
lenging. Furthermore, since there are only
quarks in the final state, a detailed un-
derstanding of the detector performance
is crucial for precise measurements in this
channel.
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Figure 2.10: The all-hadronic tt̄ -decay
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Figure 2.11: Decay channels of a tt̄ -system
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In the following, an overview of the experimental setup is given. While the first two parts
briefly describe the LHC and the ATLAS experiment, the last part summarises the production
of top quarks at the LHC.

3.1. The Large Hadron Collider

The Large Hadron Collider (LHC) is an international experiment to test the Standard Model
of Particle Physics and to unveil physics beyond. It is a superconducting accelerator based at
the European Organization for Nuclear Research (CERN) near Geneva. The LHC is designed
to accelerate and collide protons up to a centre of mass energy of 14 TeV. In addition, it also
enables the collision of lead ions up to an energy of 2.76 TeV per nucleon.

Figure 3.1: The CERN accelerator complex: The LHC ring with the four major experiments
(in black) and the pre-accelerator chains for protons and heavy ions [36]

Besides two smaller experiments, LHCf and TOTEM, there are four major experiments affili-
ated to the LHC. The ALICE experiment is dedicated to the study of the quark-gluon plasma
in heavy ion collisions, whereas the LHCb experiment is devoted to b-physics. The ATLAS
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and CMS experiments are both general-purpose detectors covering a broad field of particle
physics, with the benefit to cross check each others measurements.
Since the LHC is a particle-particle collider, it consists of two rings of counter-rotating beams.
These rings are installed in the 27 km long tunnel originally built for the ancestor experiment
LEP(1). The LHC uses already existing infrastructure at CERN to pre-accelerate particles.
Protons, in a first step, are pushed to 50 MeV in the Linac 2 accelerator. The particles are
subsequently inserted in the Proton Synchrotron Booster and Proton Synchrotron to be fur-
ther accelerated to 1.4 GeV and 25 GeV. The Super Proton Synchrotron speeds up the protons
to 450 GeV as the last part of the pre-acceleration process. The particles are finally injected
into the LHC rings and further accelerated by RF cavities, which are also responsible for the
longitudinal focusing of the proton bunches. To keep the particles on circular paths, dipole
magnets, with a nominal magnetic field of 8.33 T, are used. While quadropule magnets focus
the beam in the transverse plan. A variety of additional magnets are in place for further beam
corrections.
The observed number of proton-proton collisions in an experiment with a cross section σevent
is directly related to the performance of the collider via

Nevent = L · σevent (3.1)

where L denotes the luminosity, which is a sole function of collider parameters. The amount
of data produced is then given by

L =

∫
L · dt (3.2)

For the 2011 data taking period, the centre of mass energy denoted by
√
s was 7 TeV, while

each ring was filled with 1380 bunches of up to 1.45 · 1011 protons and a spacing of 50 ns.(2)

With this parameters, a peak luminosity of L = 3.6 ·1033 cm2s−1 was achieved, corresponding
to a total integrated luminosity delivered to the ATLAS experiment of L = 5.63 fb−1, where
one barn is defined as b = 10−24 cm2. [37;38]

3.2. The ATLAS experiment

The ATLAS detector(3) is a forward-backward symmetric multiple purpose detector based at
the LHC ring at CERN. It is designed to cover a wide range of particle physics topics. Amongst
other tasks, it aims to investigate the Higgs and top-sectors and to search for beyond Standard
Model physics.
The ATLAS detector, presented in figure 3.2, has a cylindrical shape and consists of three
main detector parts, the inner detector, the calorimeter and the muon spectrometer. In order
to work properly the whole detector is embedded in a magnetic field. The huge amount of
experimental data is handled by a trigger and data acquisition system.
Beside these main detector parts, which are briefly described in the following, there are three
additionally smaller detector modules. The main purpose of the LUCID and ALFA detectors is
to measure the luminosity delivered to ATLAS, while the intent of the zero-degree calorimeter
is to determine the centrality of heavy-ion collisions. [39]

(1)the Large Electron Positron Collider has been shutdown in the year 2000
(2)the numbers are taken for the phase five of the 2011 data taking [37]

(3)ATLAS is the acronym for A Toroidal LHC Apparatus
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Figure 3.2: The ATLAS detector with its main components: The inner detector, the calorime-
ter, the muon spectrometer and the magnetic system [40]

3.2.1. The ATLAS coordinate system

The centre of the right handed ATLAS coordinate system is defined as the nominal interaction
point of the colliding particles. In this system, the x-axis is pointing to the centre of the LHC
ring, the y-axis is required to point upwards and the z-axis is defined to be along the beam-
line. The plane spanned by the x- and y-axes is called the transverse plane and quantities
carrying the label ”T ” are defined within this plane.
Coordinates used to describe positions in the detector are the azimuthal angle φ, covering the
transverse plane and the pseudorapidity η ≡ − ln tan θ

2
(4). According to this, the distance

between two objects is given by ∆R =
√

∆φ2 + ∆η2.

3.2.2. The magnet system

The ATLAS magnet system consists of four superconducting aluminium-stabilised NiobTitan
magnets, which are cooled to 4.5 K. The magnetic field provided by the magnets is essential
for the inner detector and the muon spectrometer. According to the Lorentz force

FL = q (v ×B) (3.3)

charged particles experience a force proportional to their momentum, which leads to a bending
of the particle’s path. Thus by measuring the particle’s track, one can deduce its momentum.
The ATLAS magnet system is shown in Figure 3.3 and splits up into a solenoid and three toroid
magnets, which provide the magnetic fields for the inner detector and the muon spectrometer.
The solenoid is centred along the beam axis and consists of 1154 windings. It is built to supply
a central field of 2 T for the inner detector.

(4)where θ denotes the polar angle with respect to the z-axis. For high energies, η is approximately equal to the
lorentz-invariant rapidity y, defined as y = 1

2
· ln [(E + pz) / (E − pz)]
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The toroids, one in the barrel and two in the end-caps, consist of eight coils each. They
are arranged radially symmetric around the beam axis, to minimise the interference with the
particles under investigation. With a nominal current of 20.5 kA the barrel and the end-cap
toroids provide a peak field of 3.9 T and 4.1 T. [39;41]

Figure 3.3: The ATLAS magnet system: Shown are the barrel coil, the end-cap toroidal coils
and the solenoid embedded in the calorimeter (all shown in red) [39]

3.2.3. The inner detector

The inner detector is the most central element of ATLAS and was designed to provide high-
precision momentum resolution and vertex identification. It covers the region from 5 cm to
115 cm from the beam axis and a pseudorapidity of |η| < 2.5. The inner detector is built of
three parts, the pixel detector, the semiconductor tracker and the transition radiation tracker.
In the barrel region, the different parts are arranged cylindrical around the beam pipe, while
in the end-cap region the elements are attached on disks perpendicular to the beam.

a) barrel region b) end-cap region

Figure 3.4: Schematic of the inner detector with its components: the pixel detector, the semi-
conductor tracker and the transition radiation tracker. [39]

The pixel detector is designed to give a hermetic coverage and a fine granularity. In order to
be able to reconstruct secondary vertices from short lived particle decays like b-hadrons the
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detector is as close to the interaction point as possible. It consists of 1744 overlapping pixel
sensors, mounted on three barrels at radii of 50.5 - 122.5 mm from the beam axis, while in the
end-caps region they are attached to disks with distances from 495 - 650 mm to the nominal
interaction point. The pixel detector provides a spatial resolution of about ≈ 10µm in the
R-φ plane and ≈ 115µm in z direction.
The semiconductor tracker is composed of 4088 stereo silicon strip modules, each consisting
of two layers rotated by 40 mrad with respect to each other. The elements are arranged in
four barrels around the pixel detector and are mounted on nine disks in each of the end-caps.
Overall, the semiconductor tracker covers an area of 63 m2 and is designed to give at least
four precision space-point measurements, with an accuracy of ≈ 17µm in the transverse plane
and ≈ 580µm along the beam direction.
The outermost part of the inner detector is the transition radiation tracker. It is build up of 4
mm thin gas-filled proportional drift tubes, equipped with an 31µm thick gold-plated tungsten
wire. In the barrel region about 52544 of these tubes, each 144 cm long, are aligned in 73 layers
along the beam pipe. Another 122880 tubes with a length of 37 cm are radially positioned in
each end-cap. The transition radiation tracker has a spatial resolution of ≈ 130µm per tube
and provides an average of 36 hits per track. Additionally, the identification of electrons is
possible due to the detection of transition-radiation photons. [39]

3.2.4. The calorimeter

The ATLAS sampling calorimeter system consists of different types of calorimeters, which
account for the varying physics environment in the detector. Its purpose is to measure the
energies of the objects under investigation and to enable the reconstruction of jets, in a range
of |η| < 4.9. To allow for the measurement of missing transverse energy the calorimeter system
offers a full coverage in the azimuthal angle.

Figure 3.5: The ATLAS calorimeter system: barrel region: the electromagnetic calorimeter
encloses the inner detector, which itself is enclosed by the tile calorimeter
end-cap region: the electromagnetic end-cap calorimeter followed by the forward
calorimeter, embedded in the hadronic end-cap calorimeter, surrounded by the
extended tile barrel calorimeter [40]
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3.2.4.1. EM calorimeter

The electromagnetic calorimeter is an accordion-shaped sampling detector specially designed
to measure the energies of electromagnetically interacting particles. It uses lead as absorber
and liquid argon as active medium. Liquid argon is chosen because of its linear behaviour,
radiation hardness and stable response over time. The module uses an electric field to collect
ionisation charges produced by incoming particles. A particle crossing the lead absorber ma-
terial creates an electromagnetic cascade, which subsequently ionises argon atoms. With an
electric field applied, the ionised charges, which are proportional to the energy of the incoming
particle, drift to the electrodes and are readout.
The calorimeter covers a range of |η| < 3.2, with a barrel module sprawling up to |η| < 1.475
and two end-cap modules extending in pseudorapidity from 1.375 to 3.2. The overlap be-
tween the modules ensures a continuous η coverage. With its fine granularity(5) and the
additional presampler detector, an additional liquid argon layer at |η| < 1.8, the electro-
magnetic calorimeter provides a design energy resolution of σE

E = 10%√
E(GeV )

⊕ 0.7% [42]. The

electromagnetic calorimeter offers a total thickness of 22 and 24 radiation lengths for the
barrel and end-cap regions. [39]

3.2.4.2. Hadronic calorimeter

The hadronic calorimeter consists of three different components, the tile calorimeter, the
hadronic end-cap calorimeter and the forward calorimeter. All are sampling calorimeters,
where the latter two employ liquid argon as active medium.
The main component of the hadronic calorimeter is the tile calorimeter. The barrel part
covers a pseudorapidity of |η| < 1, while the extended barrels reach from 0.8 < |η| < 1.7, the
overlap again avoids gaps in η. The tile calorimeter surrounds the electromagnetic calorime-
ter and is made of steel absorbers and scintillating tiles. Attached to the scintillators are
wavelength-shifting fibres, converting the light induced by ionising particles to visible light
for readout photomultiplier tubes.
The hadronic end-cap calorimeter resides directly aside the electromagnetic end-cap calorime-
ters and is mounted on two wheels per end-cap. On each wheel 32 calorimeter modules are
attached, using copper as absorber material. The 8 mm spacing between the copper plates is
filled with liquid argon. The hadronic end-cap calorimeter covers a range of 1.5 < |η| < 3.2,
thereby overlapping with the forward calorimeter.
This last part of the ATLAS calorimeter system encloses the beam pipe and is surrounded by
the electromagnetic and hadronic end-cap calorimeters. The forward calorimeter is mounted
about 1.2 m apart from the electromagnetic barrel calorimeter to avoid the backscattering of
neutrons into the same. It consists of three 45 cm long parts. The first one, closest to the
interaction point, is a copper liquid argon calorimeter mainly designed to measure electromag-
netic interactions, while the other two calorimeters are intended for hadronic measurements,
with tungsten absorbers.
The design energy resolution of the tile and hadronic end-cap calorimeters is σE

E = 50%√
E(GeV )

⊕

3% [43], where the forward calorimeter yields a resolution of σE
E = 100%√

E(GeV )
⊕10% [44]. In total

the hadronic calorimeter provides a thickness of about 10 interaction lengths over the whole
region. [39]

(5)of about 0.003× 0.1 and 0.025× 0.025 in ∆η ×∆φ, for |η| < 1.40 and 1.40 < |η| < 1.75, respectively
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3.2.5. The muon spectrometer

The task of the ATLAS muon spectrometer is to measure the tracks and momenta of muons
and to enable triggering on them. Since muons are minimal ionising particles they are usually
the only particles, except for neutrinos, which escape the inner parts of the detector.

Figure 3.6: The ATLAS muon system [40]

For that purpose, ATLAS is equipped with monitored drift tubes, arranged in three con-
secutive cylindrical layers in the barrel and four disks in each end-cap region, covering a
pseudorapidity of |η| < 2.7. Due to the high rate of particles near the beam axis, the first
wheel in the region 2.0 < |η| < 2.7 is equipped with cathode strip chambers instead of moni-
tored drift tubes.
The monitored drift tubes are designed to deliver precision-tracking information in the η
plane. They consist of up to 8 layers of aluminum tubes with an diameter of 29.97 mm and
are filled with a gaseous mixture of 93% argon and 7% carbon dioxide, mainly for its good
resistance to ageing. In the middle of each tube, a 50µm thick gold-plated tungsten rhenium
wire at a potential of 3080 V is strained. With this setup, a spatial z-resolution of about
35µm is achieved.
To trigger on muon tracks, the muon system is complemented with additional fast read-
out resistive-plate and thin-gap chambers in the barrel and end-cap region. These detectors
offer the benefit of providing a rough φ position measurement with a resolution of about
3− 10 mm.

3.2.6. The trigger and data acquisition system

Since it is not achievable to record all of the proton-proton collisions in the ≈ 20 · 106 bunch
crossings(6) per second occurring in the ATLAS detector, the purpose of the trigger and
data acquisition system is to filter and record only the interactions of interest for the physics

(6)for the 2011 data taking period, with a bunch spacing of 50 ns. The average number of interactions per bunch
crossing is 6 and 12, for β? = 1.5 m and β? = 1.0 m, respectively [45]
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analysis. To enable that, a tripartite trigger system is in place, consisting of the level-1 trigger,
the level-2 trigger and the event filter.
The task of the level-1 trigger is to search for high transverse momentum objects like electrons
or jets and to look for high values of total and missing transverse energy. Since the level-
1 trigger has to decide in < 2.5µs whether to reject an event or not, it uses only limited
detector information, namely from the muon system and the calorimeter, both with a reduced
granularity. The level-1 trigger is build to handle a maximum rate of 100 kHz. If the level-1
trigger accepts an event, it defines regions of interest, which are handed over to the level-
2 trigger. For these regions, which contain about 2 % of the total event data, the level-2
trigger utilises the full detector information to further reduce the number of events to a rate
of 3.5 kHz. In a final step, the event filter, which employs an off line analysis procedure,
reduces the rate to up to 600 Hz [46].
The events which make it through the trigger system, each with a size of ≈ 1.3 Mbyte, are
further analysed and stored permanently in dedicated computer centres across the world. [39]

3.3. Top-quark physics at the Large Hadron Collider

As previously discussed, there are two mechanisms to generate top-quarks. First, the single
top-quark production via the electroweak interaction with a cross sections of σt = 84.4+2.2

−1.7 pb
and secondly the creation of tt̄ -pairs through the strong force with σtt̄ = 177+10

−11 pb. This
production happens either trough the annihilation of a pair of quark and antiquark or the
fusion of two gluons (cf. sec. 2.2.2).
To determine the dominant strong production process occurring at the LHC at a centre-of-
mass energy of

√
s = 7 TeV, one can look at the momentum fractions the interacting partons

have to carry to produce a tt̄ -system. The squared centre-of-mass energy of two colliding
partons can be written as

ŝ = (pa + pb)
2 (3.4)

To produce a tt̄ -pair
√
ŝ has to be at least equal to the rest mass of the tt̄ -system, hence

ŝ = (pa + pb)
2 ≥ (2mtop)

2 (3.5)

The momentum of a parton pi can be written in terms of the fraction xi of the proton’s
momentum. In relativistic approximation, the momentum of the proton is described by the
beam energy as

pa =


xa
0
0
xa

 · Ebeam pb =


xb
0
0
−xb

 · Ebeam (3.6)

With the assumption of xa ≈ xb the moment fraction required to create a tt̄ -pair is

x ≥ 2mtop√
s

(3.7)

where
√
s = 2 · Ebeam is the centre-of-mass energy of the collider.

For a centre-of-mass energy of 7 TeV and an assumed top-quark mass of 172.5 GeV, the mo-
mentum fraction a parton has to carry is about 0.05. The momentum fraction of partons
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within a proton can be extracted from experimental data, which results in a so called par-
ton distribution function. According to this function, the probability for a gluon to carry a
fraction of 0.05 is much higher than for a quark (cf. Fig. 3.7). Consequently, the main tt̄
-production process at the LHC with roughly 80% [8] is the gluon gluon fusion.

Figure 3.7: The MSTW2008NNLO parton density function, for a scale of Q2 = 10 GeV2 on
the left and Q2 = 104 GeV2 on the right [47]

With the already mentioned cross section for the tt̄ -production and an instantaneous lumi-
nosity of L = 3.6 · 1033 cm2s−1 [37] this results in about one tt̄ -event occurred every 1.5 s of
LHC data taking, corresponding to roughly one million tt̄ -pairs produced in the whole 2011
data taking period.
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Purpose of this thesis is to investigate an approach for a precise measurement of the top-
quark mass, denoted as mtop, in the all-hadronic channel. The precision of a measurement is
obviously related to the size of the experimental error and splits up into a statistical and a
systematic component. The statistical error reflects the fact that the measured value in an
experiment can randomly fluctuate from one measurement to another. Such an uncertainty
can only be reduced by repeating the measurement over and over again. The systematic error,
however, is an intrinsic feature of the experimental setup, which results in a bias. In order
to remove this kind of uncertainty, its source has to be identified and either eliminated, or at
least its effects have to be reduced.
In the case of the top-quark mass, the uncertainty due to statistical fluctuations has been
lowered by taking more and more experimental data over time, from ±8 GeV measured by
the CDF-collaboration at the time of the top-quark discovery [6], to ±0.2 GeV in one of the
latest ATLAS results [48]. Since by now the statistical error is fairly small, the main bottleneck
for a precise measurement of mtop is the systematic uncertainty. For the top-quark mass
measurement this component consists of many different contributions, like:

• Monte Carlo generator, representing the variation between Monte Carlo programs

• background modelling, related to the quality of the background prediction

• jet energy scale, describing the uncertainty on the measurement of jet energies

• ISR/FSR(1), considers the uncertainty introduced by the emission of additional partons

• hadronisation, accounting for the insufficient theoretical knowledge of building hadrons

One of the main systematic errors is the jet energy scale. This origins in the method, that is
used to measure the top-quark mass. The principle idea is to extract mtop by a full kinematic
reconstruction of the event. In order to restore the kinematics of the tt̄ -event, the objects in
the final state are matched to the partons of the tt̄ -decay. Since there are only jets in the final
state in the all-hadronic channel, a shift in the jet energy measurement directly translates into
a change of the kinematics of the system, and therefore of mtop.
This thesis investigates a procedure to reduce the uncertainty on the jet energy scale, to
decrease the systematic error on the top-quark mass. This is achieved by both choosing an
estimator for mtop, which is less sensitive to the jet energy scale, and introducing an additional
observable to account explicitly for this jet energy scale dependence.

(1)abbreviation for initial/final state radiation
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In this chapter, first the concept of Monte Carlo generated data is established, while in a
second part the physics objects used in the analysis are introduced. Subsequently, the recon-
struction of the tt̄ -system is presented. In conclusion, the last section deals with the actual
top-quark mass determination.

4.1. Monte Carlo datasets

The analysis presented in this thesis is solely based on Monte Carlo (MC) datasets. Monte
Carlo generators are dedicated software tools intended to simulate real events, in order to
study their properties. For that purpose, an event is split up into different sub processes.
The first step emulates the hard scattering process. In case of tt̄ -production, this includes
the scattering of the initial partons, as well as the production and decay of the tt̄ -pair. This
is done by calculating the corresponding matrix element, taking into account a given parton
distribution function. The second step replicates the emission of partons in the initial and
final state, referred to as parton showering. Thereafter, the hadronisation of the final state
partons and in the case of short lived particles, their subsequent decay is executed. Finally,
the detector response is simulated. The name Monte Carlo hereby reflects the fact that Monte
Carlo (pseudo-)random numbers are intended to reproduce the quantum mechanical proba-
bilities of the various processes.
The hard process in this analysis is simulated by the next-to-leading order POWHEG [49;50;51]

generator which uses the CT10 parton distribution function [34]. The parton showering, hadro-
nisation and decay, however are simulated by the general-purpose generator PYTHIA [52],
adopted to the Perugia2011C tune [53]. While the hard process and the parton showering,
can be calculated in perturbative quantum chromodynamics, due to a small energy scale the
hadronisation can not be treated perturbatively. A phenomenological approach has to be
applied to describe this process, instead.
The approach used by PYTHIA is the Lund string model. In this approach coloured particles
are connected by field lines, consisting of gluons. Due to their self coupling, these field lines
form narrow tubes, referred to as strings. To explain the mechanism of hadronisation, it is
instructive to look at the simple example of a qq̄-pair (cf. fig. 4.1). By separating two quarks,
the energy stored in the string between them increases linearly. For large separations the
string breaks up into a new q′q̄′-pair, thereby forming two uncoloured systems, qq̄′ and q′q̄,
each connected again by a colour string. This process will recur, until only final state hadrons
are left. [54;55]

The final step in the Monte Carlo dataset production is the detector simulation, which is done
with the GEANT4 package [56].

qq̄

qq̄

qq̄qq̄

qq̄qq̄

qq̄qq̄ qq̄ qq̄

hadronised particles

Figure 4.1: The Lund string model shown for a qq̄-system
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This analysis is based on various Monte Carlo datasets with all-hadronic tt̄ -events only,
simulated for the 2011 data taking period of the LHC. The samples differ in the used simulated
top-quark mass and the level of detail of the ATLAS detector simulation. As signal Monte
Carlo, a dataset with msim

top = 172.5 GeV and a full detector simulation is used. Additional,
seven samples with different top-quark masses ranging from 165 - 180 GeV are employed.
Since a full detector simulation is very CPU time consuming, the detector response in these
samples is simulated with a faster simulation, referred to as ATLFAST II. This approach
uses a simplified description of the ATLAS calorimeter, while the inner detector and muon
system are still simulated in full precision. Like this, CPU time reduces by a factor of ten. [57]

An overview over the different Monte Carlo datasets together with the containing number of
events, is given in table 4.1

MC dataset msim
top [GeV] σtt̄ [pb] k-factor # of events detector simulation

signal sample 172.5 67.36 1.229 3.5 · 106 full simulation
mass variation 1 165.0 84.71 1.132 1.5 · 106 ATLFAST II
mass variation 2 167.5 78.39 1.132 1.5 · 106 ATLFAST II
mass variation 3 170.0 72.72 1.130 1.5 · 106 ATLFAST II
mass variation 4 172.5 67.36 1.229 4.0 · 106 ATLFAST II
mass variation 5 175.0 62.51 1.131 1.5 · 106 ATLFAST II
mass variation 6 177.5 58.11 1.130 1.5 · 106 ATLFAST II
mass variation 7 180.0 53.98 1.131 1.5 · 106 ATLFAST II

Table 4.1.: MC datasets used in this analysis, with the corresponding cross sections, k-factors
and number of events.(2)

4.2. Physics object definitions

The physics objects used in this analysis are electrons, muons, missing transverse energy and
jets. The criteria(3), that objects have to fulfil to be considered in the analyses, are given
in this section. Figure 4.2 shows the tracks some fundamental particles leave in the ATLAS
detector.

4.2.1. Electrons

Within ATLAS, electrons are reconstructed by searching for seed clusters in the electromag-
netic calorimeter, which exceed a threshold value of 2.5 GeV. These clusters have a size of
0.075× 0.125 in the η/φ-plane and are selected by a sliding window algorithm [59]. If at least
one track from the inner detector can be associated to a seed cluster, within η < 2.5, this
object is identified as an electron.
Three sets of selection criteria exist. They differ in their background rejection power and are
referred to as loose, medium and tight. These cut-based selections take diverse tracking and
calorimeter variables into account and vary in the stringency of their cut-values. The selection

(2)The k-factor is a correction, which accounts for higher order contributions to the cross section.
(3)The applied criteria are in accordance with the ATLAS top-quark working group recommendations for 2011

analysis [58].
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criteria are inclusive, that means that in order to fulfil the tight requirement, an electron also
has to meet the loose and medium conditions. [59;60]

For being considered in this analysis, electrons identified by the ATLAS electron algorithm
have to satisfy the following specifications:

• meet the tight++ selection criteria(4)

• be within a region of |η| < 2.47, excluding the sector of 1.37 < |η| < 1.52

• exceed a transverse energy of 25 GeV

• have a longitudinal impact parameter smaller than 2 mm

• fulfil isolation criteria(5)

Figure 4.2: Identification of particles in the the ATLAS detector [40]

4.2.2. Muons

Muons are reconstructed by a set of complementary algorithms utilising information from the
muon spectrometer and inner detector. The algorithms can be divided into three categories.
The standalone reconstruction extrapolates tracks in the muon spectrometer back to the
interaction point. It explicitly takes the energy loss and multiple scatterings of muons in
the detector into account. The combined reconstruction, however, matches hits of both, the
muon spectrometer and the inner detector, in order to reconstruct a single track for a muon.
Finally, the tagging method associates inner detector tracks to proximate hits in the muon
spectrometer.

(4)tight++ represents an optimised tight selection for the 2011 data taking period
(5)In order to reduce the rate of hadrons mimic leptons and to reject leptons from heavy flavour decays within

jets, the sum of transverse energy in a cone of ∆R = 0.2 around the electron must not exceed an ET and η-
dependent value, varying from 1.4 to 3.7 GeV. For the same purpose the sum of transverse momentum within
a cone of ∆R = 0.3 has to be smaller than 1 GeV. Additionally the distance in ∆R of the lepton to the next
jet may not come below a value of 0.4
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By 2012 there were two sets of reconstruction algorithms employed, referred to as Staco muon
collection and MuID collection. Both sets apply algorithms of each kind to identify muons,
while their name origins in the particular combined reconstruction algorithm used. The Staco
algorithm performs a statistical combination of tracks in both subsystems, while the MuID
algorithm does a combined refit of the hits in the muon spectrometer and inner detector. [61]

In order to be used in the analysis, muons have to:

• be identified by the MuID algorithm

• lie in a pseudorapidity range |η| < 2.5

• exceed a transverse momentum of 20 GeV

• have a longitudinal impact parameter smaller than 2 mm

• fulfil isolation criteria(6)

• not be cosmic(7)

4.2.3. Jets

As discussed in sections 2.1.2 and 4.1, quarks can not be observed in nature, but form narrow
sprays of particles instead. Such bunches of particles are commonly referred to as jets.

4.2.3.1. Jet reconstruction

In ATLAS jets consist of topological clusters constructed from neighbouring calorimeter cells,
exceeding a certain signal to noise ratio. An algorithm searches for cells, passing a threshold
ratio of 4 and adds them to a ‘seed list’. For each cell in the seed list all neighbouring cells
are considered. If an adjacent cell exceeds a signal to noise ratio of 2, it is merged to the
cluster and appended to a ‘neighbour seed list’. After processing the original seed list, it is
replaced by the list of neighbouring seeds and the last step is repeated. This procedure is
iterated until there are no more entries left in the resulting list. Finally, all cells contiguous to
the topological clusters are attached as well. The resulting energy of the cluster is the sum of
the individual calorimeter cells. Its direction, however, is a weighted average of the individual
cells, with respect to the origin of the ATLAS coordinate system. [62]

The combination of the resulting topological clusters to jets is done with the anti-kt jet
clustering algorithm [63] which is included in the FastJet software package [64]. In a first step,
the separations for each pair of topological clusters i and j are calculated according to

dij = min
(
k−2
T i , k

−2
T j

) ∆Rij
R2

(4.1)

(6)see (5), but for muons the thresholds are 4 GeV and 2.5 GeV, for the sum of transverse energy and momentum,
respectively.

(7)cosmic muons appear as a pair of oppositely signed muons in the detector. Oppositely signed muons are
rejected if their distance from the interaction point is larger than 0.5 mm and their separation in φ exceeds 3.1
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where R is a radius parameter given to the algorithm and ∆Rij represents the separation of
the corresponding objects in the η − φ plane. Additionally, the separation of the cluster i to
the beam axis is evaluated with

diB = k−2
ti (4.2)

If the minimum of the dij values is smaller than diB the clusters i and j are combined. If
the smallest dij is larger than diB, the object i is called a jet and is removed from the list
of available objects. This process is repeated until all topological clusters in the event have
been assigned to a jet. Finally, the four-momenta of the jets are built by summing up the
four-momenta of the corresponding topological clusters.
The advantage of the anti-kt algorithm is that it offers both circular cone shaped jets and
IRC safety. This stands for infrared and collinear safety and means, that the jet does not
disappear neither under the emission of a soft particle nor by the splitting of a parton into
two collinear particles (cf. fig. 4.3).
In this analysis jets have been reconstructed with a radius parameter of 0.4. To be considered,
a jet has to be within a pseudorapidity region of |η| < 2.5 and is required to be separated
to an electron by ∆R > 0.2. To reduce the sensitivity to pile-up, only jets with a jet vertex
fraction larger than 0.75 are considered.(8)

originally two jets are merged to one one jet splits up into two

Figure 4.3: Behaviour of a not infrared and collinear safe jet reconstruction algorithm

4.2.3.2. B-tagging

Additionally to pure jet reconstruction there is also, to a certain extent, the possibility to
determine the flavour of the quark which has induced the jet. One differentiates between jets
originating from gluons, u-, d-, s- or c-quarks and jets stemming from b-quarks, referred to as
light(9) and b-jets. The identification of the jet flavour is done by elaborated algorithms which
use b-hadron decay characteristics. The main feature exploited by these tagging algorithms is
the comparatively long life-time of b-hadrons, which causes a displaced vertex in the detector.
In ATLAS a combination of different algorithms is used to differentiate light from b-jets. The
MV1 b-tagging algorithm consists of a neural network. It utilises the output weights of the
IP3D and SV1 taggers and a combination of the JetFitter + IP3D algorithm as input. To
discriminate light from b-jets, the IP3D tagger uses the impact parameter between tracks
associated to the jet and the primary vertex, while the SV1 algorithm explicitly reconstructs
the secondary vertex of the b-hadron decay. The JetFitter tagger exploits the topology of

(8)The jet vertex fraction represents the probability that a jet originates from the primary vertex. It is determined
by associating tracks from the inner detector to jets reconstructed within the calorimeter. [65]

(9)for this analysis also jets origin from c-quarks are referred to as light-jets
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weak b and the subsequent c-quark decays, to deduce the origin of the jet. [66]

In this analysis the MV1 tagger is chosen to work at an efficiency of 70 %, which represents
the probability with which a jet originating from a b-quark is tagged by the algorithm.

4.2.3.3. Jet energy scale

Since there are various effects, which affect the measurement of jet energies in the calorimeter,
one important question is how to calibrate a reconstructed jet energy to its original value. Such
calibrations have been done by investigating the electromagnetic response of the calorimeter
in dedicated test beams. However, the total energy of a jet not only involves electromagnetic
deposits but also comprises:

• hadronic energy, introduced by decays to mesons and baryons

• invisible energy, carried away from uncharged particles like neutrons

• escaped energy, due to decays involving neutrinos

Besides these effects, related to how the energy of a jet is deposited in the calorimeter, it also
has to be accounted for implications like:

• additional energy deposits, due to pile up and the underlying event(10)

• inefficiencies of the jet algorithm, e.g. out of cone particles

• detector related issues like poorly instrumented regions or noise

In order to compensate the various effects and restore the original jet energies, a pT and η
dependent correction scheme, referred to as jet energy scale, is employed. For this purpose
the jet energy scale incorporates four different corrections:

• pile-up correction: the average additional energy introduced by multiple proton-
proton interactions is subtracted from the jet energy

• vertex correction: topological clusters are evaluated with respect to the nominal
interaction point of the ATLAS detector. Therefor the jet coordinates η and φ are
modified to point to the primary vertex of the interaction

• jet energy calibration: the reconstructed energies are compared to dedicated Monte
Carlo simulations and corrected accordingly

• in situ calibration(11): the jet energy is corrected by exploiting the pT balance in real
data events, as for example a jet recoiling from a photon or Z boson, or a subsystem of
low pT jets recoiling from a high pT jet

(10)The underlying event denotes processes, which occur aside the primary hard scattering in a proton-proton
collision.

(11)The in situ calibration is only used for data events
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Figure 4.4 shows the result of the jet energy scale calibration, in terms of the average energy
response R, for the 2011 data taking period. The quantity R corresponds to the inverse
of the jet energy correction, and is defined as the ratio of the measured jet energy on the
electromagnetic scale and the original energy of the jet.
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Figure 4.4: The average jet energy response for 2011 data taking as function of the jet η. The
different colours represent different values of the jet energy. [67]

Despite the effort undertaken to calibrate the response of the calorimeter, a residual uncer-
tainty on the jet energy scale remains. This error has to be considered in analyses and is
one of the largest contributions to the total uncertainty in the case of the top-quark mass
measurement.
Since the response of the calorimeter is flavour dependent(12), it is sensible to split the error
on the jet energy scale into two components. One for light-jets and one for b-tagged jets.
The corresponding uncertainties for light an b-tagged jets for 2011 data are shown in Figure
4.5. [67;68]
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Figure 4.5: Relative errors on the jet energy scale for the 2011 data taking period, for light-jet
flavours, left, and b-tagged jets on the right. [67]

(12)For example the average energy loss due to decays involving neutrinos is larger for b induced than for light-jets.
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4.2.4. Missing transverse energy

Unfortunately at the LHC a total missing energy can not be defined, since at hadron colliders
it is not possible to determine the momentum fraction of the initial partons. The quantity of
transverse missing energy Emiss

T has to be used instead. It is defined as

Emiss
T =

√
(Emiss

x )2 +
(
Emiss

y

)2
(4.3)

with
− Emiss

x,y = Eelec
x,y + Emuon

x,y + Ejet
x,y + Esoft jet

x,y + Ecell out
x,y (4.4)

Hence, the missing transverse energy contains contributions from electrons, muons and jets.
The latter one is split up into a part for jets with pT > 20 GeV and a soft part for jets
with 7 < pT < 20 GeV. All energies have been calibrated according to the objects they are
associated to. The last term in (4.4) has been included to also account for energy deposits in
the calorimeter not associated with one of the aforementioned physic objects. [69]

4.3. Event selection

To extract particular processes from the tremendous amount of data collected at the LHC,
different selection criteria have to be applied. The purpose of these criteria is not only to
choose events of interest but also to reduce the number of background processes selected.
The process of interest in this study is the all-hadronic decay of a tt̄ -pair. As mentioned,
an all-hadronic tt̄ -event is characterised by a total number of six jets, a lack of high energy
leptons as well as large Emiss

T . (cf. sec. 2.2.3)
The first selection criterion for this specific event topology is the ATLAS trigger system. The
used trigger chooses only events which have at least five jets with a minimum transverse
momentum of 30 GeV.(13) To achieve a maximum efficiency of the trigger, the transverse
momentum of the first five jets are required to exceed 55 GeV while the pT of the sixth jet
has to be at least 30 GeV. The events have to contain at least two b-tagged jets, to account
for the expected appearance of b induced jets in the final state. Apart from that, the primary
vertex of the event is required to be associated to at least four tracks, while events affected by
noise in the liquid argon calorimeter are rejected to ensure data quality. For the same reason
events which contain a reconstructed bad jet(14) with positive energy and a pT larger than
20 GeV, are discarded.
Besides these selections, additional criteria are applied in order to reject background events.
In case of the all-hadronic tt̄ -decay the main indicator for a background process is the presence
of a high energetic lepton. Therefore events which contain electrons with ET > 25 GeV or
muons with pT > 25 GeV are removed.
The use of the observables ‘centrality’ and ‘missing transverse energy significance’ further

(13)The particular trigger chosen is EF 5j30 a4tc EFFS. This trigger reconstructs jets at the event filter level,
which are reconstructed from topological clusters by the anti-kt algorithm with a radius parameter of 0.4. The
topological clusters are build from the full calorimeter readout, instead of using information from the regions
of interest defined by the level-1 trigger, only.

(14)The term bad jet refers to jets which are not associated to real energy deposits in the calorimeter. Such deposits
can originate from various sources as for example problems with malfunctioning hardware or from cosmic ray
showers.
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decrease contributions from QCD multijet production and residual electroweak processes.
The centrality in an event is defined as the ratio of transverse energy and total mass. The
missing transverse energy significance however is calculated by dividing the Emiss

T by the scalar
sum of the transverse momenta of jets. Events with a centrality smaller than 0.6 or a missing
transverse energy significance larger than 3 are rejected.
Moreover, the separation between the two leading b-tagged jets has to pass a threshold of
∆R > 1.2. This is done to exclude events in which a gluon splits up into a bb̄ -pair.
The final selection criteria demands that the event does not contain more than eight jets.
The reason for excluding larger jet multiplicities is of physical as well as of computational
nature. Since an all-hadronic tt̄ -decay is expected to produce six jets, additional jets in the
final state can not originate from the decay itself. These extra jets arise either from initial as
well as final state radiation or are associated to the underlying event. Jets induced by initial
state radiation or by underlying event processes are independent of the top-decay and should
not be considered. In case of final state radiation however, the additional jets are related to
the top-quark decay and therefore carry information about the mass of the top-quark. The
reconstruction of a top-quark, however, is done with merely six jets, hence the information of
the additional jets is lost, this will be explained in the next section.
However, a far more banal reason for restricting the jet multiplicity, is the complexity of the
decay reconstruction. The CPU time required to reconstruct a tt̄ -event rises tremendously
with an increasing number of jets in the final state. Hence, also from this point of view a
restriction on the number of jets in the final state is desired. The question arises why even eight
jets are considered and not only six? The answer is that exactly six jets in the final state would
severely reduce the available number of tt̄ -events. Since at the energies of the LHC additional
jets in the final state are highly probable. A jet multiplicity of eight is therefore a reasonable
trade-off between available statistics and physical as well as computational requirements.
The number of signal MC events, which survive the individual selection criteria, are stated in
table 4.7. After applying all criteria 32559 events remain. In experimental data, the residual
background of the all-hadronic tt̄ -decay is mainly due to QCD multijet production, which
is irreducible. This means that the processes are indistinguishable, since their final states
contain the same objects as the tt̄ -decay. An example of QCD multijet production is shown
in figure 4.6.
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Figure 4.6: Example of QCD multijet production with the same final state signature as an
all-hadronic tt̄ -decay
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Figure 4.7: Number of events remaining in the signal MC dataset after the individual selection
criterion have been applied, without and with logarithmic scale on the y-axis.

4.4. Event reconstruction

One of the main challenges in studying processes involving top-quarks is their reconstruction.
A priori, it is not known how to associate an object in the final state to a parton from the tt̄
-decay. Especially in the all-hadronic channel with an event signature consisting of jets only,
this is a hard task. In a final state with six jets the number of possible jet-parton assignments
is 90. This number arises from subsequently assigning the available jets to the partons of the
tt̄ -decay. There are six possibilities to associate a jet to the b-quark originating from the
top-quark decay. Accordingly, there are five jets left which can be assigned to the b̄-quark.
Since the order of partons originating from a W boson decay does not matter for the analysis,
the total number of possibilities to associate the remaining four jets to the two W bosons in
the event is (4

2) = 6. For the same reason, the three jets related to the respective (anti-)top-
quark can be exchanged. This reduces the total number of possibilities by a factor of two.
Hence, in cases of seven or eight jets in the final state, a total of 630 and 2520 possibilities
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have to be considered, respectively. In this analysis the jet-parton assignment and therefore
the reconstruction of the tt̄ -system is done with a kinematic likelihood approach, using the
KLFitter package [70]. The heart of this method is the kinematic likelihood function which in
the all-hadronic case reads

L = BW{m1
jj |mW ,ΓW } ·BW{m2

jj |mW ,ΓW }·
BW{m1

jjj |mtop,Γtop} ·BW{m2
jjj |mtop,Γtop}·

4∏
i=1

W
(
Ẽjeti |Eqi

)
·

2∏
j=1

W
(
Ẽjetj |Ebj

) (4.5)

where mi
jj and mi

jjj denote the invariant masses of the objects, representing the reconstructed
W bosons and top-quarks. For each jet in the tt̄ -final state, the likelihood incorporates a
transfer function W. The transfer functions are split up into two sets, accounting for light
as well as b-tagged jets. The purpose of these functions is to correct for physics as well as
detector effects. This is done by mapping the measured energies of jets, referred to as Ẽ, back
to the original parton values E. In the likelihood the terms BW represent modified relativistic
Breit-Wigner distributions. They account for the natural decay widths of the top-quark and
W boson. These distributions are given by

BW (x|m,Γ) =
1

(x2 −m2)2 + Γ2m2
(4.6)

where m is the mass of a particle and Γ denotes its decay width. In this analysis, the W
boson mass is fixed to 80.4 GeV, while its width is set to 2.1 GeV. The top-mass, however, is
a free fit parameter and its width is adjusted accordingly(15). Furthermore, CPT symmetry
is assumed, which means that, the masses of particles and their corresponding anti-particles
are equal.
The reconstruction of the tt̄ -system is done by building all possible combinations of affiliating
jets in an event to the six final state partons. For each permutation the KLFitter maximises
the likelihood function by varying the energies within a range of(16)

min
(

0, Ẽ − 7 ·
√
Ẽ
)
< E < Ẽ + 7 ·

√
Ẽ

For each permutation the fit parameters and the value of the likelihood function is returned.
By construction the permutation, which corresponds to the smallest likelihood value(17), is
the one, which agrees best with the tt̄ -decay hypothesis. The top-and antitop-quark are
reconstructed according to the jet-parton assignment of this permutation. This is done by
adding the four-momenta of the jets associated to the particular partons. Figure 4.8 shows
the likelihood values for the permutations, chosen to reconstruct the tt̄ -system.
To decrease the huge amount of permutations an additional reconstruction criteria is intro-
duced. For that purpose, all combinations in which a non b-tagged jet is placed in the position
of a b-quark of the tt̄ -decay are rejected. This reduces the total number of jet-parton as-
signments per event to 6, 30 and 90 for a final state consisting of six, seven and eight jets,
respectively.

(15)A discussion of the top-quark width can be found in ‘Review of Particle Physics’ (p. 669) [8]

(16)This particular range is motivated by the detector resolution and is chosen in accordance with reference [70].
(17)for computational reasons it is more reasonable to minimise − ln L instead of maximising L
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Figure 4.8: The ln L values of the best permutations obtained from the MC signal sample

4.5. The top-quark mass

One way to determine the mass of the top-quark(18) is to use its reconstructed four-momentum.
According to the relativistic energy-momentum relation the mass of a particle is related to
its energy and momentum by

m =
√
E2 − p2 (4.7)

In this approach mtop equals the invariant mass of the three jet system mjjj , built by the
jets associated to the top-quark. The notation mjjj emphasises the fact, that the particular
permutation, chosen by the kinematic likelihood fit, does not necessarily represent the original
top-quark. On the one hand the jet-parton assignment could be wrong, which is referred to
as combinatorial background, or on the other hand, the particular event could be physical
background, not related to a top-quark at all. The distributions of mjjj are shown for three
generated top-quark masses in figure 4.9.
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Figure 4.9: Distribution of mjjj for input top-quark mass of 165 GeV, 172.5 GeV and 180 GeV

As expected, the mjjj distribution shifts to higher masses as the value for the input top-quark
mass is increased.
Obviously, opposed to the assumption of the kinematic likelihood approach, the obtained

(18)In the following the top-quark as well as the anti-top-quark are referred to as top-quark
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distributions do not look like Breit-Wigner distributions (cf. app. B). One reason is, that the
energies and momenta of the original jets smear out, due to the detector simulation. This
results in a broadening of distributions related to jet four-momenta, like mjjj . The shoulder
starting at about 200 GeV, however, originates from permutations in which the likelihood
fitter has not returned the right combination of jet-parton assignments. This results in a shift
of the mean of the mjjj distribution towards higher masses.
As shown before, the top-quark is severely influenced by the jet energy scale uncertainty
(cf. sec. 4), especially in the all-hadronic channel. Since this uncertainty is not included in
the used MC sample, it is artificially introduced by multiplying the reconstructed jet four
momenta with a so called jet scale factor. As the error on the jet energy scale, the jet scale
factor also is split. It is differentiated between a term accounting for light-jets and a term
allowing for b-jets, referred to as lJSF and bJSF. These factors are varied in 5 % steps from
0.9 to 1.1, to reproduce the effects of different jet energy scale uncertainties. The resulting
four-momenta of reconstructed jets are given by

plight = pmeasuredlight · lJSF

pb = pmeasuredb · lJSF · bJSF
(4.8)

where the lJSF is applied to both types of jets, while the bJSF is only utilised on b-tagged
jets. The influence of the jet scale factors on the invariant mass of the reconstructed W bosons
mjj are shown in figure 4.10.
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Figure 4.10: Influence of the jet scale factors lJSF and bJSF on mjj

The variation of lJSF has a considerable influence on the reconstructed mass of the W boson.
Since the light-jet scale factor linearly modifies the jet energies, an increase of lJSF leads to
a shift in the corresponding distributions of mjj to larger values. The linear implementation
also results in a broadening of the mjj distribution for growing lJSF, because large values of
mjj experience a larger variation than small values.
In contrast to the light-jet scale factor, the bJSF barely influences the mjj distribution. This
behaviour is expected, since the hadronic W boson decay involves only light-jets(19), while the
bJSF is solely applied to b-tagged jets. The small dependence on mjj is therefore introduced
either due to a wrongly b-tagged light-jet, or a correctly b-tagged jet, which has been wrongly
assigned to the W boson decay. Despite this small influence, the reconstructed W boson mass

(19)There is also the possibility of a W boson decaying into a top and b-quark. However, because of the high mass
of the top-quark this process is very unlikely.

39



4. Analysis

is in good approximation independent of the bJSF.
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Figure 4.11: Influence of the jet scale factors lJSF and bJSF on mjjj

Similar to these plots, figure 4.11 shows the dependence of mjjj on both jet scale factors.
Again, the reconstructed top-quark mass is highly influenced by the lJSF, due to the linear
implementation of the scale factor. But in contrast to the reconstructed W boson mass, mjjj

is also dependent on the b-jet scale factor, since the top-quark is reconstructed by explicitly
asking for a b-tagged jet. Except for the two aforementioned cases of wrong tagging or
assignment, the top-quark is build exactly from one b-tagged jet and two light-jets. In case of
the tt̄ -decay, these jets carry on average similar momenta (cf. fig. D.1). Considering that the
bJSF solely influences b-tagged jets, while the lJSF applies to light as well as b-tagged jets,
the impact of the latter one on mjjj predominates. If either the lJSF or the bJSF is varied
as done for the plots in figure 4.11, the dependence of mjjj is roughly twice as large for lJSF
as for bJSF.

4.6. The R23 and R32 estimators

Since mjjj is severely influenced by the jet energy scale uncertainties, another estimator is
chosen to determine the top-quark mass. The estimators investigated in this analysis are R23

and R32. They are defined as ratios of the invariant mass of the three jet system, representing
the reconstructed top-quark and the invariant mass of the reconstructed W boson and read

R23 ≡
mrec

W

mrec
top

=
mjj

mjjj
R32 ≡

mrec
top

mrec
W

=
mjjj

mjj
(4.9)

The two estimators are chosen to be inverse to each other and are built for each event. The
main idea in choosing the ratio of these two quantities is, that common uncertainties in both,
mjjj and mjj , cancel out. Especially the impact of global jet scale factors, like lJSF, is
reduced. The main difference of the two estimators is the range of possible values. Since mjjj

is always larger than mjj , it follows that

0 < R23 < 1 while 1 < R32 <∞

This results in a more symmetric distribution for R23 than for R32. Since, the use of R23

yields a smaller bias in the top-mass measurement than the usage of R32 (cf sec. 4.9.2 and

40



4. Analysis

app. A.2), in the following, only the estimator R23 is reviewed. The corresponding discussion
of R32 can be found in appendix A.
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Figure 4.12: Distribution of R23 for input top-quark mass of 165 GeV, 172.5 GeV and 180 GeV

The distribution of R23 for a varied MC input top-quark mass is presented in figure 4.12.
According to this, a variation of the simulated top-quark mass shifts the distribution of R23.
However, in contrast to mjjj , the values of R23 become smaller for an increasing top-quark
mass. This is expected since the input top-quark mass of the MC sample is not related to
the W boson mass(20). Therefore the numerator remains constant, while the denominator
of equation (4.9) changes. Aside from the influence of mtop, figure 4.12 also reveals the
contribution of the combinatorial background, which results in an enhanced left flank of the
R23 distribution.
By construction, the dependence of R23 on the light jet scale factor is reduced, which results
in an only slight variation of the distribution for different lJSF values. However, there is still
an influence of the bJSF on the R23 distribution. Similar to mjjj (fig. 4.11b), R23 is shifted
for a varied b-jet scale factor.
The main reason for introducing R23 is its reduced dependence on the jet energy scale. Figure
4.13 shows the according distributions for different values of lJSF and bJSF. By construction,
the dependence of R23 on the light jet scale factor is reduced, which results in an only slight
variation of the distribution for different lJSF values. However, there is still an influence of
the bJSF on the R23 distribution. Similar to mjjj (fig. 4.11b), R23 is shifted for a varied b-jet
scale factor.
This behaviour is problematic, since it perturbs the determination of mtop. As is explained
in section 4.9 the extraction of the underlying top-quark mass is done by fitting the shape
of the estimator distribution. Moreover, the measured mtop is particularly sensitive to the
peak value of this distribution. Considering that a change in the underlying top-mass as
well as a variation of the bJSF have the same influence on the estimator, namely a shift in
the corresponding distribution, these two effects are indistinguishable. With an experimental
uncertainty on the b-jet energy scale of up to 6 % (cf. fig. 4.5b), a measurement of mtop with

(20)Actually, there is an implicit dependence of the W boson on the real mtop, introduced by radiative loop
corrections. Since however, the experimental verified mass of the W boson is used in the MC samples, this
dependence is already naturally accounted for. Varying the input top-quark mass in the MC datasets has
therefore no influence on mW.
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R23 on its own will always be considerably influenced by the bJSF.
In this analysis a second estimator, especially designed to determine the bJSF, is introduced.
This estimator explicitly allows to account for the influence of bJSF on the R23 distribution
and will be discussed in the next section.
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Figure 4.13: Influence of the jet scale factors lJSF and bJSF on R23

4.7. The Rbl estimator

To enable a precise determination of the b-jet scale factor, an estimator has to fulfil two
criteria. It has to depend on bJSF and be immune to influences other than that. Especially
it should be as insensitive to the top-quark mass as possible. The estimator chosen for this
task is Rbl, which is shown in figure 4.14.
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Figure 4.14: Dependence of Rbl on bJSF for a fixed lJSF

It is constructed by dividing the sum of the absolute values of the jet-pT, assigned to b-quarks
of the tt̄ -decay by the sum of transverse momenta of the light jets associated to the W bosons,
thus exploiting the knowledge about the jet-parton assignment in a tt̄ -event. Hence Rbl is
given by [48]
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Rbl =

∑
pb
T∑

plight
T

(4.10)

Since the reconstruction particularly demands a b-tagged jet in the position of a b-quark of
the top-quark decay Rbl is sensitive to the b-jet scale factor. By construction the dependence
on lJSF should vanish. The influences of the light as well as the b-jet scale factor are shown
in figure 4.15.
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Figure 4.15: Influence of the lJSF and mtop on Rbl

However there is a minor dependence on lJSF according to figure 4.15a. Since the correction
of the jet energy scale is done before the kinematic reconstruction, the jet-parton assignment
can be alternated. Therefore, the lJSF can slightly influence the R23 distribution. Besides,
figure 4.15b reveals a minor dependence of Rbl on the top-quark mass, which results in a
slightly shifted distribution. This dependence of the estimator on mtop will be specifically
considered in the analysis.
The main feature of Rbl clearly is its dependence on the b-jet scale factor, as can be seen in
figure 4.14. This allows the use of Rbl for an explicit determination of bJSF from experimental
data.

4.8. Parametrisation of R23 and Rbl

As mentioned previously, the determination of the top-quark mass relies on a proper descrip-
tion of the estimator distributions. An accurate parametrisation of R23 and Rbl is therefore
crucial.
The agreement of a parametrisation with an underlying distribution can be expressed in terms
of the goodness of fit value which is given by χ2/ndf. The number of degrees of freedom, ndf,
is calculated as the number of bins considered in the fit subtracted by the total number of
fitting parameters. Furthermore, the weighted sum of squared errors is defined by

χ2 =

bins∑
i

(yi − f(xi))
2

σ2
i

(4.11)
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where yi is the number of events in bin i, f(xi) is the expected number of events in this bin
and σi denotes its statistical error. In the context of hypothesis tests it can be shown, that a
distribution is well described by a parametrisation, if χ2/ndf ≈ 1 [8].
The parametrisation of the R23 distribution is done with the sum of a Laundau and a Breit-
Wigner function, while the Rbl distribution is parametrised by a Novosibirsk function. The
parameters describing these functions are listed below, while their impact on the particular
distributions can be found in appendix B.

• Landau function
(cf. eqn. B.1)

– normalisation

– most probable value

– scale parameter

dummy

• Breit-Wigner function
(cf. eqn. B.2)

– normalisation

– mean

– width

dummy

• Novosibirsk function
(cf. eqn. B.4)

– normalisation

– mean

– width

– tail parameter

The ranges of the distributions are restricted in order to ensure a good fit result. For the R23

distributions the fit considers values from 0.2 up to 0.7, corresponding to top-quark masses
of 115 GeV and 400 GeV, while the parametrisation of Rbl ranges from 0.2 up to 0.7. The
parametrisations of the R23 and Rbl distributions are shown in figure 4.16. For R23 the
contributions of the individual Landau and Breit-Wigner function is indicated.
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Figure 4.16: Parametrisation of R23 and Rbl shown in green. In case of the R23 distribution
the Landau function is marked in orange, while the Breit-Wigner function is
drawn in blue. Additionally the maximum is indicated.

The distributions are well parametrised by the corresponding fitted functions. The fitting
yields a goodness of fit value of χ2/ndf = 1.591 for R23 and χ2/ndf = 1.147 for Rbl. Firstly it
is worth to mention, that the combinatorial background, which is present in R23, is correctly
accounted for by the Landau function, while the peak, which is sensitive to mtop, is well de-
scribed by the Breit-Wigner function. And secondly, one analytical function alone is suitable
to characterise the Rbl distribution.
In conclusion, the chosen parametrisation is well suited to describe the R23 and Rbl distribu-
tions and can therefore be used to determine mtop as well as bJSF.
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4.9. The template method

The approach used to determine the top-quark mass is referred to as template method. This
technique uses the known shapes of the estimator distributions obtained from MC simulations.
Thereby changes of these distributions, due to variations in the implemented values of mtop

and bJSF, can be parametrised. The knowledge of this parametrisation enables the extraction
of the true values of mtop and bJSF from estimator distributions measured in experiment.

4.9.1. Construction of templates

For all seven MC mass variation samples (cf. tab. 4.1), the bJSF is varied from 0.9 to
1.1 in 5% steps. The resulting distributions for both estimators are parametrised, according
to the functions described in section 4.8. These parametrisations are shown in figures 4.19
and 4.20 for all combinations of mtop and bJSF. In these figures, distributions arranged in
columns correspond to a constant value of bJSF, with an increasing mtop from top to bottom.
Furthermore, distributions aligned in rows represent an increasing bJSF for a constant mtop.
As can be seen in these plots, the parametrisations are suitable to describe the R23 as wells
as the Rbl distributions for all values of mtop and bJSF.
The parametrisation returns a total number of ten parameters for each combination of mtop

and bJSF. Six of them describe the parametrisation of R23 while the other four correspond to
the Rbl description. Each of the ten parameters is separately drawn versus the corresponding
input value of mtop and bJSF. According to their dependence, the resulting parameter plots
are split into two parts. In the first, the parameters are plotted as a function of mtop, while
bJSF is fixed. Since there are several bJSF, this is repeated for every particular value. In the
second part, the parameters are plotted as a function of bJSF, while now mtop is constant.
Again, this is done for all seven values of mtop. Consequently, this results in a total of twelve
sets of parameter distributions, which can be found in appendix C. In figures 4.21 and 4.22
two of these sets are shown. The first set represents the parameter dependence on mtop for
bJSF = 1 and corresponds to the third column in figures 4.19 and 4.20. The second set is
equivalent to the fourth row in these plots and illustrates the influence of bJSF for a constant
mtop of 172.5 GeV.
For each of the parameters a linear dependence on either mtop or bJSF is assumed. The
parametrisation parameters pi can therefore be written either as

pi = a
mtop

i + b
mtop

i ·mtop (4.12)

if the input top-quark mass has been varied, or

pi = cbJSF
i + d bJSF

i · bJSF (4.13)

for a change of bJSF. Each of the parameter distributions are fitted according to these linear
assumptions. The results of these fits are also included in figures 4.21 and 4.22.
However, the assumption of a linear dependence of pi on mtop and bJSF has to be verified.
Therefore, a simultaneous fit of all available estimator distributions is done. In this combined
fit the parameters pi are not allowed to vary freely anymore, instead they are parametrised
by a linear combination of mtop as well as bJSF, with

pi = ai + bi ·mtop + ci · bJSF (4.14)
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The parameters ai, bi and ci are determined by explicitly using the known values of mtop and
bJSF in the particular estimator distributions. These fit results are also shown in figures 4.21
and 4.22. The corresponding parameter values of the individual and combined fits are given
in tables C.3 and C.2.
Overall, except for some minor deviations, which are covered by the corresponding uncertain-
ties, the separated and combined fits are in agreement with each other. What can be seen in
figure 4.21 is on the one hand a small dependence of Rbl on mtop and on the other hand the
high sensitivity of the R23 parametrisation on mtop, particularly the mean parameter of the
Breit-Wigner function. Similar arguments hold for the parameter distributions in figure 4.22.
Again, the dependence of bJSF on the R23 parameters emerges, while the Rbl distributions
reveals the behaviour it was constructed for, a high sensitivity on bJSF.(21)

Therefore two conclusions are possible: First, the assumption of a linear dependence of the
parametrisation parameters pi is valid and second, the parametrisation of R23 and Rbl is ca-
pable of determining mtop as well as bJSF from experimental data.

The final measurement of the top-quark mass is done by a binned likelihood fit. The likelihood
function consists of two terms, one accounting for R23 and one considering Rbl. It is given
by

L (R23,Rbl|mtop, bJSF) = LR23 (R23|mtop,bJSF) · LRbl
(Rbl|mtop,bJSF) (4.15)

For each bin a Poissonian distribution of the number of observed events Nobs, j is assumed.
The individual likelihood functions LR23 and LRbl

therefore can be written as

LR23/Rbl
(R23/Rbl|mtop,bJSF) =

bins∏
j

(
λ
Nobs, j
j

Nobs, j !

)
· exp(−λj) (4.16)

where λj denotes the number of expected events in bin j. This number is derived from the
particular parametrisation of the estimator. In case of LR23 this is the sum of the Landau and
Breit-Wigner function, where in the case of LRbl

it is given by the Novosibirsk parametrisa-
tion. In this calculation, the parameter values derived from the separate fits: a

mtop

i , b
mtop

i ,
cbJSF
i and bbJSF

i are used. This means, that the only parameters in this likelihood fit are the
unknown values of mtop and bJSF.
The operational capability of the template method is validated with the signal MC dataset.
The resulting estimator distributions for bJSF = 1 are shown in figure 4.17. Moreover, figure
4.18 presents the obtained top-quark masses for the five different values of bJSF.
The three central values in figure 4.18 agree within their errors with the simulated value of
mtop. However, the deviation between mfit

top and mtop for bJSF = 1.1 and bJSF = 0.9 exceed
the corresponding errors. While for the first this aberration is very small, the deviation for
the latter corresponds to about two and half times its error.

(21)As can be seen, the individual parameters of the Landau and Breit-Wigner functions are highly correlated.
The corresponding values are given in table C.1.
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Figure 4.17: Estimator distributions for a binned likelihood fit of the signal MC with bJSF=1.
The likelihood yields mtop = 172.29± 0.31 GeV and bJSF = 1.007± 0.03.

However, all fitted values of mtop tend to underestimate the top-quark mass. This could be a
hint, that the analysis causes a bias in the measurement, resulting in shifted values for mfit

top.
In particular, this could be responsible for the large deviation in case of bJSF = 0.9. An
approach to check for such a bias is presented in the next section.

bJSF
0.9 0.95 1 1.05 1.1

fit to
p

m

171.5

172

172.5

173

173.5

Figure 4.18: Result of the binned likelihood fit, for different input values of bJSF. The fit-
ted values for mtop with the corresponding fit uncertainty are shown in green.
Indicated in blue is the simulated top-quark mass of the used signal MC sample

4.9.2. Check method for bias

In this analysis pseudo-experiments are used to conclude, whether the underestimation of
mtop is just a statistical fluctuation or indicates a bias in the measurement. The pseudo-
experiment in this analysis are constructed by randomly drawing as many values from the
R23 distribution as events are expected in real data. These values are treated as the results
of a pseudo-measurement. The number of expected events can be calculated with

Nexp =
NMC · σtt̄ · k-factor ·

∫
Ldt

N total
MC

(4.17)

In case of the mass variation sample with mtop = 172.5 GeV, the number of expected events in
2011 LHC data is 3617. Thus, each pseudo-experiment corresponds to a R23 like distribution,
with a total number of events of pseudo-events, which is poisson distributed around Nexp.
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Figure 4.19: Distributions of R23 for all seven mass variation samples and five values of bJSF.
The individual fit is shown in green while the combined fit is indicated in yel-
low. The goodness of fit values stated correspond to the individual fits. The
distributions arranged in one line correspond to the same masspoint, but differ
in their value of bJSF, while distributions assembled in a column belong to the
same bJSF but differ in the mtop.
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Figure 4.20: Distributions of Rbl for all seven mass variation samples and five values of bJSF.
The individual fit is shown in green while the combined fit is indicated in yel-
low. The goodness of fit values stated correspond to the individual fits. The
distributions arranged in one line correspond to the same masspoint, but differ
in their value of bJSF, while distributions assembled in a column belong to the
same bJSF but differ in the mtop.
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Figure 4.21: Dependence of the parameters pi on mtop for bJSF = 1. The linear fit of the
individual parameters is shown in green. The yellow line represents the result of
the combined fit.
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Figure 4.22: Dependence of the parameters pi on bJSF for mtop = 172.5 GeV. The linear fit
of the individual parameters is shown in green. The yellow line represents the
result of the combined fit.
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The template method is used to extract the value for mfit
top from these distributions. For each

mfit
top a pull value

pull =

(
mfit

top −mtop

)
σfit

(4.18)

is calculated, where mtop represents the simulated top-quark mass of the MC sample and σfit

denotes the fit error on mfit
top. This procedure is repeated 5000 times.

The resulting distribution of pull values is fitted with a Gauss function. The main property
of this pull distribution is that its mean is equal to the bias introduced in the measurement.
Furthermore, the width of the distribution is related to the quality of the fit error estimation.
A width smaller than one means that the error on mfit

top is overestimated, while a width larger
than one implies an underestimation of the uncertainty.
For each of the seven mass MC variation samples, 5000 pseudo-experiments have been created.
The result of the gaussian fits to the pull distributions is presented in figure 4.23.
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Figure 4.23: Result of 5000 pseudo-experiments. On the left, the mean value mfit
top for the

pseudo-experiments versus the input value is shown. In the middle and on the
right, the mean and the width of the pull distributions are shown (22).

The pseudo-experiments reveal no significant bias introduced by the analysis. A linear fit of
the different pull means yields an offset of 0.06, which corresponds to a shift in the measured
top-quark mass of only 90 MeV. With a pull width, close to one, the fit error also is well
estimated. Therefore, the shift in the values of mfit

top in figure 4.17, especially in the case of
bJSF = 0.9, is likely to be a statistical fluctuation.
In total, it can be concluded, that the template method described in this chapter is valid to
determine the values of mtop and bJSF in experimental data.

(22)Due to the 5000 pseudo-experiments, the count of pseudo-events outnumbers the available MC events by far.
This causes an underestimation of the pull parameter errors, which is explicitly corrected for. [71]
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5. Conclusion

In this analysis a MC based approach was presented, which aims to reduce the impact of the
jet energy scale on the top-quark mass uncertainty. Therefore, instead of the invariant mass of
the reconstructed top-quark, another estimator for mtop is chosen. The two estimators under
study are R23 and R32, which both possess a reduced dependence on the light-jet energy scale.
However, these estimators are still influenced by the b-jet energy scale. To account for this
dependence, a second observable is introduced. The Rbl estimator is especially constructed
to be primarily dependent on the specific value of the b-jet energy scale factor. Additional, a
minor dependence on the top-quark mass is explicitly taken into account.
The main estimator used in this analysis is R23. Compared to R32 this observable offers
two advantages. First, R23 allows for a larger range of top-quark masses, while second, it
introduces only a negligible bias in the measurement.
With the results shown in figure 4.18, the impact of the bJSF on a measurement of mtop can
be estimated. The expected error due to a variation of the b-jet scale uncertainty is given
by the half of the maximum difference of the fitted top-quark masses. Taking into account
bJSF values from 0.9 to 1.1, the error on mtop is 0.31 GeV. However, the b-jet scale factor
is experimentally verified to a precision of ≤ 5% in the momentum range considered for this
analysis (cf. fig. 4.5). Therefore, values of bJSF smaller than 0.95 and larger than 1.05 are
excluded experimentally. Hence, the anticipated contribution to the error on mtop, due to the
b-jet scale uncertainty, can be reduced to 0.08 GeV.
Although this study is solely based on MC simulations, the impact of a successful application
of the presented method in real data looks quite promising. With this approach the systematic
uncertainty on a top-quark mass measurement with the ATLAS detector could be reduced
considerable.
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A. The R32 estimator

In this chapter the same analysis done for R23 is shown for the R32 estimator.

MC
32R

1 1.5 2 2.5 3 3.5

ar
b.

 u
ni

ts

0

0.02

0.04

0.06  in GeVtopm

 = 165.0topm

 = 172.5topm

 = 180.0topm

Figure A.1: Distributions of R32 for input top quark mass of 165 GeV, 172.5 GeV and 180 GeV

For different mass points, the distribution of R32 is shown in figure A.1. Similar to the mjjj

distribution (cf. figure 4.9) R32-values become larger for an increasing top quark mass. Still
visible is the tail of the distribution, which corresponds to wrong jet-parton assignments.
Figure A.2 shows the dependence of R32 on the light an b-jet scale factors.
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Figure A.2: Influence of the jet scale factors lJSF and bJSF on R32

The R32 estimator is shifted to higher values for an increased b-jet scale factor, while there is
only a minor shift for a variation of the light jet scale factor.
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A. The R32 estimator

A.1. Parametrisation

The parametrisation of R32 is done with the sum of a Landau function and a Gauss function.
Again the Landau function accounts for the combinatorial background while the Gauss func-
tion describes the signal peak. The parametrisation of R32 has therefore six free parameters
and is shown in A.3. The fitted function ranges from 1.5 to 3.49 and consequently accounts
for hypothetical top quark masses of 120 to 280 GeV.

1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4

#

500

1000

1500

2000  / NDF  = 2.1562χ

Landau + Gauss

Gauss

Landau 

MC
32R

1.5 2 2.5 3 3.5

fit
da

ta

0.9
1

1.1

Figure A.3: lJSF dependence for bJSF = 1.0

A.2. Templates for R32

In this section the templates for the R32 distributions are shown. The parametrised distri-
butions can be found in figure A.5, while the parameter set corresponding to a fixed value of
bJSF and mtop is shown in figure A.6.
Also in this case the linear description of the R32 parameter dependence on mtop and bJSF
is valid. The agreement between the separate and the combined fit is slightly worse than in
case of R23, but the main point is the sensitivity of the Gauss mean to the top quark mass.
Applying pseudo-experiment reveals a slightly larger bias of the R32 estimator than for R23.
This bias corresponds to a shift in the top quark mass of about 200 MeV and is the main
reason why the R23 estimator is chosen to determine the top quark mass. (cf. fig. A.4)
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Figure A.4: Result of 5000 pseudo-experiments. On the left, the mean value mfit
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A. The R32 estimator
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Figure A.5: Distributions of R32 for all seven mass variation samples and five values of bJSF.
The individual fit is shown in green while the combined fit is indicated in yel-
low. The goodness of fit values stated correspond to the individual fits. The
distributions arranged in one line correspond to the same masspoint, but differ
in their value of bJSF, while distributions assembled in a column belong to the
same bJSF but differ in the mtop.
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A. The R32 estimator
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Figure A.6: Dependence of the R32 parameters on mtop and bJSF. The individual parameters
together with a linear fit are shown in green. Also indicated are the uncertain-
ties on the particular parameters. The yellow line represents the result of the
combined fit.
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B. Mathematical functions

B.1. Landau

One possible parametrisation of the Landau function is given by

f (x) = N ·
∫ ∞

0

sin (2t) e−t
x−µ
σ
− 2
π
t ln(t) dx (B.1)

The function used in this analysis is implemented in the ROOT data analysis framework [72].
The impact of the three parameters is shown in figure B.1.

x
0 1 2 3 4 5

#

0

0.2

0.4

norm.
N = 1.0
N = 2.0
N = 3.0

x
0 1 2 3 4 5

#

0

0.05

0.1

0.15
mpv

 = 1.0µ
 = 2.0µ
 = 3.0µ

x
0 1 2 3 4 5

#
0.05

0.1

0.15

scale
 = 0.2σ
 = 0.4σ
 = 0.6σ

Figure B.1: Impact of parameter variations on the Landau function

B.2. Breit-Wigner

The Breit-Wigner function is given by

f (x) =
N

2π

Γ

(x− x0)2 + Γ2

4

(B.2)

Figure B.2 shows the influence of different parameter values on the Breit-Wigner function.
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Figure B.2: Impact of parameter variations on the Breit-Wigner function
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B. Mathematical functions

B.3. Novosibirsk

The Novosibirsk function [73] is defined as

f(x) = N · exp

−1

2
·

 ln

(
1 + τ · (x− x0)

sinh(τ
√

ln 4)
στ
√

ln 4

)
τ


2

+ τ 2

 (B.3)

However, to avoid errors in the fitting procedure, an artificial modulus is introduced, the
resulting function is therefore given by

f(x) = N · exp

−1

2
·

 ln

( ∣∣∣∣1 + τ · (x− x0)
sinh(τ

√
ln 4)

στ
√

ln 4

∣∣∣∣ )
τ


2

+ τ 2

 (B.4)

In figure B.3 the effects of varying the parameters of the Novosibirsk function are shown.
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Figure B.3: Impact of parameter variations on the Novosibirsk function
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B. Mathematical functions

B.4. Gauss

The Gauss function [73] is given by

f(x) = N · e−
1
2

(x−µ)2

σ2 (B.5)

The effect of varying one of the function parameters is indicated in figure B.4
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Figure B.4: Impact of parameter variations on the Gauss function
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C. Template method: parameter values and plots

In this chapter the parameters obtained by the individual and combined fit of the template
distributions are listed (cf. tabs C.3 and C.2). In addition, the subsequent figures present the
remaining parameter plots for the R23 template method. However, in table C.1 the correlation
values between the individual fit parameters of the Landau and Breit-Wigner function are
stated.

for constant bJSF = 1

ρ Breit-Wigner norm. Breit-Wigner mean Breit-Wigner width

Landau norm. -0.951 0.948 -0.924
Landau mpv 0.478 -0.712 0.525
Landau scale 0.468 -0.782 0.491

for constant mtop = 172.5 GeV

ρ Breit-Wigner norm. Breit-Wigner mean Breit-Wigner width

Landau norm. -0.982 -0.919 -0.973
Landau mpv 0.849 1.000 0.964
Landau scale 0.866 0.999 0.968

Table C.1.: Correlations of the individual Landau and Breit-Wigner parameters

combined fit parameters

a b c

Landau norm. 0.181099± 0.013069 −0.000823± 0.000071 0.005366± 0.005514
Landau mpv 0.424569± 0.018032 0.001247± 0.000099 −0.244060± 0.011426
Landau scale 0.016961± 0.010013 0.000846± 0.000056 −0.064949± 0.006501
Breit-Wigner norm. −0.000178± 0.001121 0.000049± 0.000006 −0.000059± 0.000494
Breit-Wigner mean 1.092002± 0.004028 −0.002487± 0.000022 −0.184864± 0.001445
Breit-Wigner width 0.060853± 0.013674 0.000387± 0.000075 −0.016272± 0.006200
Novosibirsk norm. 0.082868± 0.003358 −0.000089± 0.000018 −0.031718± 0.001001
Novosibirsk mean −0.167534± 0.030560 0.001029± 0.000165 0.480375± 0.007981
Novosibirsk width −0.104837± 0.015687 0.000714± 0.000085 0.209644± 0.004610
Novosibirsk tail 0.501527± 0.107370 −0.000383± 0.000577 -0.028197± 0.025306

Table C.2.: Parameter values obtained by the combined fit
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C. Template method: parameter values and plots

individual fit parameters for bJSF = 1

amtop bmtop

Landau norm. 0.195444± 0.0370144 −0.000875334± 0.000214506
Landau mpv 0.221881± 0.0901365 0.00100397± 0.000519813
Landau scale. −0.0483785± 0.0574079 0.000853496± 0.000332449
Breit-Wigner norm. −0.00101561± 0.00344466 5.3594 · 10−5 ± 1.98985 · 10−5

Breit-Wigner mean 0.907422± 0.00916908 −0.00249259± 5.30104 · 10−5

Breit-Wigenr width 0.0344817± 0.0425139 0.000440666 +−0.000245481
Novosibirsk norm. 0.0487941± 0.00610828 −7.62939 · 10−5 ± 3.5268 · 10−5

Novosibirsk mean 0.293488± 0.0480386 0.00114301± 0.000277691
Novosibirsk width 0.103918± 0.0322596 0.000724702± 0.000186474
Novosibirsk tail 0.548801± 0.163351 −0.000837459± 0.000943689

individual fit parameters for mtop = 172.5 GeV

cbJSF dbJSF

Landau norm. 0.0334753± 0.0111012 0.0104677± 0.0110647
Landau mpv 0.621612± 0.027481 −0.226862± 0.0269548
Landau scale. 0.148246± 0.016757 −0.049547± 0.0165529
Breit-Wigner norm. 0.00904698± 0.0010156 −0.000763521± 0.00100636
Breit-Wigner mean 0.662959± 0.00275957 −0.185692± 0.0027452
Breit-Wigenr width 0.136776± 0.0125998 −0.0259753± 0.0124951
Novosibirsk norm. 0.0680524± 0.00181256 −0.0322907± 0.00179699
Novosibirsk mean 0.00368906± 0.0138504 0.488437± 0.0139797
Novosibirsk width 0.0102626± 0.0096525 0.218866± 0.00960835
Novosibirsk tail 0.454266± 0.0478686 −0.0480775± 0.0476686

Table C.3.: Parameter values obtained by the individual fits
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C. Template method: parameter values and plots

C.1. Plots for varied mtop and constant bJSF values
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Figure C.1: Dependence of the parameters pi on mtop for bJSF = 0.90. The linear fit of the
individual parameters is shown in green. The yellow line represents the result of
the combined fit.
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C. Template method: parameter values and plots
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Figure C.2: Dependence of the parameters pi on mtop for bJSF = 0.95. The linear fit of the
individual parameters is shown in green. The yellow line represents the result of
the combined fit.
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C. Template method: parameter values and plots
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Figure C.3: Dependence of the parameters pi on mtop for bJSF = 1.05. The linear fit of the
individual parameters is shown in green. The yellow line represents the result of
the combined fit.
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C. Template method: parameter values and plots
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Figure C.4: Dependence of the parameters pi on mtop for bJSF = 1.10. The linear fit of the
individual parameters is shown in green. The yellow line represents the result of
the combined fit.
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C. Template method: parameter values and plots

C.2. Plots for varied bJSF and constant mtop values
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Figure C.5: Dependence of the parameters pi on bJSF for mtop = 165.0 GeV. The linear fit of
the individual parameters is shown in green. The yellow line represents the result
of the combined fit.
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C. Template method: parameter values and plots
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Figure C.6: Dependence of the parameters pi on bJSF for mtop = 167.5 GeV. The linear fit of
the individual parameters is shown in green. The yellow line represents the result
of the combined fit.
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C. Template method: parameter values and plots
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Figure C.7: Dependence of the parameters pi on bJSF for mtop = 170.0 GeV. The linear fit of
the individual parameters is shown in green. The yellow line represents the result
of the combined fit.
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C. Template method: parameter values and plots
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Figure C.8: Dependence of the parameters pi on bJSF for mtop = 175.0 GeV. The linear fit of
the individual parameters is shown in green. The yellow line represents the result
of the combined fit.
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C. Template method: parameter values and plots
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Figure C.9: Dependence of the parameters pi on bJSF for mtop = 177.5 GeV. The linear fit of
the individual parameters is shown in green. The yellow line represents the result
of the combined fit.
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C. Template method: parameter values and plots
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Figure C.10: Dependence of the parameters pi on bJSF for mtop = 180.0 GeV. The linear fit
of the individual parameters is shown in green. The yellow line represents the
result of the combined fit.
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D. Momenta of light and b-tagged jets

The momenta of the jets in the MC events are shown. The steep flanks at 20 GeV, 30 GeV
and 55 GeV are due to the cuts on the momentum of the jets used in the analysis.
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Figure D.1: Momenta of light and b-tagged jets used in the analysis
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Erklärung:
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