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Abstract

The associated production of tt̄ pairs with Z bosons has just been discovered in 2015 and
is regarded as an important process in top-quark physics ever since. It is sensitive to the
tZ coupling, thus the measurement of the tt̄Z cross section is a direct probe of the weak
coupling of the top quark. The latter might be modified in the presence of physics beyond
the Standard Model, so a precise measurement of this coupling is essential. On top of that,
the tt̄Z process is also an important background in the measurement of the tt̄H process in
the multi-lepton final state. In this context, it is advantageous to have a precise measure-
ment of the tt̄Z cross section as well.
This thesis focuses on the reconstruction of tt̄(Z) systems in which the top and the antitop
quark decay hadronically and the Z boson decays either in an electron-positron or muon-
antimuon pair. The studies are based on Monte Carlo simulated data and are conducted
in the context of the full Run-2 (140 fb−1) analysis.
First, the standard reconstruction technique, the minimum-χ2 method, is applied and chal-
lenges are identified. Moreover, so-called ’improvement’ cuts have been defined to address
some of them. As an alternative approach, a multivariate reconstruction method using a
Neural Network is developed and investigated. Comparison of their performance yields a
better result for the χ2 reconstruction. Nevertheless, the multivariate reconstruction has
been found promising and should not be rejected in general. The main reasons for the
lower performance are that, on the one hand, the chosen Neural Network is too simple
to account for the complex tt̄ system and, on the other hand, it was not able to extract
sufficient useful information during training. A more sophisticated and well-performing
multivariate method has however high potential to become an alternative or an even bet-
ter reconstruction approach.
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Chapter 1

Introduction

Physics aims at providing effective mathematical models of systems and phenomena on
the smallest as well as on the largest scales. On the (sub-)atomic scale, one triumph of
modern physics is the quantum-mechanical description of observable phenomena. Based
on this, the Standard Model of particle physics describing the elementary particles and
their interactions has been developed.
The heaviest elementary particle in the Standard Model is the top quark, which was discov-
ered in 1995 by two experiments at the Tevatron [1, 2]. Since then, powerful accelerators
like the Large Hadron Collider (LHC) have allowed to measure its properties more and
more precisely. Recently, in 2015, the production of top and anti-top quarks (tt̄) in asso-
ciation with a Z boson was discovered by CMS after evidence had been found by ATLAS.
Currently, physicists working on these experiments aim to measure its properties, in par-
ticular the cross section, even more precisely using the full Run-2 data of the LHC. This
is important, as the cross section of tt̄Z production is related to the coupling of the top
quark to the Z boson, which has experimentally not been well constrained yet. Therefore,
deviations might hint at some process related to physics beyond the Standard Model. Fur-
thermore, the tt̄Z process is also an irreducible background of the tt̄H process. In order to
conduct precise measurements also in this channel, it is advantageous to know the precise
tt̄Z cross section as well.
To achieve a precise cross-section measurement a reliable and truthful reconstruction of
the tt̄(Z) system is of utmost importance. This is a challenging task as the correct decay
products of this system need to be selected from the multiple physical objects produced at
the high luminosities and the high energies at the LHC. In order to assure a good recon-
struction of the tt̄ system for tt̄Z events, numerous hypotheses need to be considered. That
is why dedicated procedures have been developed and established: the standard approach
is the minimum-χ2 method which is conducted and studied in detail in this thesis with the
aim of gaining insights into reconstruction challenges. As an alternative new approach,
a multivariate method based on a Neural Network is developed to check for a better re-
construction performance. Both methods are tasked with reconstructing tt̄ systems in the
2LOS channel of the tt̄Z analysis using Monte-Carlo simulated data. In the 2LOS channel,
a hadronic decay of the tt̄ system is considered, while the Z boson decays into 2 Leptons

1



2 CHAPTER 1. INTRODUCTION

with same flavor and opposite charge (Opposite S ign). Subsequently, a comparison of the
approaches regarding their performance is conducted in order to find the best performing
one.

In this thesis, first, the theoretical background and the experimental setup are briefly
described in Chapter 2. Chapter 3 covers the simulation of proton-proton collisions and
the object definitions. It is followed by the presentation of Neural Network basics in
Chapter 4. Next, the event selection used in this thesis is presented and the background
of the 2LOS-tt̄Z channel is estimated in Chapter 5. In Chapter 6 the minimum-χ2 method
is conducted and investigated, before an alternative multivariate reconstruction method
using a Neural Network is developed in Chapter 7. The latter is compared to the χ2

method regarding its performance in Chapter 8. Finally, the conclusion and an outlook
are laid out in Chapter 9.
In this thesis, natural units (h̄ = 1, c = 1) are used. All masses and transverse momenta
are given in GeV.



Chapter 2

Theoretical background and
experimental setup

2.1 The top quark in the Standard Model of particle

physics

The Standard Model (SM) of particle physics provides a unified picture of the elementary
particles, i.e. particles without substructure, and their interactions. Developed mainly in
the 1960s and 1970s [3–7], it yields an extremely precise description of experimental data
up to today.
(based on [8, 9])

2.1.1 The Standard Model of particle physics

The Standard Model of particle physics describes two types of fundamental particles:
fermions and bosons.
Fermions, characterized by carrying half-integer spin, are the elementary building blocks of
matter and obey Fermi-Dirac statistics. The interactions between the fermions are medi-
ated by (gauge) bosons, characterized by their integer spin and described by Bose-Einstein
statistics.
In the following, the different elementary particles and their interactions will be described
briefly. Further information can be found in various textbooks, e.g. [8–10].
(based on [8, 9])

Particle content

The fermions, i.e. the matter particles, are further subdivided into leptons and quarks,
which both come in different types called ’flavors’. For the quarks, these are up (u),

3



4 CHAPTER 2. THEORETICAL BACKGROUND AND EXPERIMENTAL SETUP

down (d), charm (c), strange (s), top (t) and bottom (b), while the lepton flavors are elec-
tron (e), muon (µ) and tau (τ) and their associated neutrinos. They are arranged in pairs
to form three generations according to their increasing masses as displayed in table 2.1.

1st gen. 2nd gen. 3rd gen. Q
|e| color

Leptons e− µ− τ− -1 -

νe νµ ντ 0 -

Quarks u c t +2
3

r,g, b

d s b −1
3

r, g, b

Table 2.1: Overview of the particle content of the Standard Model of particle physics.

All leptons carry integer electric-charge, while the quarks carry a fractional charge (either
+2

3
|e| or −1

3
|e|). Moreover, the quarks have an additional internal degree-of-freedom called

’color’. Each flavor of quarks comes in three different colors: red (r), blue (b) and green
(g). Due to the nature of strong interactions (see below), quarks cannot be observed as
free particles and can only be found in colorless bound states called ’hadrons’. This phe-
nomenon is referred to as ’confinement’.

Furthermore, both the leptons and the quarks carry isospin: the left-handed (subsection
2.1.2) particles are arranged in weak-isospin doublets of the total weak-isospin IW = 1

2
,

thus one of them carries I3 = +1
2

(referred to as up-type) and the other one I3 = −1
2

(referred to as down-type). The right-handed particles are placed in weak-isospin singlets
with IW = 0 and thus also I3 = 0.

In addition, every one of the presented fermions has a corresponding antiparticle. They
have the same mass and lifetimes as their matter counterparts, but opposite charge and
magnetic moment. In particular, the antiquarks carry one unit of anticolor: anti-red (r̄),
anti-blue (b̄) or anti-green (ḡ). The antiparticles are denoted either by their charge for the
leptons or by a bar over the particle symbol for the quarks, e.g. positron e+ and anti-up
quark ū.
(based on [8, 9])
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Interactions

All in all, there are three1 different fundamental interactions embodied in the SM which
are mathematically described by a quantum field theory. Ordered by decreasing strength,
they are: the strong interaction responsible for holding together the quarks in the pro-
ton/neutron of nuclei, which is formally described by Quantum Chromodynamics (QCD);
the electromagnetic interaction responsible for most phenomena outside of nuclear physics
formally described by Quantum Electrodynamics (QED) and the weak interaction respon-
sible for nuclear beta-decay formally described by Quantum Flavor Dynamics (QFD). The
latter can also be described unified with the electromagnetic interaction in the electroweak
theory.
Within these quantum field theories, the forces are described by the exchange of gauge
bosons resulting mathematically from the requirement of local gauge invariance: this con-
cept takes into account the arbitrary choice of the phase of the fermion field in quantum
mechanics and requires that changing the phase locally in space-time should not change
the underlying physics. The resulting gauge boson of the electromagnetic interaction is
the massless photon. For QCD, there are eight massless gluons. In contrast, the weak
interaction is mediated by the massive W± and Z0 bosons.

The individual strength of each of the three fundamental interactions is determined by
the associated coupling strength g which is the corresponding charge. As the quantum-
mechanical probability for a certain process to occur is proportional to g2 though, it is
advantageous to introduce an associated dimensionless constant α ∼ g2. Strictly speak-
ing, the coupling constants are so-called ’running coupling constants’, i.e. the coupling
constants depend on the energy scale q2 at which the measurement is conducted. This
is a consequence of the renormalization property of the QFTs which is related to the re-
quirement that the amplitudes (probabilities) of different interaction processes should be
’well-behaved’, i.e. they should not diverge at high energies or to high orders of the coupling
constant in perturbation theory. The general dependence of the coupling constants on the
momentum transfer is described by the ’renormalization group equations’. From these
it can be derived that the effective coupling constant of the electromagnetic interaction
increases (very slowly) with energy-momentum transfer. The strong coupling constant αS
decreases with increasing q2 in contrast. At low q2 scales, αS becomes very large and thus
the perturbation expansion of QCD becomes meaningless. This is believed to be connected
to the confinement of quarks mentioned above.

The nature of the three interactions is determined by the properties of the associated medi-
ators and their interaction with the fermions: A particle can only couple to a gauge boson
if it carries the conserved charge of the interaction: this is the electric charge for QED, the
color (charge) for QCD and the weak isospin for the weak interaction.

1In general, there is a fourth fundamental interaction: gravity. As it is by far the weakest, it has only
a vanishingly small impact in the discussion of particle interactions and is thus neglected. It is also not
incorporated in the SM.
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In general, QCD is formally characterized by the SU(3)C gauge symmetry group with the
subscript C indicating that the conserved charge is color. A peculiarity of the strong in-
teraction is that not only quarks but also the gluons carry color. As the latter carry one
unit of color and one unit of anti-color, there should be 32 = 9 gluon states. However,
one of them is the colorless singlet state 1√

3
(rr̄ + bb̄+ gḡ) which cannot be observed. This

leaves 8 different gluons as mentioned above. Based on the fact that the gluons carry color,
they also interact with themselves which contributes to the behavior of αS and thus to the
’confinement’ phenomenon.

The weak and the electromagnetic interaction are described in a unified way by the elec-
troweak theory developed by Weinberg, Salam and Glashow (GSW theory).
Formally, this theory is based on four massless mediating boson fields: three of the bosons
denoted ~Wµ = W

(1)
µ ,W

(2)
µ ,W

(3)
µ are the components of an I = 1 triplet of the group SU(2)L

while the fourth Bµ is an isoscalar I = 0 belonging to the U(1)Y group of weak hypercharge.
The weak hypercharge is defined by Y = Q− I3 with Q the electric charge and I3 the third
component of the weak isospin. Thus, this theory is characterized by an SU(2)L × U(1)Y
gauge symmetry group. The two different field types have coupling constants g for the
W

(i)
µ and g′ for Bµ, which are related by the Weinberg angle ΘW : g′

g
= tan(ΘW ). The

physical bosons are then combinations of these fields: while the W± bosons are mixtures
of W

(1)
µ and W

(2)
µ , the Z boson and the photon are mixtures of W

(3)
µ and Bµ. They acquire

mass due to a process called spontaneous symmetry breaking.
(based on [8–10])

Limitations of the Standard Model of particle physics

Even though the Standard Model of particle physics provides an extremely precise descrip-
tion of the properties of the elementary particles and their interactions, there are still some
open questions which the SM cannot answer.
Astronomical results for example exhibit that the particles incorporated in the Standard
Model describe only about 5% of the mass/energy content of the universe. The rest con-
sists of Dark Matter (about 20%) and Dark Energy (about 75%). One promising theory
providing particle candidates for Dark Matter is called Supersymmetry (SUSY) in which
every fermion gets a bosonic partner and vice versa.
(based on: [9, 10])

2.1.2 The top quark

The top quark is the heaviest of the elementary particles described by the SM. Discovered
in 1995 by the CDF and D0 experiments at Fermilab’s Tevatron [1,2] after two decades of
searches, precise measurements of its properties have been conducted at the LHC due to
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the high luminosities and energies available there. Currently, its coupling to the Z boson
is measured among others.

As the mass of the top quark, which is related to the Yukawa coupling to the Higgs boson, is
a free parameter, it has been measured very precisely and was found to be 173.0±0.4 GeV
[11]. The decay width of the top quark was measured to be Γ = h̄

τ
= 1.41+0.19

−0.15 GeV [11],
from which a very short lifetime τt ∼ 10−25 s can be deduced. This is a peculiarity as
it is shorter than the time scale required for hadronization and to decorrelate the spin
configuration of the decay products. Thus, the top-quark polarization is not diluted by
hadronization effects and can be calculated reliably within perturbation theory. Exper-
imentally it can be analyzed using the angular distribution of its decay products. An
observable sensitive to this is the helicity angle of the W boson (subsection 2.1.2).
(based on [12])

Production

In general, top quarks can either be produced via the electroweak interaction as ’single
top-quarks’ involving the Wtb vertex or in pairs (tt̄) via the strong interaction.
As this thesis focuses on tt̄ pairs, only the pair production via the strong interaction is
discussed in the following.

The two dominant production mechanisms of top-quark pairs in hadronic collisions are
quark-antiquark annihilation and gluon fusion. The corresponding Feynman diagrams of
lowest-order (LO) processes can be found in figure 2.1.

Figure 2.1: Lowest-order Feynman diagrams for the production of tt̄ pairs by the two dom-
inant production mechanisms quark-antiquark annihilation (left) and gluon fusion (middle
and right).

While at the proton-antiproton accelerator Tevatron the quark-antiquark annihilation was
the dominant process with 85% [13], at the LHC most top-quark pairs are produced via
gluon fusion with 90% [13].
Considering the structure of the proton, this difference can be explained: The proton
consists principally of three valence quarks (u, u, d) which are bound together by gluons.
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Figure 2.2: Parton distribution functions (PDFs) for two different momentum-transfer
scales µ2. [14]

In addition, so-called sea quarks can be found which result from vacuum fluctuations. The
probability of finding a parton i inside a hadron H with a momentum fraction between x
and x + dx of the mother hadron is given by the so-called parton distribution functions
(PDFs) fi/H(x, µF ) considered in the cross-section calculations. The factorization scale µF
refers to the scale at which in higher-order calculations the initial-state singularities are
factorized into the parton distribution functions. These PDFs are provided by different
groups like e.g. the NNPDF group. Figure 2.2 depicts the parton distribution functions,
which are used for the parton shower in this thesis, for the different center-of-mass energies
or rather the different momentum-transfer scales of the Tevatron (left) and the LHC (right).

Here, the PDF of the gluons is found to grow rapidly with decreasing x, while the PDFs
of the valence quarks u and d peak towards higher values of x.
In order to produce a tt̄ pair, x needs to be roughly 350GeV

1.96 TeV
∼ 0.2 for

√
s = 1.96 TeV

(Tevatron), while it needs to be only 350 GeV
14TeV

∼ 0.03 for
√
s = 14 TeV (LHC). For these x

values, more gluons (valence-quarks) can be found in the right (left) plot of figure 2.2 and
hence gluon fusion (quark-antiquark annihilation) is the dominant production mode at the
LHC (at the Tevatron).
(based on [12,15,16])

Decay

In the SM, the top quarks decay via the charged weak interaction into a W boson and
a down-type quark. The probabilities for the three decay modes t → Wd, t → Ws and
t → Wb are proportional to the squared elements of the Cabibbo-Kobayashi-Maskawa
(CKM) matrix which indicates the coupling strength of the weak charged interaction be-
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tween up- and down-type quarks.
The experimentally derived magnitudes of the matrix elements related to the three de-
cay modes are: |Vtd| = (8.1 ± 0.5) × 10−3 [11], |Vts| = (39.4 ± 2.3) × 10−3 [11] and
|Vtb| = 1.019± 0.025 [11]. From this it can be deduced that the top quark decays almost
exclusively to a W boson and a b quark.

The W boson can decay either leptonically into a (antilepton) lepton and its (neutrino)
anti-neutrino (∼ 33%) or hadronically into an up-type (antiquark) quark and a down-type
(quark) antiquark (∼ 67%). According to the decay products of the W boson, three de-
cay channels of top-quark pairs can be identified: (all-)hadronic (both W bosons decay
hadronically), dileptonic (both W bosons decay leptonically) and semileptonic (one W bo-
son decays leptonically, the other one decays hadronically).
(based on [12,15,16])

Spin information of the top quark: the helicity angle of the W boson

As previously mentioned, one peculiarity of the top quark is its short decay time. Due
to this, its polarization and spin information is transferred onto its decay products. One
experimental observable sensitive to this and in general to the Wtb-vertex structure is the
so-called helicity angle.
As its name indicates, it refers to the underlying concept of the helicity of particles which
is defined as the normalized component of the particle’s spin ~s along the flight/momentum
direction ~p: h = ~s·~p

|~s|·|~p| [17]. For a fermion, i.e. a particle with spin 1
2
, there are two possible

states: the projected spin can be parallel to the flight direction referred to as ’right-handed’
or it can be antiparallel referred to as ’left-handed’. For a spin-1 particle like the W bo-
son, there is an additional possible outcome as there are three possible spin states. This
additional state is called ’longitudinal’ referring to a configuration in which the spin is
perpendicular to the momentum direction.
Helicity, is however not Lorentz invariant for massive particles moving with v < c as they
can always be transformed into another reference frame in which their direction of flight
would be reversed, but not their spin direction. The related Lorentz-invariant concept
is called chirality. Unfortunately, this is not directly related to any observable and can
thus not be measured. The concepts of helicity and chirality are indistinguishable in the
limit E � m and for massless particles moving at the speed of light. Massive left-handed
fermions consist mainly of a left-handed chiral state. The right-handed chiral state is sup-
pressed by m

E
or
√

1− β with β = v
c

[17]. The analogous situation is also found for massive
right-handed antifermions.

The concept of helicity is particularly important in the context of the weak interaction as
the latter exhibits a so-called V-A structure. The name ’V-A’ refers to the transformation
properties (V for vector and A for axial vector) of the weak interaction under spatial reflec-
tion. This combination takes into account the observation that only (chiral) left-handed
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particles or (chiral) right-handed antiparticles participate in the weak charged-current in-
teraction (mediated by the W± bosons). This is not as strict for the weak neutral-current,
i.e. the weak interactions mediated by the Z0 boson due to its Bµ-field content.

To investigate the helicity states of the W boson in the top-quark decay, the system is trans-
formed into the rest frame of the top quark. In consequence, the b quark and the W boson
are emitted back-to-back from the top quark. As the W boson is a spin-1 particle, it can in
principle be either right-handed, left-handed or longitudinal. Taking into account that the
top quark as well as the b quark are both fermions, i.e. spin-1

2
particles, and that the spin is

a conserved quantity, the three scenarios depicted in figure 2.3 can be found. Here, the thin
arrows indicate the momentum direction of the particles while the bold arrows indicate
the spin direction of the particles. The length of the spin arrows is related to the spin value.

Figure 2.3: Sketch of the helicity states of the W boson in the top-quark decay. The thin
arrows indicate the momentum direction while the bold arrows indicate the spin direction.

From these sketches, it can be deduced that for the right-handed W boson, the b quark
also needs to be right-handed. This is highly suppressed and even strictly forbidden in the
approximation that the mass of the b quark is negligible in comparison to the top-quark
mass. Hence, almost no right-handed W bosons take part in the top-quark decay. In
the other two helicity states of the W boson, left-handed and longitudinal, the b quark is
left-handed. Thus, left-handed and longitudinal W bosons can both be found in top-quark
decays.
For the anti-top quark decaying into a b̄ quark and a W boson, the situation is reversed:
the left-handed W boson needs to be excluded as the b̄ quark needs to be right-handed.
In exchange, the right-handed W boson contributes.

The probability for the different W-boson helicity states is quantified by the helicity frac-
tions. They are defined using the partial decay widths of the three helicity states and
dividing them by the total decay width of the W boson:

FL, R, 0 =
ΓL,R,0

Γ
with FL + FR + F0 = 1 [18]

Theoretically, they have been calculated to be F0 = 0.687 [18], FL = 0.311 [18] and
FR = 0.0017 [18] at next-to-next-to-leading order (NNLO) including electroweak effects
and a finite b-quark mass.
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Figure 2.4: Sketches visualizing the definition of the helicity angle for the different helicity
states of the W boson.

Experimentally, the helicity fractions can be measured studying the cosine of the helicity
angle cos(Θ∗) which is related to the angular distributions of the top-quark decay prod-
ucts. The helicity angle Θ∗ is defined as the angle between the direction of the down-type
fermion, i.e. the down-type quark in the hadronic tt̄ decay, originating from the W-boson
decay and the reversed direction of the b quark, both in the rest frame of the W boson [19].
This definition is visualized for a left-handed/longitudinal/right-handed W boson in the
left-most/center/right-most sketch in figure 2.4. The sketches arose by considering spin
conservation and the helicities of particles/antiparticles.

It is observed that the helicity angle for the left-handed W boson lies in the range be-
tween 90◦ and 180◦, while for the longitudinal W boson the helicity angle is mainly 90◦.
The right-handed W bosons, though strongly suppressed, have in principle helicity angles
between 0◦ and 90◦. For the anti-top quark the sketches of the left- and right-handed W
bosons would be switched, thus altogether the same distribution is found.
Furthermore, it can be deduced from these sketches, that the down-type quarks from left-
handed W bosons are emitted preferentially in the opposite direction of the whole system.
Thus, they tend to have lower momentum and are closer to the b quark from the top-quark
decay as compared to down-type quarks from longitudinal or right-handed W bosons.

Experimentally, the distributions for the cosine of the helicity angle cos(Θ∗) depend on the
helicity fractions FL/0/R:

1

Γ

dΓ

d cos Θ∗
=

3

8
FL(1− cos Θ∗)2 +

3

4
F0(1− cos2 Θ∗) +

3

8
FR(1 + cos Θ∗)2 [19]

Here, Γ indicates the decay width of the W boson.
The resulting, normalized distributions are depicted in figure 2.5 separately for each con-
tribution and also for the combined SM expectation.
(based on [8, 17,19,20])
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Figure 2.5: Predicted cos(Θ∗) distributions for the different helicity fractions FL, FR and
F0 of the W boson according to the Standard Model of particle physics. In addition also
their sum is depicted. (from [21])

2.2 Associated production of tt̄ pairs and a Z boson

Recently, another process related to tt̄ production has been discovered: the associated
production of a Z boson with a tt̄ pair. In this context, the Z boson is e.g. emitted from
the top quarks as depicted in the two lowest-order Feynman diagrams in figure 2.6.

Figure 2.6: Two lowest-order Feynman diagrams of the associated production of a Z boson
and a tt̄ pair.

The tt̄ pair of this system can decay dileptonically, semi-leptonically or all-hadronically.
The Z boson can decay into a quark-antiquark pair, two leptons with opposite sign or to
an invisible signature of two neutrinos. The measured branching ratios can be found in
the table 2.2.
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Decay mode Z → qq̄ Z → l+l− Z → invisible (νν̄)

Branching ratio (69.911 ± 0.056)% (3.3658 ± 0.0023)% (20.000 ± 0.055)%

Table 2.2: Branching ratios related to the decay of the Z boson. (from [11])

In general, this process is a very rare process: on the one hand, the coupling of the weak
interaction is weaker than the one of strong interaction reducing the probability of this
process to occur. Thus, high luminosities are required for the observation of this process.
On the other hand, high energies are required to kinematically allow for this process to
occur as both the top quark and the Z boson are very heavy. As a consequence, the cross
section of the tt̄Z process is very small in comparison to other SM processes. This is de-
picted in figure 2.7.

Figure 2.7: Total production-cross-section measurements for center-of-mass energies√
s = 7, 8, 13 TeV for standard-model processes using the ATLAS detector. (from [22] )

Here, the cross section of different SM processes is plotted. It combines the results from
theory calculations (grey) and from measurements conducted at different center-of-mass
energies (7 TeV in blue, 8 TeV in orange and 13 TeV in purple) with the ATLAS detector.
It can be seen clearly that the cross section of the tt̄Z process is orders of magnitudes
smaller compared to e.g. the tt̄ process representing one of the main backgrounds.

Due to this, the tt̄Z process has been discovered only recently by CMS in 2016 [23] in the
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multi-lepton final state with 6.2σ after evidence had been declared by ATLAS in 2015 with
4.2σ [24].

One of the current goals of CMS and ATLAS in this context is the precise measurement
of the cross section of this system. The theoretical prediction including NLO QCD and
electroweak corrections for a center-of-mass energy of

√
s = 13 TeV was calculated to be

σtheo.
tt̄Z = 0.88+0.09

−0.11 pb [25]. A first measurement at a center-of-mass energy of
√
s = 13 TeV

using 77.5fb−1 of integrated luminosity was conducted by CMS with the following result:
σtt̄Z = 1.00+0.06

−0.05(stat.)+0.07
−0.06(syst.) pb [26]. Comparing this to the theory SM prediction, a

good agreement can be deduced. The measurement is currently repeated using the full
Run-2 dataset.

A precise measurement of the cross section is important as it tests predictions of the SM-
electroweak coupling of the top quark to the Z boson. Experimentally, this has not been
well constrained yet and its value varies significantly in different models describing physics
beyond the SM like e.g. vector-like quarks, strongly coupled Higgs bosons or technicolor.
Furthermore, tt̄Z also represents an important irreducible background in measurements of
the tt̄H process. This process is important for constraining the Yukawa coupling of the
Higgs boson to the top quark which is one of the free parameters of the SM. Deviations of
the production cross section of this process could also indicate processes of physics beyond
the SM. [27]

For the measurement of the tt̄Z cross section, the multi-lepton final states, i.e. tt̄ systems
together with a leptonically decaying Z boson, are used. Even though they have the small-
est branching ratio, they also provide the cleanest signature as leptons can be quite easily
identified in the detector. During the last years sufficient data were collected to perform a
cross-section measurement in these channels despite the small branching ratio.
The focus in this thesis lies on an analysis channel which was among the observation chan-
nels of tt̄Z production: the ’2LOS’-channel. Its name refers to the fact that the final state
has exactly 2 leptons originating from the Z boson with same flavor and opposite sign.
The tt̄ system is required to decay hadronically. This channel is characterized by a large
background rate, mainly from the associated production of a Z boson and additional jets
(Z+jets) and dileptonic tt̄ processes due to similar signatures [25].
The 2LOS-analysis channel is further subdivided into 3 different signal regions. The focus
in this thesis is put on the 6j2b signal region requiring ≥ 2 b jets and ≥ 6 jets. The signa-
ture of the considered processes consists thus of 6 jets: 2 b jets and 4 light jets. All of them
are high transverse momentum (pT) jets (subsection 2.3.2) due to the large mass of the top
quarks. Furthermore, there are 2 leptons of opposite sign and same flavor originating from
the Z boson and thus also exhibiting high pT. In this thesis, leptons refer to electrons and
muons if not stated otherwise. A Feynman graph of a 6j2b-2LOS-tt̄Z process is shown in
figure 2.8.
(based on: [12,28,29])
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Figure 2.8: Feynman diagram of a process targeted by the analysis in this thesis: the
associated production of a tt̄ system with a Z boson with the tt̄ pair decaying hadronically
and the Z decaying leptonically, i.e. either in an electron-positron or muon-antimuon pair.

2.3 The ATLAS experiment at the LHC

To study the elementary particles and to search for new physics, protons are accelerated
to almost the speed of light in the currently most powerful accelerator, the Large Hadron
Collider (LHC). They are then brought to collision in beam crossings at the detectors of
different experiments like ATLAS. Collision data were recorded in the ’Run-1’ period from
2009 - 2013 and recently in the ’Run-2’ period from 2015-2018.
In this section a brief description of the LHC and the detector of the ATLAS Experiment
is given. Further information can be found in [30–33].
(based on: [34–38])

2.3.1 The Large Hadron Collider (LHC)

The LHC is part of the particle physics research center CERN situated at the Franco-Swiss
boarder near Geneva. It accelerates mainly protons2 to center-of-mass energies of up to
14 TeV (13 TeV in Run-2) in the 26.7 km [37] long tunnel built initially for the Large
Electron-Positron collider LEP. Situated between 45m and 170m below the surface of the
earth, it represents the last chain of the accelerator complex (Linac2, PS Booster, Pro-
ton Synchrotron (PS) and Super Proton Synchrotron (SPS)) receiving the pre-accelerated
proton bunches with a spacing of 25 ns [37]. Radio-frequency (RF) cavities, i.e. electro-
magnetic resonators, then accelerate the particles first to the desired energy and then to
compensate for the synchrotron radiation losses.

2Also heavy ions, in particular lead nuclei, are accelerated to 2.8 TeV [37] per nucleon and collided in
special runs.
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To keep the protons on their nearly circular orbit, different types of superconducting mag-
nets are used. Among them are dipole magnets to bend the beam and quadrupole magnets
to focus the beam especially before the collision points to maximize the number of inter-
actions.

To explore rare events not only high energies, but also high luminosities are required. Using
the measured (instantaneous) luminosity L, the number of events/interactions per second
generated in the LHC collisions can be determined: Nevent = L · σ with σ referring to the
cross section, i.e. the quantum-mechanical probability, of the process under study. At the
design luminosity of the LHC of 1034cm−2s−1 [37], the bunches collide about 40 million
times per second [34].

These collisions take place in the detectors of the four main experiments ATLAS, CMS,
LHCb and ALICE shown in figure 2.9. ATLAS (A ToroidaL ApparatuS) and CMS (Com-
pact Muon Solenoid) are the two high-luminosity multi-purpose experiments covering a
wide range of physics from precision measurements to searches of evidence for physics be-
yond the SM. Situated at diametrically opposite sites, they differ only in their technical
realization. The two low luminosity experiments focus on special topics: LHCb was de-
signed to investigate the matter-antimatter asymmetry in interactions of B particles and
ALICE (A Large Ion Collider Experiment) studies the properties of quark-gluon plasma
in lead-ion collisions.
(based on: [8, 34–38])

Geneva

CERN

ALICEATLAS

LHC

SPS

PS

BOOSTER

LHCbCMS

ALICE

ATLASLHCb

CMS

~100 m

Figure 2.9: Schematic picture of the LHC and its four main experiments ATLAS, CMS,
ALICE and LHCb. (from [39])
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2.3.2 The ATLAS Experiment

ATLAS, one of the main experiments at the LHC, has a height of 25 m and a length of 44
m which makes it the detector with the largest volume ever constructed [36].
It is described by a cartesian coordinate system depicted in figure 2.10 with an origin sit-
uated at the interaction point. The z-axis is defined as the beam direction, the positive
x-axis points from the interaction point to the center of the LHC ring and the positive
y-axis points upwards. Thus, the x-y plane defines a plane transverse to the beam di-
rection. In this plane also transverse properties like the transverse momentum, pT, are
defined.
To take advantage of the cylindrical form of the ATLAS detector, also the azimuthal
angle φ and the polar angle Θ are defined as the angle around the beam axis and as
the angle from the beam axis respectively. As Θ is not Lorentz invariant, the pseudo-
rapidity is defined as η = − ln

(
tan
(

Θ
2

))
[34]. In case of massive objects the rapidity

y = 1
2

ln
[

(E+pz)
(E−pz)

]
[34] is used. The distance in the pseudorapidity-azimuthal angle space is

then defined as ∆R =
√

∆η2 + ∆φ2 [34].

Figure 2.10: Visualization of the ATLAS coordinate system. (leaned on [40])

The cylindric detector is forward-backwards symmetric with respect to the interaction
point and consists of a barrel part and two end caps. Three sub-systems exploiting differ-
ent technologies are used to detect and measure the properties of the particles produced:
the Inner Detector (ID), the calorimeters (ECAL, HCAL) and the Muon Spectrometer
(MS).

The detector situated closest to the interaction point is the Inner Detector (ID) which
tracks the charged-particle trajectories and interaction vertices. Its acceptance range is the
pseudorapidity range |η| ≤ 2.5 [34]. At inner radii, multiple layers of two high-resolution
detectors, the semiconductor Pixel detector (barrel layer: |η| ≤ 1.7 [31]) and the semicon-
ductor tracking detector (SCT) (barrel part: |η| ≤ 1.4 [31]) are used. Outside, straw-tube
tracking detectors (TRT) (barrel axial straws: |η| ≤ 0.7 [31]) are used to provide quasi-
continuous tracking. Traversing charged particles leave a hit in each layer from which
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the track can be reconstructed. All these three detectors are penetrated by a solenoidal
magnet field of 2 T [34] provided by a superconducting solenoid. This enables momentum
measurements of the particles ~p by determination of the bending radius R of the parti-
cle tracks: |~p| = q·| ~B|·R with q the charge of the particle and ~B the magnetic field strength.

Figure 2.11: Schematic picture showing the different sub-systems of the ATLAS Experi-
ment. (from [41])

This tracking volume is surrounded by two calorimeters: the Electromagnetic Calorimeter
(ECAL) and the Hadronic Calorimeter (HCAL). Their task is to measure the energies of the
particles in the range |η| < 4.9 [34] using so-called sampling detectors consisting of alternat-
ing layers of absorbing and active material. In the absorbing material, cascades of particles
(’showers’) based on the electromagnetic interaction in the form of Bremsstrahlung and
pair production (ECAL) or strong interaction (HCAL) develop. Their energies are then
measured in the active material.
The ECAL is an accordion-shaped lead liquid-argon (LAr) calorimeter covering the pseudo-
rapidity range |η| < 3.2 [34] (barrel part |η| < 1.475 [34] and two end caps 1.375 < |η| < 3.2
[34]). The HCAL, placed outside the ECAL, uses steel as absorbing material and scin-
tillating tiles as the active material in the barrel (|η| < 1.7 [34]). In the end caps,
(1.5 < |η| < 3.2 [34]) copper plates are combined with LAr gaps.
To extend the coverage of the calorimeter to |η| = 4.9 [34], forward calorimeters provide
both electromagnetic and hadronic energy measurements using copper/tungsten in combi-
nation with LAr.

Outside the calorimeters, the muon spectrometer can be found. It records the trajecto-
ries of muons, the only measurable particles penetrating the other sub-systems, in Mon-
itored Drift Tubes (MDTs) and Cathode Strip Chambers (CSCs) within |η| < 2.7 [34]
and 2 < |η| < 2.7 [34] respectively. The tracks are bent by large superconducting toroid
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magnets with a bending power of 1 to 7.5 Tm [34] allowing for the measurement of the
muon momenta.

As not all the measured data can be recorded with current technology, a trigger system
is used to decide which events to keep for later analysis. It consist of a hardware-based
level-1 trigger determining regions-of-interest (RoIs) and reducing the event rate from
about 30 MHz [38] to 100 kHz [38]. The RoIs are then transferred to the software-based
high-level trigger (HLT) reducing the event rate further to approximately 1 kHz [38]. In
the Run-2 data taking period about 140 fb−1 have been recorded.
(based on [8, 31–34,38])
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Chapter 3

Simulation and object definitions

To compare theoretical predictions of the Standard Model to data taken in experiments
like ATLAS, Monte-Carlo simulations of proton-proton (pp) collisions are used. As the
output of the simulation is comparable to the measurements provided by the detector, the
physical objects used in the analysis have to be reconstructed first.

In this chapter it is described how proton-proton collisions are simulated by Monte-Carlo
event generators. Subsequently, it is explained how the objects used in this thesis have
been reconstructed based on the simulation output. More information on these topics can
be found in the sources given.

3.1 Monte-Carlo simulation of proton-proton collisions

To validate the predictions of the Standard Model, simulations of proton-proton collisions
are used. They provide further insights by demonstrating how the physical input is dis-
torted step-by-step and by providing detailed descriptions of the final states. The simulated
information can then be used to predict experimental observables and subsequently com-
pare them to experimental data.

Usually, so-called Monte-Carlo (MC) event generators are used to model the quantum-
mechanical probabilities of the various stages of the collision process based on (pseudo-)
random numbers and the Monte-Carlo method.
To be able to provide reliable predictions, a large number of simulated events is required
as only their average can describe the expected probability distributions and thus provide
a sufficiently realistic description of the average behavior and its fluctuations.

21
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3.1.1 Process of a proton-proton collision

Most event generators divide the process of a proton-proton collision, called event, into the
five steps described below. Four of them are visualized in figure 3.1.

Figure 3.1: Visualization of the process of a proton-proton collision. (adapted from [42])

First, the hard interaction is simulated in which two protons consisting of quarks and glu-
ons approach each other and collide. This step can be calculated in perturbation theory
using the probability density functions (PDFs) of the partons in the proton. If short lived
particles like the top quark or Z boson are produced, their decay is also included in this
step as e.g. their spin correlations are transferred from the production to the decay states.
The Lorentz vectors of these final-state particles/partons are saved in the so-called truth
information.
Subsequently, a parton shower develops originating from the produced partons. As accel-
erated color-charged partons are included in the collision, Bremsstrahlung in the form of
gluon emission occurs. Emissions associated with the two incoming colliding partons are
referred to as Inital-State Radiation (ISR,) while emissions associated to outgoing partons
are referred to as Final-State Radiation (FSR). As gluons carry color themselves and there-
fore also couple to each other, emitted gluons will give rise to new radiation as well. This
leads to a cascade of particles modeled as an evolution downwards in momentum scale.
The modeling stops at the point at which perturbation theory breaks down. This is due
to the fact that the coupling constants are actually running coupling constants (subsection
2.1.1). In fact, the coupling constant of QCD, αS, increases towards lower momentum
scales and thus perturbation theory developed in powers of αS can no longer be used for
calculations.
That is why, in the next step called hadronization, different models have to be taken into
account to simulate the confinement of a system of partons into hadrons. The two most
well-known models are the string model [43] and the cluster model [44]. This step is impor-
tant as colored partons cannot be observed freely and thus only hadrons can be observed
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in the detector. Subsequently, also the decays of unstable hadrons have to be considered.
So far, only two partons were extracted from the incoming protons to undergo the hard
interaction. However, the proton is made up of a multitude of further partons. These
so-called beam remnants are still colored and thus hadronize and interact as well. As a
result, soft hadrons arise which overlay and contaminate the simulated hard process. These
secondary interactions of the beam remnants are addressed in the simulation step called
underlying event.

Having simulated the observable particles, finally also the detector response needs to be
simulated in order to allow for comparison between simulation output and the data taken
in LHC pp collisions. This is done for the ATLAS detector using Geant4 [45]. As this is
quite costly in terms of CPU, there is also a fast simulation which reduces CPU costs by
approximating the calorimeter simulation [46].
(based on [47,48])

3.1.2 Event generators

The described interaction process can be split up in two parts according to the energy
scale used: The hard process is simulated by generators like Madgraph5 aMC@NLO [49]
(the new version of both Madgraph and aMC@NLO) or Powheg [50] (short for POsitive
Weight Hardest Emission Generator) which calculate the matrix elements. These are then
combined with so-called general-purpose generators like Pythia [51] using the Lund string
model for hadronization. To assure that no double-counting of processes occurs, differ-
ent approaches have been developed and incorporated in the different generators. For
example, MC@NLO subtracts the parton shower approximation from the NLO calculation
which leads to un-physical negative weights. Powheg in contrast provides only positive
event weights.
Alternatively, proton-proton collisions can be simulated using the Sherpa [52] generator
alone. Here, the hadronization is simulated based on the cluster model [52].

The MC samples used in this thesis are the following ones:

The tt̄Z sample was generated with MADGRAPH5 aMC@NLO [49] version 2.33.p0 inter-
faced to Pythia8 [51] v8.210. The NNPDF3.0NLO PDF set [53] was used in the matrix-
element (ME) computation. In the parton shower, the A14 [54] set of tuned MC parameters
was used together with the NNPDF2.3LO PDF set [55].

The dileptonic-tt̄ sample was generated with Powheg-Box [56–59] v2 (r3026) using the
NNPDF3.0NLO PDF set. The parton shower and the underlying event were generated by
Pythia8 [51] v8.210 using the NNPDF2.3LO PDF set with the A14 [54] tune.

Heavy-flavor hadron decays involving b and c quarks were modeled in both samples using
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EVTGen [60] v1.20.

The sample containing the associate production of a Z boson with additional jets (Z+jets)
was generated by Sherpa 2.21 [52,61] using the NNPDF3.0NNLO PDF set.

The detector simulation was performed based on Geant4 [45] for all three samples.

3.2 Object definitions

To reconstruct the physical objects used in this thesis from the output of the detector
simulation, different criteria are applied. These are described briefly in the following for
the primary vertex, electrons, muons and jets. Furthermore, the identification of b jets
(b-tagging) and the determination of the jet charge are explained. Finally, also the overlap-
removal procedure is presented.

3.2.1 Primary vertex

The primary-vertex position, i.e. the spatial coordinate of the hard scatter, is recon-
structed using the charged-particle tracks of the Inner Detector with a transverse mo-
mentum > 400 MeV within the pseudorapidity range |η| < 2.5 having a certain number of
hits in the different layers of the Inner Detector.
As in the proton-proton collision additional low transverse-momentum collisions occur
(pile up), several vertices might be reconstructed. In this case, the one with the highest
square root of the sum of the squared transverse momenta of the associated tracks is se-
lected to be the primary vertex.
(based on [62])

3.2.2 Electrons

Electrons (including positrons) are charged particles and hence leave tracks in the Inner
Detector as well as energy deposits in the electromagnetic calorimeter. Based on these,
electron candidates in the central region of the ATLAS detector (|η| < 2.47) are defined.
To further distinguish the signal-like electron candidates from background-like ones, e.g.
converted photons, certain identification and isolation criteria are applied. For electron
identification, shape properties of the electromagnetic showers in the calorimeter, tracking
information and the track-to-cluster-matching quantities are combined using a likelihood
method. Based on the resulting discriminant, three different working points are defined.
In order of increasing background rejection, they are ’loose’, ’medium’ and ’tight’. For this
thesis, the medium working point has been chosen.
In addition, further criteria are applied requiring the electron to be isolated from other
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activity in the calorimeter/Inner Detector using two discriminating variables: the calori-
metric isolation energy Econe0.2

T and the track isolation pvarcone0.2
T . Econe0.2

T is defined as the
sum of the transverse energies of topological clusters within a cone of ∆R = 0.2 around the
candidate-electron cluster. For this sum only clusters with reconstructed positive calibrated
energy are considered and the energy around the electron-cluster barycenter is subtracted.
pvarcone0.2
T is defined as the sum of the transverse momenta of all tracks satisfying certain

quality requirements within a cone of ∆R = min(0.2, 10GeV
ET

) around the candidate elec-
tron track and originating from the reconstructed primary vertex of the hard collision.
Electron associated tracks, i.e. the electron track, and additional tracks from converted
Bremsstrahlung photons are excluded. The used ’fixed-cut-tight’ isolation sets cut values

of 0.06 on both
Econe0.2
T

ET
and

pvarcone0.2
T

ET
.

(based on [63])

3.2.3 Muons

Muons leave signals in the Inner Detector and the muon spectrometer, where reconstruc-
tion is performed independently at first. Most muons considered in this thesis are first
reconstructed in the muon spectrometer and the tracks are then extrapolated to match a
track in the Inner Detector. This procedure cannot be conducted in the pseudorapidity
range 2.5 < |η| < 2.7 as it is not covered by the Inner Detector. Here, the muon trajectory
is reconstructed solely in the muon spectrometer and is tested for compatibility with the
interaction point.
To suppress non-prompt muons, mainly originating from pion and kaon decays, muon
identification is performed. In this context, again three different working-points are de-
fined referred to as ’loose’, ’medium’ and ’tight’. The medium muons used in this thesis
are selected by applying quality requirements which include a minimum number of hits
in the muon chamber and compatibility between Inner-Detector and Muon-Spectrometer
momentum measurements among others.
Furthermore, it is exploited that muons originating from the decay of Z bosons are often
produced isolated from other particles. This is done by measuring the detector activity
around a muon candidate and choosing an appropriate isolation working point. In this

thesis, the fixed-cut-tight-track-only isolation is chosen, which requires
pvarcone30T

pµT
< 0.06.

pvarcone30
T is in this context defined as the scalar sum of the transverse momenta of tracks

with pT > 1 GeV in a cone of size ∆R = min(10GeV
pµT
, 0.3) around the muon with transverse

momentum pµT . In this procedure, the muon track itself is excluded.
(based on [64])



26 CHAPTER 3. SIMULATION AND OBJECT DEFINITIONS

3.2.4 Jets

Due to confinement quarks cannot be observed free but only in the form of a collection of
collimated sprays of hadrons referred to as ’jets’ [65]. They are detected as energy deposits
in the calorimeters.
The energy deposits are first gathered into so-called ’topological clusters’ using a sequence
of seed-and-collect steps which are repeated until all topologically appropriate connected
cells have been used.
The topological clusters with positive energy are further sequentially recombined using the
’anti-kt’ jet-clustering algorithm [66] with a radius parameter of R = 0.4. This algorithm
has the important properties of infrared and collinear safety which refer to the fact that
modifying an event by introducing collinear splittings or adding soft emissions will not
change the set of hard jets in the event.
To suppress the impact of pile-up jets, a variable called jet-vertex tagger is constructed
based on tracking information.

The reconstructed jets can then be related to tracks by a method called ghost associa-
tion [67], in which the tracks are treated as infinitesimally soft, low-pT particles. This is
done by setting their pT to 1 eV. They are then added to the list of inputs for the jet-
finding algorithm. Due to the low-pT-value, the tracks do not affect the reconstruction of
calorimeter jets, but nevertheless allow to identify which tracks are clustered into which
objects afterwards.

(based on [66–72])

3.2.5 B-tagging

In general, identifying the flavor of the quark which initiated a jet is not a trivial task. How-
ever, for b-initiated jets (’b jets’), some characteristics can be exploited: b quarks hadronize
into B hadrons which are contained in the detected jets. These are very long-lived and
thus typically travel some millimeters before decaying into multiple charged particles. The
distance of closest approach between the track and the primary vertex is referred to as the
so-called impact parameter. Moreover, the large mass of the b quark results in an emission
of the decay products at relatively large angles to the original b-quark direction. This
results in the formation of a secondary vertex from the B-hadron decay which is displaced
from the primary vertex.
To identify b-initiated jets, different algorithms exploit the impact parameter, the sec-
ondary vertex and the topological structure of weak B- and c-hadron decays. Their output
is combined with a boosted decision tree (BDT) in a multivariate discriminant called MV2.
In this thesis, the MV2c10 version is used. The 10 in the name indicates that the c jet (light
jet) share in the training of the BDT was 10% (90%) [73]. To obtain a b-tagging efficiency
of 77% as used in this thesis, a cut value of 0.6459 on the BDT output is set [73]. The
c-jet/light-jet/tau rejection is given in the form of benchmark numbers of 6/134/22 [73]
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referring to a misidentification rate of 1
6
∼ 16%/ 1

134
∼ 1% / 1

22
∼ 5% [74].

(based on: [8, 73])

3.2.6 Jet charge

Due to hadronization, the electric charge of the initial quarks/gluons cannot be measured.
This information is, however, embedded in the detected jets in the form of the jet charge.
One definition of the latter uses ghost-associated tracks to calculate the jet charge QJ of
a jet J using a transverse-momentum weighting scheme:

QJ =
1

pJT
· κ

∑
i∈tracks

qi · (pT,i)κ [65]

with qi the charge of the track i with associated transverse momentum pT,i. pT is the
transverse momentum of the jet J and κ is a free regularization parameter controlling the
sensitivity of the jet charge to soft radiation. For κ > 0, the definition is infrared safe,
but still not Lorentz invariant. For low values of κ, the contribution of low-pT particles
is enhanced. Choosing an infinitely-high value for κ, however, reduces the contributing
tracks to the one with the highest pT. Theoretical predictions show that a value of 0.5
would be the most sensitive to the charge of the quark initiating the jet. As only κ values
of 0.3 and 0.7 were available, the 0.3 option has been selected for this thesis.
(based on [65])

3.2.7 Overlap removal

In order to avoid that one physical object is reconstructed as two different objects (dupli-
cation) or that two separate but close-by objects (isolation) are treated appropriately, the
so-called overlap removal is conducted.
In this context, electron candidates are removed from the event in a first step if they over-
lap with a muon candidate within a cone of ∆R < 0.2 or if they share a track with a muon.
In a next step, jet candidates are removed if they are situated within a cone of ∆R < 0.2 to
the electron candidate. Subsequently, the remaining electron/muon candidates are rejected
if they exhibit a distance of 0.2 < ∆R < 0.4 to a jet. Finally, further muon candidates are
rejected if the distance between the jet and the muon candidate is smaller than ∆R = 0.4
and the muon candidate has fewer than two associated tracks.
(based on [75])
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3.3 Scale factors

In order to take into account the different efficiencies for identification, isolation as well
as for the impact-parameter determination in simulation and data, so-called scale fac-
tors/weights are calculated. These are defined as the ratio of the efficiency/mistag-rate in
data εdata to the one obtained in simulation εsim [76]. These scale factors exist for b-tagging,
lepton definitions and jet-vertex tagging (JVT).
Furthermore, there is another weight adapting the pile-up profile of the generated events
to the one of data.
Moreover, also the specific MC-generator weight has to be applied to assure a physical
output of the simulation.
Taking all these factors into account, the overall event weight used in this thesis is defined
as follows:

event weight =mc weight · pileup weight · jvt weight · b-tag weight·

· lepton weight · cross section · lumniosity

total number of weighted events

The aim of the last term is to adapt the simulated luminosity to the measured one.



Chapter 4

Neural Network basics

In order to develop an alternative, multivariate reconstruction approach for tt̄ systems
in tt̄Z events, a classifier is needed to distinguish between well-reconstructed (signal) and
badly-reconstructed (background) tt̄ systems.
The traditional way for classification is the cut selection, i.e. the sequential application of
requirements to the individual observables of one event. To date, more sophisticated and
powerful approaches have been developed: So-called multivariate algorithms (MVA) com-
bine the information of the different observables of an event into a single output variable.
Rather than assigning the event to a definite class, they use this output to assign a certain
probability to an event which indicates how likely this event belongs to a certain category.
One way to approximate this multi-dimensional decision function in the observable space
is to use machine-learning techniques. In a subfield of machine learning, called supervised
learning, the algorithm learns from examples which consist of pairs of input and output
values. After this learning process, referred to as training, the learned function approxi-
mation is used for classification of events with yet unknown class probabilities.

The technique used for classification in this thesis is a feed-forward Neural Network (NN),
also called multi-layer perceptron or artificial Neural Network. It is applied in the context
of supervised learning.
In this section, the structure and the basic working principle of feed-forward Neural Net-
works (NNs) are discussed and important challenges are outlined. Towards the end, some
performance-evaluation options for the training process are presented. More information
can be found in [77].
The whole chapter is based on [77–82].

4.1 Feed-forward Neural Networks

Feed-forward Neural Networks (NN) are machine-learning techniques which in their struc-
ture loosely resemble the human brain. In this way, they achieve to learn underlying
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features of the example data. As the name already suggests, information flows only in
the forward direction through the network, meaning from the input to the output. Thus
no feedback of information is allowed. If feedback connections are allowed, the network is
called Recurrent Neural Network (RNN).

4.1.1 Single- and multi-layer perceptrons

The basic components of the human brain are neurons. They pass on information if the
input values exceed a certain threshold. Their output is then transferred to neighboring
neurons through connections which are strengthened/weakened based on how often they
are used.

Artificially, this idea is implemented in the form of a so-called (single-layer) perceptron [83].
Its functionality is visualized in figure 4.1.

Figure 4.1: Schematic structure and work flow of a single-layer perceptron as described in
the text. (adapted from [80])

Analogous to the biological neuron, the perceptron/artificial neuron, takes multiple inputs
x1, x2, ..., xn (step a)). The connection strength is given by weights w1, w2, ..., wn associated
to the inputs as shown in step b). Within the perceptron, the input values are added up
in the form of a weighted sum

∑
=
∑n

j=1wjxj +w0 in step c). Not shown in the sketch is
w0 representing the intercept value, also called bias, which makes the model more general.
The weighted sum is then used as an input for the so-called activation function f in step d)
which models the threshold of the biological neurons. It can be interpreted as the extent
of activation of the neuron. Usually it is chosen to be one of the following:

• sigmoid: f(x) = (1 + e−x)−1 ranging from 0 to 1

• hyperbolic tangent: f(x) = tanh(x) =
(ex−e−x)
(ex+e−x)

with a range from -1 to 1

• rectified linear unit (ReLu): f(x) = max(0, x)
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• leaky ReLu:

f(x) =

{
a · x x ≤ 0; a = const.

x x ≥ 0

These activation functions are visualized in figure 4.2. Here, one can see that the sigmoid
and the hyperbolic tangent have both S-shaped distributions and squeeze the output either
in the range of 0 to 1 or -1 to 1. The ReLu function is only non-zero for values above 0.
This gives rise to the problem that for negative x values no gradient can be determined,
which is important later on. The leaky ReLu takes care of that by providing a slope a, in
this case a = 0.01, for negative x values.
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Figure 4.2: Visualization of the activation-function distributions.

For classification, a probability value is desired as an output and hence a sigmoid function
is used to calculate the output-value.

Finally, the output information of the perceptron passed on in step e) is consequently of
the form y = f(~x · ~w + w0), where f is the activation function, ~x is the vector containing
all input data, ~w is the vector containing weights corresponding to the inputs and the bias
w0. In general, the output of the perceptron defines a (hyper-)plane in a n-dimensional
space and thus can be used for multivariate linear fits.

To learn more complicated functions, using not only one, but rather the interaction of
multiple neurons is key. This idea is implemented in the multi-layer perceptron [84–87],
which is also called feed-forward Neural Network.
Within the human brain, the neurons are connected to each other in a way that they use
the output of the previous neurons as input. This can be thought of arranging them in
layers, so that the information flows from one layer to the next.
Taking this concept as archetype, an artificial ’Neural Network’ can be constructed. Its
structure is sketched in figure 4.3. It should however be mentioned at this point, that the
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goal of Neural Networks is not to perfectly model the brain, but rather to occasionally
draw some insights from neuroscience.

Figure 4.3: Schematic structure of a multi-layer perceptron/Neural Network: It consists
of an input layer with the dimension of the input variables, an output layer and hidden
layers inbetween. (adapted from [80])

The first layer, the input layer, pulls in the input data ~x. The last layer, the output layer,
contains the output node and computes the final answer. The layers inbetween are called
hidden layers. The number of nodes in a hidden layer defines the width of the model, while
the number of hidden layers defines the depth of the network.
Thus, the input data propagate from the input layer to the first hidden layer consisting of
a specified number of neurons. In each of these neurons, the weighted sum of the inputs is
calculated and transformed by the activation function. The output-value, the ’activation’
of each neuron, zh, propagates then in forward direction to the next, (h+1)th layer where
it is used as the input zjh+1 = f(

∑
i, j v

j
ihz

j
ih + vjh+1) with weights vih for all connections i

coming from the previous layer h for every neuron j in the (h+1)th layer. vjh+1 refers to
the bias of the neuron j for the considered layer. This is repeated until the output layer is
reached.

If the hidden layer outputs were only linear, the concept of hidden layers would be of no use
as linear combinations of linear combinations stay linear combinations. By applying the
nonlinear activation functions, the output becomes a linear combination of the nonlinear
function values computed by the hidden units instead. The more hidden layers the model
has, the more complex functions can be approximated.

4.1.2 Learning: backpropagation and optimizer

Classification can formally be described by a multi-dimensional decision function F in the
observable space which maps an input x to an output y: y = F (x). With the training
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examples at hand, this function can only be sampled though. Thus, the goal of the Neural
Network is to approximate F with y∗ = F ∗(x,w). This is done by learning the value of
the parameters ~w that result in the best approximation during a process called training.

In the training phase, a large number of examples consisting of input-output pairs is pre-
sented to the NN in the case of supervised learning. Thus, each example x is accompanied
by a label y = F (x).
Starting from random initial weights, the weights are iteratively modified in order to min-
imize the discrepancy between the ’real’ output y and the calculated output y∗. This
discrepancy, or in other words the error or loss, is calculated using a so-called loss func-
tion. In the setup of this thesis, the cross entropy is used as the loss function:

loss = −
∑
t

y(t)log(y∗)(t) +
(
1− y(t)

)
log
(
1− (y∗)(t)

)
[82]

The loss describes the sum over all training examples t with the desired output y(t) and
the output of the neuron (y∗)(t) for the example considered. y(t) can either take the value
of 0 (background) or 1 (signal).

Having processed a sufficient number of examples, the NN is expected to have found the
best possible weights, i.e. weights that minimize the loss over all the training examples.
In consequence, it is assumed that the best possible approximation F ∗ has been found
and that the NN is consequently well-performing for the task it has been trained for. To
check this, one option is to calculate the accuracy which is defined as the ratio of correct
classified examples to all examples.

Due to the nonlinearity of the activation function, one cannot simply solve a linear sys-
tem of equations to determine the best choice of weights. Instead an optimizer has to
be used to maximize the performance of the NN by iteratively adapting its parameters.
Well-established optimizers are the (stochastic) gradient descent method [88–90] and the
adam optimizer [91].
This weight optimization can either be done separately for each example or for a subset
called batch. In the latter case, the optimization changes are accumulated and applied after
all the examples of this subset have been used. The number of examples in the considered
subset is also referred to as batch size.
The weights can however not be adapted appropriately within one single step, rather mul-
tiple steps are necessary to reach the minimum and thus the optimal weight values. For
each of these steps, the whole training dataset is used to calculate the gradient. One pass
through the whole training dataset is in this context called an epoch.

Both optimizers are based on calculating the error gradient with respect to the individual
weights. The idea is that, based on the gradient, a direction of steepest descent can be de-
termined. If a step in this direction is taken in every iteration, the point of minimum error
will be reached eventually. For this process, a learning rate ε defining the step size and a



34 CHAPTER 4. NEURAL NETWORK BASICS

decay parameter taking into account the flatter surface at the minimum are determined.
These are both multiplied to the gradient. Picking an appropriate learning rate is crucial
in this context as an ε value which is too small will result in a very long training process
and an ε value chosen too large will increase the risk to diverge away from the minimum
at some point.

In order to determine the gradient used by the optimizer, the backpropagation algorithm [92]
has to be used as errors can only be determined for the output layer, but not for the hidden
layers. This is why the error has to be propagated backwards, meaning from the output
layer in the direction of the input layer.

4.1.3 Testing and its challenges: overtraining and undertraining

The fundamental requirement to NNs is a good performance not only for the training
examples, but also for new, previously unseen data. To ensure this, the whole example
dataset is divided into a training and a testing subset. The former is used to optimize the
weights and the latter is then used to test the performance on unseen data, not used for
training. The goal is that both, the training error itself as well as the difference to the
testing error, should be as low as possible.
These two requirements are related to two central challenges in machine learning: over-
training and undertraining. These are visualized in figure 4.4. Here, the points represent
the training examples with their respective labels indicated by the two colors. The shaded
areas with different colors represent the approximated classification function of the Neural
Network.
Overtraining means that too many details are taken into account in order to determine F ∗

as depicted in the left picture of figure 4.4. Here, almost every single point is described
correctly by the learned/approximated function. Thus the model used is too complex and
too adapted to the training data. This subsequently leads to a large difference between
the training and the testing error when applied to new data.
Undertraining means that the model is not complex enough to describe the underlying
properties of the input data appropriately as shown in the right picture of figure 4.4. Mod-
els suffering from undertraining usually have quite a high training error.
The central picture of figure 4.4 presents a visualization of a good model, which is just
complex enough to take into account the underlying features of the input data.

In the framework used in this thesis, two methods are used to prevent the NN from over-
training: The first one is the so-called dropout [93]. Here, at each weight update, only a
random subset of neurons is used for training as shown in figure 4.5. The size of the subset
is defined in the form of a fraction p of neurons which stay active. As a consequence the
network is forced to perform well also in the absence of certain information which prevents
the network from becoming too dependent on some neurons. As for testing all neurons are
used, every active neuron has its output divided by the fraction p during training before
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the value is propagated to the next layer. This is essential in order to stay consistent.

Figure 4.4: Visualization of a good model (center) as well as an overtrained (left) and an
undertrained model (right). (adapted from [78])

Figure 4.5: Visualization of dropout. (from [78])

The second method to prevent overtraining is regularization which describes any modifica-
tion to a learning algorithm that is intended to reduce its testing error. In this thesis, the
L1 regularizer [94] is used which adds a penalty term of the form λ|w| for every weight w to
the loss function in order to penalize large weights. This regularizer has the property that
it leads to weight vectors staying close to zero during optimization. This is particularly
useful in order to understand exactly which features are contributing to a decision. Choos-
ing an appropriate value for λ is crucial in this context as λ = 0 implies that no measures
to prevent potential overtraining are taken, while a λ value which is chosen too large will
prioritize to keep the weights as small as possible over trying to find the parameter values
that perform well on the training set.

4.1.4 Hyperparameters

In order to define an appropriate NN for the classification task, some parameters have to be
specified by the user beforehand. These are called hyperparameters. The Neural Network
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used in this thesis is defined by the following hyperparameters:

Hyperparameter Description

neurons per layer
number of neurons in a hidden layer; the number of layers
is the number of comma-separated numbers

ncycles maximal number of epochs used for training

batch size batch size used for updating the weights

dropout dropout fraction

optimizer either stochastic gradient descent or adam optimizer

activation activation function, either sigmoid, leaky ReLu or tanh

initializer random-number distribution used to initialize the weigths

regularizer value for λ

class weight weight to balance the number of signal/background events

learning rate value for ε

decay value for the decay parameter

Table 4.1: Description of the hyperparameters used in this thesis.

4.2 Evaluation of training/testing performance

To evaluate the performance of the training and testing processes of the NN, multiple ap-
proaches exist to visualize the separation power regarding signal and background as well
as the degree of overtraining. Those used in this thesis are presented in the following.

4.2.1 Train-test plot

In the train-test plot the output score or Event-Probability-Discriminator (EPD) is plotted
against the normalized number of events as displayed in figure 4.6.
In general, the output-score lies within a range of 0 (background) and 1 (signal). Thus, an
event situated close to 1 is ’signal-like’ and an event situated close to 0 is ’background-like’.
The distributions showing the results of the training process are indicated by the filled ar-
eas. Blue (red) represents the training distributions of the background (signal). The results
of the testing process are visualized using points in blue for background events and in red
for the signal events. Furthermore, the ratio of signal to background is depicted per bin
in the bottom panel. The bins for which no point is visible exhibit a signal-to-background
ratio greater than 2.



4.2. EVALUATION OF TRAINING/TESTING PERFORMANCE 37

Using this plot, the following two conclusions can be drawn:

1. Performance of signal-background separation: For a perfect separation, all
the background events are situated close to 0 and all the signal events are situated
close to 1. Consequently, the overlap between the distribution should be close to 0.
However, one has to be cautious and make sure that the signal-to-background ratio
has an increasing tendency towards the signal bin. The separation power in figure
4.6 seems to be quite perfect.

2. Overtraining: In this plot, also the amount of overtraining is visualized in the form
of the distance between the testing distributions (points) and the training distribu-
tions (filled areas). The less they agree, the more overtraining has been conducted.
In figure 4.6 one can see that the training and testing distributions match very well
and thus no sign of overtraining is observed. In order to check for overtraining, also
the scores of the Kolmogorov-Smirnov (KS) test [95,96] can be considered which are
given in the upper right corner. This is a statistical test to check for the difference
in the empirical cumulative distributions of two samples, in this case the test and
training subset [97]. The KS scores given are both very good [74].

Figure 4.6: Example of a train-test plot. Details can be found in the text.

4.2.2 ROC curve and AUC value

Another performance indicator is the Receiver-Operating-Characteristic curve (ROC curve)
which shows the background rejection, defined as one minus the background efficiency,
depending on the signal efficiency. A perfectly performing NN has a rectangular ROC
shape, going from (0,1) to (1,1) and then to (1,0), while a random decision would be
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indicated by a diagonal, i.e. going from (0,1) directly to (1,0). In order to be able to
evaluate the performance of the NN, usually the Area-Under-Curve value (AUC value)
is calculated. An AUC value of 1 indicates a perfectly performing NN regarding signal-
background separation, while a value of 0.5 would indicate that the performance of the NN
is not better than a random decision.
This is depicted in figure 4.7 for the training (blue) and the testing (red) process.

Figure 4.7: Example of a ROC-curve plot.

Here, both ROC curves have almost rectangular shapes and AUC values close to 1. This
indicates a well-performing NN regarding its separation power between signal and back-
ground.
From this plot the degree of overtraining can be estimated by looking at the discrepancy
of the two ROC curves. In figure 4.7 the ROC curves of training and testing almost
completely superimpose, which indicates a small amount of overtraining.

4.2.3 Confusion matrices

Another way of visualizing the separation power between signal and background and the
degree of overtraining of the NN are confusion matrices. They have the form displayed in
table 4.2.

Here, the shares of events for which the predicted and the true labels agree, i.e. the so-
called true positives and true negatives, are displayed on the diagonal. The off-diagonal
entries exhibit the shares of events having different predicted and true labels, i.e. the false
positive and false negative events. Ideally this matrix is the unity matrix. Deviations mean
that the signal-background separation is not perfect: The higher the deviation, the worse
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classifier signal
(EPD ≥ 0.5)

classifier background
(EPD < 0.5)

true signal share of true positives share of false negatives

true background share of false positives share of true negatives

Table 4.2: Visualization of the form of a confusion matrix.

the separation power of the NN.
This matrix is usually plotted separately for the training and the testing process. Com-
paring the shares between them gives an estimation for the amount of overtraining: the
larger the deviation, the higher the degree of overtraining.

4.2.4 Variable correlations and ranking

To investigate which observables contribute the most during training, the linear correla-
tions between the different observables as well as the linear correlation between the input
variables and the output-score EPD is calculated. For this purpose, the linear correlation
coefficient is used which is defined as

ρ(X, Y ) =
cov(X, Y )

σX · σY
[98]

In this definition, the covariance (cov) of the two considered observables X and Y is cal-
culated. σX and σY refer to the standard deviations of the two observables. The results
ranging from -1 to 1 can then be displayed in form of a matrix, separately for signal and
background events.
In general, a strong correlation of the observable to the output-score is desired. This in-
dicates that the observable is important for the NN in the learning process. Furthermore,
a low correlation among the input variables is desired as this indicates that a lot of new
information is provided by the different input variables.
To gain further insights, the input variables can also be ranked. For that purpose, different
metrics, like e.g. the sum of the absolute weights between the input layer and the first
hidden layer, exist.
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Chapter 5

Event selection and background
estimation

Having gathered the necessary theoretical knowledge in the last chapters, the focus is now
set on the development of a multivariate reconstruction alogrithm for tt̄ systems in the
6j2b-2LOS channel of the tt̄Z analysis. The events used in the following are required to
pass the following criteria:

• only events listed in the GoodRunsLists of 2015 and 2016 data [99] [100] are considered

• GoodCalo: LAr and Tile Calorimeters need to work properly for the event [74] [101]

• events need to pass various single electron and muon triggers [74]

• JetCleaning: ’bad jets’ need to be excluded as they are not associated to real energy
deposits in the calorimeter, but rather arise from other sources like hardware problems
or cosmic ray showers [74] [102]

• the events considered need to have a primary vertex

• leptons : In general, muons/taus need to be situated within |η| < 2.5 and electrons
need to be situated within |η| < 2.47. The truth electrons and muons are only
required to have a transverse momentum > 7 GeV (25 GeV for taus).
Within this analysis, the following additional cuts for leptons are set (analogous
to [25]): The event has to contain exactly 2 leptons with same sign and opposite
flavor, i.e. 2 electrons and no muons or taus and analogous for the other two leptons
on truth level. The 2 leptons need to have a transverse momentum of 30 GeV and
15 GeV respectively and their invariant mass has to be close to the mass of the
Z boson: |MZ − Mll| < 10 GeV. The lepton cuts listed up to here are part of the
cuts referred to as ’analysis cuts’ later on. If not specified, leptons will refer to only
electrons and muons in the following studies.
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• jets : If not stated otherwise, the events considered need to contain ≥ 6 jets and
≥ 2 b jets (analogous to [25]) with a transverse momentum of > 25 GeV. These
requirements are also included in the term ’analysis cuts’ in the following.

• to assure that only the signal process is considered, i.e. a hadronic tt̄ decay and
the Z boson decaying to ee/µµ, further signal-region (SR) cuts are set: the Monte-
Carlo sample including the Z → ττ decay is excluded and only events containing
hadronically decaying tt̄ systems on truth level are accepted.

As mentioned in section 2.2, the 2LOS-channel is characterized by its large background
rate. This results mainly from the associated production of a Z boson and additional jets
(Z+jets) as well as the dileptonic tt̄ decay, as both of them exhibit a similar signature as
the signal tt̄Z process [25]. The impact of the background is estimated in the following
based on the event yields after application of the mentioned cuts without the signal-region
cuts. These are loosened as there should be no hadronic tt̄ systems in the background
processes. The denoted uncertainty is the square root of the sum of the squared, weighted
event yields over all bins. The relative shares are visualized in a pie chart scaled to 140 fb−1

corresponding to the amount of data taken during the full Run-2 period. The event yields
and the pie chart can be found in figure 5.1.

Figure 5.1: Visualization of weighted event yields along with the relative shares of the
signal tt̄Z process and the two major backgrounds of the tt̄Z-2LOS-6j2b region (section
2.2), the Z+jets process and dileptonic tt̄ decays [25].

The tt̄Z process includes in this case all decay modes of the tt̄ system and a Z boson
decaying leptonically, thus either to ee, µµ or ττ 1. The same decay modes for the Z boson
are simulated within the Z+jets sample. As the name already indicates, the dileptonic tt̄

1The hadronic Z boson decay is excluded due to its negligible impact. Z decaying to νν could not be
considered due to problems with the simulation dataset.
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sample contains exclusively dileptonic tt̄ decays.

The tt̄Z events represent the smallest share, with 385 weighted events and a correspond-
ing relative contribution of 9.6%. The largest share (53.7%) is represented by the Z+jets
process with 2151 weighted events. The event yield of the dileptonic tt̄ decay is with
1468 weighted events, corresponding to a relative share of 36.7%, situated between the
other two. This visualizes the challenge of the tt̄Z process mentioned in section 2.2: This
process is very rare and has a very small cross section, so the ’contamination’ with back-
ground processes is quite high 2.

2To further reduce the background contamination, the official tt̄Z analysis cuts also imply a cut on the
Boosted Decision Tree (BDT) output value. As within the scope of this thesis, most studies are conducted
only for the tt̄Z process, this is not used.
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Chapter 6

Reconstruction studies using the
minimum-χ2 reconstruction

Since the discovery of the top quark at the Tevatron, steadily increasing center-of-mass
energies and integrated luminosities allowed for investigation of signatures at ever higher
mass scales. This also led to the discovery of the associated production of a top-antitop-
quark system with a Z boson (tt̄Z system) in 2015. [23,24]
As a basis for conducting precision measurements of its properties such as the cross section,
a good reconstruction of these systems is indispensable. This implies selecting the 6 jets
originating from the tt̄ system among the multiple physical objects produced in a high
number of interactions. As this is quite a challenging task and a lot of different hypotheses
have to be considered in order to find the one with a well-reconstructed tt̄ system, dedi-
cated procedures have been developed and established.

One of them is the minimum-χ2 reconstruction algorithm which will be described and in-
vestigated in the following sections using MC-simulated data. If not stated otherwise, the
histograms shown in this chapter contain raw, i.e. un-weighted, events.

6.1 Standard reconstruction technique: the minimum-

χ2 method

In this section, the standard minimum-χ2 reconstruction is described and applied to the
tt̄ system in tt̄Z decays. To evaluate its discrimination power regarding background pro-
cesses, this method is also applied to the two major backgrounds of the 2LOS-tt̄Z-analysis
channel for the 6j2b signal region: the Z+jets and dileptonically decaying tt̄ systems [25].
To quantify the performance for tt̄Z events, the χ2-reconstructed tt̄ systems are compared
to the ones on truth level in a procedure called truth matching. Furthermore, they are
also compared to all hypotheses considered during reconstruction to get more detailed in-

45
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formation about the performance of the minimum-χ2 algorithm.

6.1.1 The minimum-χ2 reconstruction algorithm

The standard reconstruction method for tt̄ systems is the so-called minimum-χ2 method.
There, the jets of one event are grouped together in groups of 6 jets under the condition
that exactly 2 of them have a b-tag. Then, for each of these groups, every combination
of these 6 jets to obtain a tt̄ system is formed. This is done by iteratively considering all
possibilities to place the selected jets on the positions of the 6 decay products of the tt̄
system as visualized in figure 6.1. By name, these are the b position, the b̄ position, the
position of the first/second decay product of the W boson originating from the top quark
(W1t/W2t) and the position of the first/second decay product of the W boson originating
from the anti-top quark (W1t̄/W2t̄). On truth level, the W1t̄ quark and the W2t quark
are down-type quarks while the W2t̄ and W1t quarks are up-type ones.
Subsequently, only combinations with a b-tagged jet placed on the b/b̄ position, highlighted
in grey in the table in figure 6.1, are considered.

Figure 6.1: Visualization of the minimum-χ2 procedure described in the text. In this
context, W1t (W2t) is the first (second) decay product of the W boson originating from
the top quark and W1t̄ (W2t̄) is the first (second) decay product of the W boson originating
from the anti-top quark. On truth level, W1t and W2t̄ are up-type quarks while W2t and
W1t̄ are down-type quarks.

For each of these combinations/hypotheses within one group of 6 jets and for all different
groups, a χ2 value is calculated which is defined as

χ2 =

(
mb,W1t,W2t −mt

σt

)2

+

(
mb̄,W1t̄W2t̄ −mt

σt

)2

+

(
mW1t,W2t −mW

σW

)2

+

(
mW1t̄,W2t̄ −mW

σW

)2

Here, mi represents the invariant mass of the objects i, mt is the literature value of the
top-quark mass of 173.1 GeV [103], σt is the width of the top-quark mass of 1.41 GeV [103],
mW is the mass of the W boson of 80.4 GeV [103] and σW is the width of the W-boson
mass of 2.1 GeV [103].
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Finally, the combination/hypothesis which has the overall minimal χ2 value is decided to
be the reconstructed tt̄ system. This procedure is repeated for all the events.

6.1.2 Signal-background discrimination using the minimum-χ2

reconstruction

In order to evaluate the discrimination power of the minimum-χ2 method regarding the
signal and the background processes, it is applied not only to the tt̄Z process, but also
to the two major backgrounds of the 2LOS-6j2b region, the dileptonic tt̄ decay and the
Z+jets process [25]. In this context, the same event selection is applied as for the pie chart
in chapter 5.

In a first step, the χ2 value is plotted in figure 6.2 for the tt̄Z process (blue), for the Z+jets
process (red) and for the dileptonic tt̄ decay (yellow) scaled to a luminosity of 140 fb−1.
The normalized results are depicted with event weights applied.

Figure 6.2: Normalized and weighted χ2-value distribution of the best hypotheses selected
by the minimum-χ2 algorithm for the tt̄Z process (blue), for Z+jets (red) and for the
dileptonic tt̄ decay (yellow).

In this plot, all distributions have a peak at low χ2 values and a long tail towards higher
values. The tt̄Z process has a significantly higher and slightly sharper peak with a nar-
rower tail compared to the other two. The background processes show the same basic
shape within statistical fluctuations. All in all, there are more entries at low χ2 values for
the tt̄Z process which implies a better reconstruction performance as expected.
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Furthermore, the reconstructed top-quark and W-boson masses are compared in order to
check the reproduction performance of physical properties. The weighted and normalized
results are scaled to 140 fb−1 and are depicted in figure 6.3 for the three different processes
in the same colors as above.

(a) (b)

Figure 6.3: Normalized and weighted mass distributions of the reconstructed top-quark
masses (a)) and the W-boson masses (b)) of the best χ2 hypothesis for the signal tt̄Z
process (blue) as well as for the two major backgrounds Z+jets (red) and the dileptonic tt̄
decay (yellow).

In figure 6.3a the distributions of the reconstructed top-/anti-top-quark mass are displayed,
while figure 6.3b depicts the reconstructed W-boson masses. For both plots only the best
χ2 hypothesis of each considered event has been used.
The highest and sharpest peaks situated at a value of about 170 GeV in figure 6.3a (80 GeV
in figure 6.3b) with a small tail towards higher mass values, belongs to the tt̄Z process. The
two background processes exhibit comparably lower peaks with broader tails. The tails of
the tt̄Z process are caused by either choosing wrong jet combinations for the reconstruction
of the top quark/W boson or jets that do not originate from these objects. In the two
background processes the broad tails arise due to the non-existence of hadronic tt̄ systems.
Thus, the jets used for reconstruction do not originate from a real top quark/W boson
which leads to the observed tails.
The fact that all three processes have a significant peak at a value of about 170 GeV/80 GeV
might seem a bit surprising at first sight. However, taking a closer look at the definition
of the χ2 value, it can be observed that only the differences of the reconstructed masses to
the literature values are used in the formula. That is why the resulting mass distributions
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are pulled towards these literature values and thus all distributions show a peak there.
Nevertheless, the best result is clearly achieved by the tt̄Z (signal-)process as expected.
Compared to the top-quark mass distributions, the shapes of the W-boson masses are a
bit broader. This is a consequence of the increased number of combinations for light jets
compared to the b jets. For the latter, the b-tagging requirement needs to be fulfilled in
addition which reduces the number of possible combinations.

Concluding, it can be stated that the χ2 reconstruction procedure performs better for the
tt̄Z process than for the two major backgrounds as expected. Thus, the χ2 value can be
used as a variable for discriminating the signal tt̄Z process from the major backgrounds.

6.1.3 Truth matching

In order to quantify how well the χ2 reconstruction works for tt̄Z compared to the parton-
level truth information, the selected jets of the best χ2-reconstructed tt̄ system are matched
with the truth-quark positions.
On parton/jet level, a match is present if ∆R(jet,quark) < 0.3 as shown in figure 6.4.
Otherwise the jet is referred to as unmatched.

Figure 6.4: Visualization of the definition of a matched jet. In this context, the jets are
approximated to be cone-shaped. The truth partons are depicted as blue lines.

Based on this definition three different categories for the whole tt̄ system are defined:
’matched’, ’combinatorial’ and ’non-matched’. They are visualized in figure 6.5 and are
described below:

• matched: The reconstructed tt̄ system belongs to the ’matched’ category if two
conditions are fulfilled: First, every χ2-reconstructed jet has to match a truth parton
of the tt̄ system, i.e. ∆R(jet, parton) < 0.3 for all 6 χ2-reconstructed jets is required.
Furthermore, the assigned/matched parton to a particular jet also needs to be the
corresponding one. For example, if the considered jet is the b jet, then the matched
parton must be the b quark. If both these criteria are fulfilled, the tt̄ system is
assigned to this category. This situation is visualized in sketch 6.5a.
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(a) (b) (c)

Figure 6.5: Sktech of the three different truth-matching categories, ’matched’ (a), ’com-
binatorial’ (b) and ’non-matched’ (c). In this context, the jets are approximated to be
cone-shaped. The truth partons are depicted as lines. See text for more details.

• combinatorial: In order for the tt̄ system to be assigned to this category, every
χ2-reconstructed jet needs to match a truth parton, i.e. all ∆R(jet, parton) values
need to be smaller than 0.3. However, the assigned parton is, in at least one case,
not the corresponding one. For example, the b̄ jet is assigned to the W1t parton and
vice versa as depicted in sketch 6.5b.

• non-matched: In this category, at least one jet of the χ2-reconstructed tt̄ system
cannot be matched, i.e. ∆R(jet, parton) ≥ 0.3. This is visualized in sketch 6.5c, in
which the W1t̄ jet is unmatched.

Applying this truth-matching procedure to the tt̄Z events fulfilling all requirements of
chapter 5 yields the following result:

matched combinatorial non-matched

1.1 % 2.9 % 96.0 %

The low portion of 1.1% of reconstructed tt̄ systems in the matched category and the ex-
tremely high share of 96% of non-matched events, show very clearly that something goes
wrong. Apparently, the reconstruction implies some challenges which have not been con-
sidered in the reconstruction procedure. To identify and understand these, more detailed
investigation studies need to be conducted.

6.1.4 Performance investigation of the minimum-χ2 reconstruc-
tion for tt̄Z events

Having found in the previous chapter that the χ2 reconstruction is not working properly,
the performance of the χ2 reconstruction is evaluated in more detail in this subsection.
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To reduce the probability that jets not belonging to the tt̄ system are erroneously consid-
ered for reconstruction, a cut on exactly 6 jets and exactly 2 b jets is set in addition to the
other requirements presented in chapter 5.
Compared to the event yields found in figure 5.1, the stricter cut on exactly 6 jets and
exactly 2 b jets implies a reduction by 56 %. The constraint on the signal process, thus a
hadronically decaying tt̄ system with a Z boson decaying to ee/µµ, implies a reduction of
18.4%. As a consequence, this means that the following studies based on a combination of
these cuts are conducted using 34% of the event yield presented in figure 5.1.

As the following studies only consider the tt̄Z process, the histograms in this section con-
tain raw events, i.e. no event weights have been applied. This is allowed as only the tt̄Z
process, i.e. one physical process, is considered.

At first, the χ2 values of the selected best hypotheses are compared to the values of all
considered hypotheses. Figure 6.6 depicts the resulting normalized distributions for the
best χ2 hypotheses (blue) and all hypotheses (red).
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Figure 6.6: Normalized distributions of the χ2 value for the best χ2 hypotheses (blue) and
all considered hypotheses (red).

In this plot, a clear separation between the two distributions can be identified. While
the distribution of the best χ2 hypotheses has a relatively sharp peak at low values and a
comparably small tail towards higher values, the other distribution shows a small peak at
low values followed by a broad shoulder. Thus, it can be concluded that, indeed, the χ2

reconstruction selects ’better’ hypotheses, i.e. those with lower χ2 values.

To get further insights on how well physical observables are reproduced, the masses of the
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reconstructed top quark and the W boson are investigated as well. Figure 6.7 shows the
normalized distributions for the best χ2 hypotheses (blue) and all hypotheses (red).
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Figure 6.7: Normalized distributions of the reconstructed top-quark mass (a)) and the
reconstructed W-boson mass (b)) for the best χ2 hypothesis (blue) and the non-selected
hypotheses (red).

Figure 6.7a shows the normalized distributions of the top-quark mass. The selected hy-
potheses have a well-defined, sharp peak situated at a value of about 170 GeV and exhibit
a small tail towards higher values resulting from wrongly selected combinations. The dis-
tribution which represents all hypotheses has also a small peak at the same value due to
the nature of the χ2 definition which pulls the distribution towards the literature value.
Furthermore, the distribution of all hypotheses shows a broader tail towards both lower
and higher values in comparison to the one representing the best hypotheses. The broader
tail towards higher values is a result of choosing a wrong combination of jets for the re-
constructed tt̄ system. The tail towards lower values is caused by choosing jets for the
reconstruction which do not originate from the tt̄ system but instead e.g. from other pro-
cesses/pile up/underlying event.
In figure 6.7b the reconstructed W-boson masses are shown. Here, the same trends can
be found as for the top-quark masses. However, the difference between the normalized
distributions of the selected and all hypotheses is reduced significantly.
The fact, that in both cases the tails are broader, shows that the selection of the correct
jets as well as placing them on the corresponding positions works better for the best χ2

hypotheses.

As a conclusion, it can be stated that the physical properties are better reproduced for the
selected χ2 hypotheses. However, the separation is, especially for the W-boson mass, not



6.2. INVESTIGATION STUDIES OF NON-MATCHED EVENTS 53

perfect. This indicates that there seem to be some challenges with which the reconstruction
algorithm has to cope. This becomes obvious by applying the truth matching for the event
selection presented in chapter 5 with the stricter cut on exactly 6 jets and exactly 2 b jets.
It leads to the following result:

matched combinatorial non-matched

1.6 % 4.3 % 94.1 %

This displays that the matching share is improved by focusing on the signal process by
applying a stricter cut on the number of jets/b jets. However, a share of 1.6% of well-
reconstructed tt̄ systems is still an extremely bad result.
In this context, also the overall matchable share, i.e. the ratio matched

matched+combinatorial
, can be

considered. The assumption is that only 5.9% of the events contain a fully reconstructable
tt̄ system as every jet was able to be matched according to the category definition. Thus,
1.6%
5.9%

= 27% of those events have been correctly reconstructed. However, this share is still
quite low.

6.2 Investigation studies of non-matched events

As shown in the previous section, the reconstruction of hadronically decaying tt̄ systems
in tt̄Z events is not a trivial task and faces some challenges. In order to obtain a deeper
understanding of those, detailed investigation studies are conducted in this section.
Analogously to the previous subsection, a cut on exactly 6 jets and exactly 2 b jets is set
on top of the requirements presented in chapter 5. This aims at reducing the probability
that jets not originating from the tt̄ system are erroneously considered for reconstruction.
As the following studies only consider the tt̄Z process, the histograms contain only raw
events, i.e. no event weights have been applied.

To identify the challenges in reconstructing hadronic tt̄ systems within tt̄Z events, the
χ2-reconstructed tt̄ systems of the non-matched category are used to conduct diverse in-
vestigation studies.
In this context, at first, the question of a jet-type depending matching performance is tar-
geted. Furthermore, flavor and ∆R studies are conducted and it is studied, if the choice of
the ∆R value of 0.3 used in the truth matching is justified. Finally, the impact of phase-
space adaption between truth and reco level as well as events containing partons situated
within ∆R < 0.8 to each other are studied.

6.2.1 Jet-type depending matching performance

In a first step, it is investigated if the reconstruction works better for a certain type of jet.
This is done using the events in which the χ2-reconstructed tt̄ system is assigned to the
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non-matched category during truth matching. Using these, it is counted how often for
which of the 6 jets the ∆R(jet, parton) is ≥ 0.3. The result is shown in figure 6.8.

Figure 6.8: Number of events in which one of the jets shown on the x-axis cannot be
matched (∆R < 0.3) to a truth parton considering events of the non-matched category
(subsection 6.1.3).

The resulting number for the b jets is with about 500 events roughly a factor 10 lower than
for the light jets (W1t, W2t, W1t̄, W2t̄) with about 5500 events. As a lower number of
unmatched b jets implies a larger number of matched ones, it can be concluded that the
reconstruction performance is better for the b jets than for the light jets. The reason is,
that the jets placed on the b-jet positions by the minimum-χ2 method were required to
have a b-tag. Hence, more information is used for the b jets during reconstruction which in
consequence leads to a better matching/reconstruction performance. The slight differences
between the light jets do not have a physical reason, but rather result from statistical
fluctuations.

6.2.2 ∆R and flavor studies

In a second step, a better understanding of the ∆R distance between the χ2-selected reco
jets and the truth partons is developed and also the flavors of the selected reco jets are
studied in the context of ∆R and flavor studies.
For that purpose the focus is shifted to the particular jets of the χ2-reconstructed tt̄ system
in non-matched events which exhibit a ∆R(jet, parton) ≥ 0.3 to the assigned truth parton.
If the particular jet is e.g. the b jet, this is in the following referred to as an unmatched
b case. The following studies are then conducted for the respective unmatched cases, e.g.
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studying the flavor of the b jet is performed for unmatched b cases and so on.

At first, the ∆R distance between the reco jet and the corresponding truth parton is in-
vestigated. Figure 6.9 depicts the resulting normalized distributions for the different reco
jets W1t (blue), W2t (red), W1t̄ (yellow), W2t̄ (green), b (purple) and b̄ (black) for the
respective unmatched cases of the non-matched events.
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Figure 6.9: Normalized distributions of ∆R between the reco-jet x and their correspond-
ing truth-parton y for the respective unmatched cases of the events of the non-matched
category (subsection 6.1.3); x either represents the W1t jet, the W2t jet, the W1t̄ jet, the
W2t̄ jet, the b jet or the b̄ jet.

For the b and the b̄ jets, the ∆R distance to the corresponding parton has a sharp peak
just above the matching threshold of 0.3. Moving towards higher values, a broad shoulder
with another maximum at about a ∆R value of 3 can be found. For the light jets, this can
be observed as well. However, in comparison to the b/b̄ distributions, there is no sharp
peak just above the threshold value. In general, all distributions have a maximum ∆R less
than 6.
This clearly displays that the unmatched b/b̄ jets are closer to the corresponding truth-
parton positions and thus a better reconstruction performance of b jets compared to light
jets is indicated1.

The above observations raise the question about the physical scenarios causing these

1Within the b-tagging procedure a cut on the ∆R between the jet and the b-vertex direction might
have already been included. This could have had an impact on the analyzed distribution as well as on
other distributions in this chapter.
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shapes. In the next step, it is therefore taken into account that the χ2 reconstruction
algorithm has selected hypotheses in which the jets are placed on wrong positions, i.e. the
b jet is assigned to the b̄ position and vice versa and the light jets are switched among
each other. Figure 6.10 displays the resulting normalized distributions of the minimum
∆R between the b/b̄ jet and the b or b̄ truth parton as well as the minimum ∆R between
the light jets and all light truth partons. This is conducted for the respective unmatched
cases of the non-matched events and depicted in the same color-coding as in figure 6.9.
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Figure 6.10: Normalized distribution of the minimum ∆R between a certain reco jet x and
a truth-parton y for the respective unmatched reco-jet cases for events of the non-matched
category (subsection 6.1.3); x represents either the W1t jet, the W2t jet, the W1t̄ jet, the
W2t̄ jet, the b jet or the b̄ jet while y represents either the light partons (W1t, W2t, W1t̄,
W2t̄) or the b/b̄ parton as indicated in the legend of the plot.

For the b-/b̄-jet distributions, once again, a high, sharp peak just above the threshold can
be observed which is not present in the light-jet distributions. While the b-jet distributions
show a broad tail towards high ∆R values, a shoulder with a maximum value of about 1.5
can be found in the light-jet distributions.
In comparison to figure 6.9, all distributions are in general narrower. This manifests itself
in a lower maximum value of 3.5 instead of 5 and a peak value for the light-jet distributions
situated at about a ∆R value of 1.5 instead of 3. Moreover, also the significant shoulder
found in figure 6.9 in the b/b̄ cases vanishes and instead becomes a tail.
Thus, from these observations it can be concluded that one challenge in reconstruction is
the switching among the light jets and the b/b̄ jet respectively. Reducing this is not trivial
as the mass value of the reconstructed tt̄ system, the reconstructed top-quark mass as well
as the reconstructed W-boson mass exhibit only minor changes for these switched cases.
A potential solution could be to include not only a b-tagging condition, but also jet charges
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or conditions on other sensitive variables in the reconstruction procedure.

To push further, also the minimum distance between the reco jet at hand and all truth
quarks is plotted for the respective unmatched cases for events of the non-matched cate-
gory. The normalized distributions are shown in figure 6.11 in the same color-coding as in
figure 6.9.
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Figure 6.11: Normalized distribution of the minimum ∆R between a reco-jet x and all
truth partons originating from the tt̄ system for the respective unmatched cases of events
of the non-matched category (subsection 6.1.3); x represents either the W1t jet, the W2t
jet, the W1t̄ jet, the W2t̄ jet, the b jet or the b̄ jet.

The same trends can be observed as in the previous scenario shown in figure 6.10: The
distributions of b and b̄ have a sharp peak at low ∆R values, just above the matching
threshold of 0.3. At larger ∆R values a tail ending at a value of circa 3 can be observed.
The light jets have a broader distribution with a peak at a value of about 1 and reach up
to a maximum value of circa 3.
Compared to figure 6.10, the distributions are a lot sharper and end at lower values. Obvi-
ously, the corresponding parton or one of the same type is not always the best-fitting one,
i.e. the one exhibiting the lowest ∆R(jet, parton) value.

To gain further information about this best-fitting parton, the absolute value of the pdgId2

of the truth quark which gives the minimum ∆R between the reco jet at hand and all truth

2The pdgId gives the flavor of a particle with values according to a Monte-Carlo particle numbering
scheme which can be found in [104]. Antiparticles have the same values, but with a negative sign.
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partons in figure 6.11 is investigated. Figure 6.12 depicts the normalized result for the dif-
ferent unmatched cases for the events of the non-matched category in the same color-coding
as in figure 6.9.
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Figure 6.12: Normalized distribution of the absolute value of the pdgId of the truth quark
which yields the minimum ∆R between a reco-jet x and all the truth quarks for the
unmatched x cases for events of the non-matched category (subsection 6.1.3); x refers
either to the W1t jet, the W2t jet, the W1t̄ jet, the W2t̄ jet, the b jet or the b̄ jet.

For both, b and b̄, the best-fitting truth partons are mostly those with an absolute value
of the pdgId of 5, hence b quarks. Charm quarks (pdgId of 4) are a bit more often the
best-fitting partons to the b-tagged jet positions compared to up, down and strange quarks
(pdgID 1, 2, 3). This can be explained by considering misidentification during which non-
b-jets are erroneously labeled with a b-tag. At the b-tagging working point used, this is
the case for 16% of the charm quarks (subsection 3.2.5). This corresponds well to the value
of about 12% in the plot. For the light jets the misidentification rate of 1% (subsection
3.2.5) is negligible and cannot explain the observed contribution of about 10%. It is more
likely that the b and the light partons lie close together. In consequence, the b jet has a
slightly smaller ∆R to one of the light partons than to the b quark. This situation will be
referred to as b-light merging in the following.
Focusing on the light jets, a large contribution of best-fitting light partons can be found.
As already outlined, switching among the light jets is quite frequent which results in equal-
ized contributions of up- and down-type quarks (1, 2, 3, 4). Furthermore, the share of 35%
of b quarks which fit best to the light jets (W1t, W2t, W1t̄ and W2t̄) is eye-catching. This
is once again attributable to the phenomenon of b-light merging.

Concluding, it seems that b-light merging represents an additional challenge in the recon-



6.2. INVESTIGATION STUDIES OF NON-MATCHED EVENTS 59

struction of hadronic tt̄ systems in tt̄Z events.

This assumption is verified by considering the minimal ∆R value between the b and light
truth partons for the different unmatched cases for events of the non-matched category.
Figure 6.13a depicts the normalized result in the same color-coding as in figure 6.9.

(a)

(b)

Figure 6.13: Normalized distribution of the minimum ∆R between a truth-parton x and
a truth-parton y for the corresponding unmatched x reco-jet case of the events of the
non-matched category (subsection 6.1.3) (a) as well as a sketch of b-light merging (b)
corresponding to entries below a value of ∆R = 0.8; x in this case can either be the W1t
parton, the W2t parton, the W1t̄ parton, the W2t̄ parton, the b parton or the b̄ parton
with y being either the b/b̄ partons or the W1t/W2t/W1t̄/W2t̄ partons as indicated in
the legend of the plot. In the sketch, the jets are approximated to be cone-shaped. The
truth partons are depicted as lines.

It can be found that a high portion of b/b̄ truth partons are indeed situated relatively
close to the light partons (W1t, W2t, W1t̄, W2t̄). In this context, ’close’ refers to a ∆R
distance smaller than 0.8 between the b/b̄ and the light truth partons. Taking into account
the fact that this is the diameter3 of the anti-kt algorithm used to cluster the jets on reco
level, ambiguities in reconstruction and matching can arise in these cases. This is depicted
in the sketch in figure 6.13b.

3Actually, the resulting jets of the anit-kt algorithm are only very roughly cone-shaped. The idea of an
exactly cone-shaped jet with a certain diameter is just used as an approximation here.
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To obtain further information about the selected jets, their flavors are investigated for
the cases in which the reco jet at hand cannot be matched. There are two techniques for
deriving partonic flavor labels for reco jets in Monte-Carlo event simulations [105].
One approach is to assign each jet the label of a parton by using a certain value of
∆R(jet, label). This method is used to determine the so-called ’jet-truthflavor’ of the
reconstructed jets by checking whether, within a radius of ∆R < 0.3, the jet can be asso-
ciated to a B (value of 5) or a c (value of 4) hadron with pT > 5 GeV. Furthermore, also a
check for taus is conducted. The B hadron has then priority over c hadrons and over taus.
The jets which could not be assigned to either of these types are labeled with 0. This value
is thus a collection of up, down, strange, gluon and pile-up jets. [74] [105]
Figure 6.14 displays the normalized jet-truthflavor distributions for the 6 jets originat-
ing from the reconstructed tt̄ system for the respective unmatched cases for events of the
non-matched category again using the same color-coding as in figure 6.9.
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Figure 6.14: Normalized distributions of the jet-truthflavor of a reco-jet x for the respective
unmatched cases for events of the non-matched category (section 6.1.3); x refers either to
the W1t jet, the W2t jet, the W1t̄ jet, the W2t̄ jet, the b jet or the b̄ jet.

For the b jets, a large share can be assigned to a B hadron. In about 16% of the cases,
they are close to c hadrons which corresponds to the misidentification rate of charm jets
in b-tagging (section 3.2.5). There is also a share of about 10% of jets which cannot be
assigned to a B/c hadron or a tau and thus are light, gluon and pile-up jets. This might
be a result of b-light merging.
For the light jets, one can see that a majority of them are not close to B/c hadrons and
taus as expected. In about 1% of the cases, they are assigned to B hadrons which is a
result of misidentification during b-tagging (subsection 3.2.5).

Another technique to determine the flavor of the reconstructed jet is to use ghost association
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(subsection 3.2.4) by clustering the low-pT partons into jets. The flavor is then assigned in
the form of the pdgId of the hardest, ghost-associated parton inside the jet as this parton
is assumed to have initiated the jet. This flavor information is contained in the so-called
’jet-truthPartonLabel’ [74] [105].
Compared to the jet-truthflavor information, this has the advantage that jets can also be
labeled as gluon jets and as all the distinct quark flavors. The bin corresponding to a value
of -1 represents the jets from pile up.
Figure 6.15 displays the results of the jet-truthPartonLabel variable for the 6 jets of the
reconstructed tt̄ system for the respective unmatched cases for the events of the non-
matched category in the same color-coding as used in figure 6.9.
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Figure 6.15: Normalized distributions of the jet-truthPartonLabel of a reco-jet x for the
respective unmatched cases for events of the non-matched category (subsection 6.1.3) with
x being either the W1t jet, the W2t jet, the W1t̄ jet, the W2t̄ jet, the b jet or the b̄ jet.

Most of the b/b̄ jets have been initiated by b partons, according to ghost association of the
hardest parton. Again, a significant contribution of charm quarks as initiating partons is
found due to misidentification. Light partons are only ghost-associated in a small number
of cases. The striking observation in this plot is the large contribution of b jets which are
ghost-associated to gluons. This might be a result of gluon emissions as visualized in 6.16.

Figure 6.16: Sketch of a gluon emission from a b quark.



62 CHAPTER 6. THE MINIMUM-χ2 RECONSTRUCTION

For the light jets, this contribution is even higher and dominates the one of light partons
ghost-associated to them. In a negligible number of cases the light jets are ghost-associated
to b quarks. This can be explained by misidentification.

The contribution from pile-up jets is negligible in all cases.

One reason for the fact that this large gluon contribution cannot be detected explicitly
by studying the jet-truthflavor is the missing gluon label. For the jet-truthflavor, there is
only one bin for all types except b/c quarks and taus. Another reason is that if the gluons
emerge in final-state radiation, the gluon is still close to the b quark and hence should
still be close to the B hadron as well. Due to the better ’resolution’ of the flavors, the
jet-truthPartonLabel can clearly show this.

Concluding, it can be retained that based on the ∆R studies two challenges in reconstruc-
tion have been revealed: on the one hand, there is the switching among b and b̄ jets as well
as among the light jets and, on the other hand, b-light merging poses a challenge. Both
of them can hardly be avoided. In particular for the switching among the jets the masses
of the reconstructed tt̄ system as well as the reconstructed top-quark/W-boson masses
only exhibit minor changes. A possible solution therefore could be to take into account
jet charges or conditions on other sensitive observables during reconstruction. In order to
develop a possible solution for the b-light merging, more detailed studies are conducted in
subsection 6.2.5.
Within the scope of the flavor studies an additional challenge in the form of gluon-initiated
jets has been identified. These can only be avoided by developing and applying a quark-
gluon tagger. As this is a separate subject not targeted in this thesis, this has not been
pursued further.

6.2.3 Validation of the matching condition ∆R(jet, parton) < 0.3

In the context of the ∆R studies in the previous subsection it has been found that a lot of
unmatched b/b̄ jets have ∆R values slightly greater than 0.3 to their corresponding truth
partons. For that reason, it is checked within this section if the standard matching value
of ∆R < 0.3 is a justified choice.
Therefore, the shares of events which can be assigned to the matched, combinatorial and
non-matched category for different choices of the ∆R matching value are analyzed. In
addition also the shares of matchable events (matched + combinatorial shares) as well as
the percentage of matched to matchable events is given.
The results corresponding to values between 0.2 and 0.8 can be found in the table 6.1.

The percentage of events assigned to the matched category increases from 1.1% for a ∆R of
0.2 to a value of 2.0% for a ∆R of 0.5, before it decreases again at higher ∆R values. The
share of events in the combinatorial category as well as the matchable share rise steadily
while the share of events in the non-matched category and the percentage of matched to
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matchable events decreases continuously with increasing ∆R.
This can be explained by envisioning the following situation: the more the matching dis-
tance is increased, the more jets can be matched to some parton. As a consequence, the
contribution of non-matched events decreases with increasing ∆R while the percentage of
matchable events increases. However, only the fact that some jet can be matched to a
parton does not imply that the jet and the parton are the corresponding ones. This is
visualized by the decreasing percentage of the matched to matchable events as well as the
decreasing contribution of matched events for ∆R values above 0.5.

∆R matched [%]
combi-

natorial [%]
non-

matched [%]
matchable [%] matched

matchable
[%]

0.2 1.1 2.6 96.2 3.7 29

0.3 1.6 4.3 94.1 5.9 27

0.4 1.9 5.5 92.6 7.4 26

0.5 2.0 6.8 91.2 8.8 23

0.6 1.9 8.2 89.9 10.1 19

0.7 1.8 10.0 88.3 11.8 15

0.8 1.5 12.3 86.2 13.8 11

Table 6.1: Table yielding the shares of events which can be assigned to the matched,
combinatorial and non-matched category (subsection 6.1.3) for different choices of the
∆R matching value (0.2 to 0.8). In addition also the shares of matchable events
(matched + combinatorial shares) as well as the percentage of matched to matchable
events is given.

Subsequently, ∆R values above 0.5 can be excluded as one does not want the matched or
rather the matched to matchable contribution to be unnecessarily low. Also, the value of
0.5 itself should not be chosen due to the high combinatorial share resulting in a small
percentage of matched to matchable events. Therefore, a trade-off between a higher per-
centage of matched or rather matched to matchable events and a higher combinatorial
share has to be conducted for the remaining ∆R values of 0.2, 0.3 and 0.4.

To determine the optimal matching value out of the aforementioned values, further investi-
gation studies of the physical properties are conducted. For this reason, the ∆R and flavor
studies are repeated and in order to cover both jet-types exemplified for the W1t and the
b reco jets.

First, the minimum ∆R between the W1t/b reco jet and all truth partons originating
from the tt̄ system as well as the normalized distribution of the pdgId of the truth quark
resulting in this minimal value are considered. This is shown in figure 6.17 for events of
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the non-matched category in which the W1t/b reco jet could not be matched to a truth
parton within the chosen ∆R radius of 0.2, 0.3 and 0.4.

The normalized distributions of the W1t reco jet in figure 6.17a and the b reco jet in
figure 6.17c indicate that the shapes for the different ∆R values stay the same especially
towards higher values. The only observable differences arise due to the moving matching
threshold at lower values. In the case of the unmatched b jets, also the tail gets a bit
broader with increasing ∆R values as in this cases also more jets are accepted which do
not originate from the tt̄ system. While in figure 6.17a the corresponding bins situated
just above the particular threshold have identical heights, a decreasing height can be found
for the distributions in figure 6.17c. In the aforementioned figure, the difference between
the shapes corresponding to the 0.3 and the 0.2 values is a lot larger than the one between
those corresponding to the 0.3 and 0.4 values.

The pdgId of the truth partons resulting in these minimal values is shown for the un-
matched W1t cases in figure 6.17b and for the unmatched b cases in figure 6.17d.
In general, the underlying shapes stay the same. While in figure 6.17b there are only slight
differences for the different ∆R values, in figure 6.17d significant differences especially in
the b-quark contribution (pdgId of 5) can be observed. For a ∆R value of 0.2 there are
clearly more b quarks leading to a minimal ∆R value. For the other two values, this share
is reduced and instead the light contributions are larger. This is expected as a reduced ∆R
value implies a stricter selection.
It is striking that the differences for the unmatched b-jet cases are larger than for the
unmatched W1t-jet cases. This can be explained by considering the larger number of light
jets compared to the number of b jets. Taking into account the phenomenon of switching
among the light jets, there are subsequently more possible combinations which result in
canceling out the differences for the light jets.

All in all, from the aspects covered in figure 6.17, it can be deduced that the choice of the
∆R value to be 0.3 represents a compromise between an overall higher matching percentage
and a lower b-quark contribution in case of unmatched b reco jets.
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Figure 6.17: Normalized distributions of the minimum ∆R between the W1t reco jet (b
reco jet) and all the truth quarks in a)/c) and the pdgId of the corresponding truth quark
resulting in this minimum value in subfigure b)/d) respectively. The events considered are
the unmatched W1t reco jet cases (b reco cases) for events of the non-matched category
(subsection 6.1.3). The different colors indicated in the legend refer to different matching
∆R values.

In a next step, the normalized minimum ∆R distribution between, on the one hand, the
W1t reco jet and the light truth partons as well as, on the other hand, the minimum ∆R
distribution between the b reco jet and the b/b̄ truth partons are analyzed. The results
can be found in figure 6.18 in the same color-coding as in figure 6.17. This representation
has been chosen in order to take into account the switching between the light jets which
can hardly be avoided.
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Figure 6.18: Normalized distribution of the minimum ∆R between the W1t reco jet and
the light truth partons (b reco-jet and b/b̄ truth partons) originating from the tt̄ system
for the unmatched W1t cases (unmatched b cases) in a)/b) for events of the non-matched
category (subsection 6.1.3) for different values of the matching ∆R as indicated in the
legend.

In both cases, changing the matching ∆R value only slightly changes the shapes of the
distributions, but rather results in a moving threshold depending on the chosen value.
In figure 6.18a, a comparison of the threshold-bin heights manifests a dip. The minimum
is traversed by the distribution corresponding to the ∆R value of 0.3. This means that not
too many jets are accepted as with a 0.4 matching value while at the same time not too
many of them are rejected as for a choice of a 0.2 matching value.
In figure 6.18b, decreasing heights with larger differences between the values of 0.2 and
0.3 than between 0.3 and 0.4 are found instead of a dip. Thus choosing a matching of 0.2
instead of 0.3 would exclude a lot more non-appropriate jets.
Concluding, figure 6.18a proves that the standard matching choice of ∆R < 0.3 is a justi-
fied choice and figure 6.18b supports this too by showing that a choice of 0.3 as matching
value yields a compromise between a higher matched percentage and a stricter jet selection.

Last but not least, also the flavor of the selected W1t/b reco jet is investigated for the
different ∆R matching values. The normalized distributions of the jet-truthflavor and the
jet-truthPartonLabel observable are shown in the same color-coding in figure 6.19 for the
respective unmatched cases of events of the non-matched category.

Figures 6.19a and 6.19c illustrate that the different jet-truthflavor contributions of the se-
lected W1t/b reco jets stay basically the same. Small differences can only be observed in
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figure 6.19c for the bin related to the jets which can be assigned to a B hadron (value of 5).
Here, the larger the ∆R matching value, the smaller the contribution of assigned b jets.
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Figure 6.19: Normalized distributions of the jet-truthPartonLabel and jet-truthflavor of
the W1t jet (a and b) and the b jet (c and d) for the respective unmatched cases for events
of the non-matched category (subsection 6.1.3) for different values of the matching ∆R as
indicated in the legend of the plots.

Regarding the jet-truthPartonLabel in figure 6.19b and 6.19d of the selected W1t/b reco
jets, the basic trends stay also the same. In the case of the unmatched W1t reco-jet small
differences can be found especially for the gluon contribution (value of 21). Here, the larger
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the ∆R matching value, the more gluons contribute. For the unmatched b jets, these dif-
ferences are even more significant. Here, not only the gluon, but also the b contributions
vary significantly with larger ∆R matching values. The larger the ∆R matching value the
smaller the b and the higher the gluon contribution.
Thus, as the gluon contribution should be reduced as much as possible and also a high b
contribution should be sustained, choosing the standard value of the matching condition
of 0.3 also represents a compromise regarding the reco-jet flavors.

Considering all the analyses above, it can be noted that the standard ∆R matching value
of 0.3 represents in general a compromise between a higher percentage of matched events
and a lower (larger) gluon (b) contribution. In figure 6.18a, the standard choice seems
justified as the corresponding distribution traverses the minimum and thus assures that
the right amount of ’good’ jets are taken into account.

6.2.4 Phase-space adaption between reco and truth level: η and
pT studies

To increase the probability of successful matching, adapted phase-spaces between reco and
truth level are essential: Truth partons of the tt̄ system lying outside the allowed phase-
space on reco level inevitably lead to a non-matched scenario.
For that purpose, different cut values are studied which should be understood as ex-
ploratory choices determining the direction for further studies rather than final, optimized
choices. Table 6.2 displays the resulting shares of events assigned to the matched, com-
binatorial and non-matched category as well as the remaining number of events after the
application of the respective cuts. In addition also the matched to matchable ratio is given.
The matchable share represents in this context the sum of the matched and combinatorial
shares. To ease comparison, the result of the initial situation, which considers exactly
6 jets as well as exactly 2 b jets and applies the signal-region and analysis cuts defined in
chapter 5, is included in the table.

First, the adaption of the truth-level pT-phase-space to the one on reco level is targeted.
In this context, different pT cuts are applied to all truth partons originating from the tt̄
system. These are given in the form x/y with x corresponding to the cut value for the b
and the b̄ parton while y corresponds to the cut value for the light partons.
Imitating the pT cut of 25 GeV on reco level, one cut-combination applied on truth level
is 25/25 GeV. Taking into account hadronization and detector effects, a 30/30 GeV cut is
applied as well. Due to the fact that b quarks originating from a tt̄ system have in general
a higher pT than the light quarks, a 30/25 GeV cut is used in addition.

The cut-value pair leading to the highest matched percentage of 4.3% is the 30/30 GeV
cut. It more than doubles the initial matching percentage of 1.6%. Unfortunately, this
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combination also leads to the highest combinatorial contribution. In consequence, also the
matched to matchable ratio is only slightly improved compared to the initial situation. In
addition also the number of events is reduced by additional 6% compared to the 25/25 GeV
cut. However, the increase in the percentage of matched events of the 30/30 GeV cut is
with about 1% compared to the other two cuts quite significant and thus the 30/30 GeV
cut pair is chosen despite the downsides.

cuts
number
of events

matched
combi-
natorial

non-matched matched
matchable

initial 34083 1.6 % 4.3 % 94.1 % 27.1 %

pT cuts

30/30 GeV 8132 4.3 % 11.4 % 84.4 % 27.4 %

25/25 GeV 13100 3.5 % 8.9 % 87.6 % 28.2%

30/25 GeV 12538 3.5 % 9.0 % 87.5 % 28.0%

η cuts

1.4 6827 2.4 % 7.7 % 89.9 % 23.7 %

1.7 12229 2.4 % 6.8 % 90.7 % 26.0 %

2.5 26667 2.0 % 5.5 % 92.5 % 26.7 %

combined

pt & |η| 7134 4.8 % 12.9 % 82.3 % 27.1%

pt & |η|
& non-merged

2104 5.6 % 10.5 % 84.0 % 34.8 %

Table 6.2: Table yielding the results obtained by applying different pT/η cuts to the truth
partons originating from the tt̄ system in order to adapt the pT and η phase spaces on
reco and truth level. The pT cuts are given in the form x/y with x referring to the pT > x
cut for the b/b̄ truth partons and y referring to the pT > y cut applied to the light truth
partons. The η cut values are given in the form x referring to |η| < x. Furthermore, the
results obtained by combining the selected cuts on pT > 30 GeV and |η| < 2.5 are included.
In addition also another cut excluding merged partons (i.e. partons originating from the
tt̄ system having a distance of ∆R ≤ 0.8 between each other) has been added. Due to
rounding, the numbers in the table do not always add up to 100%.

In a next step, different |η| cuts on truth level are applied to all truth partons of the tt̄
system in order to further adapt the phase space. The cut on |η| < 2.5 is motivated by the
reco-level cut value. The |η| cut on 1.7 is chosen as this corresponds to the acceptance of
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the hadronic barrel calorimeter and the Pixel detector used for b-tagging. As the accep-
tance of the SCT barrel part also used for b-tagging is limited to |η| < 1.4, this cut value
is used as well.

The cut values on |η| < 1.7 and |η| < 1.4 yield the highest matching percentages. At the
same time also the number of events is reduced by more than half compared to the initial
situation. Furthermore, they also yield the largest combinatorial shares which leads to a
lower matched to matchable ratio compared to a cut on |η| < 2.5.
In order to keep as many events as possible and by taking into account that there is only
a minor difference in the matched shares, the cut value of 2.5 is the preferred option.

Finally, the two selected cuts are combined. Furthermore an additional cut is applied
which excludes events with merged partons, i.e. partons originating of the tt̄ system with
a distance ∆R ≤ 0.8 to each other, have been added. This addresses the challenge found
in subsection 6.2.2.

From the results, the large impact of applying the chosen cuts is clearly visible: Adapting
the phase space on reco and truth level by setting a 30/30 GeV pT cut and an |η| < 2.5
cut improves the percentage of matched events considerably from 1.6% to 4.8%. At the
same time the combinatorial contribution is increased while the non-matched contribution
decreases. This indicates that there are indeed events for which the truth partons are situ-
ated outside of the allowed reco phase space and thus cannot be matched. The percentage
of the matched events with respect to the matchable events is in both cases 27%, thus the
assignment performance of the χ2 reconstruction algorithm stays the same.
Taking into account the challenge of merged partons identified in subsection 6.2.2 and ex-
cluding these using an additional cut improves the percentage of matched events further
to 5.6%. Compared to the situation above, the combinatorial contribution decreases while
the unmatched contribution increases and thus also the share of matched to matchable
events increases to 34 %. This means that by excluding one of the identified challenges in
reconstruction, ambiguities in the assignment of the reco jets to the different decay-product
positions are removed and thus the performance of the reconstruction is improved.
The chosen pT and η cut as well as the cut excluding merged partons will be referred to
as ’improvement cuts’ in the rest of this thesis.

6.2.5 Looking closer: merged truth-parton studies

In subsection 6.2.2, merged partons have been identified as a challenge in the reconstruction
of hadronically decaying tt̄ systems in tt̄Z events. To develop a more detailed understanding
of these cases, further investigation studies are conducted on truth level with applied
improvement cuts on top of the initial event selection. In this context, the number of overall
merged partons in an event as well as the number of merged cases to a particular parton
are studied. Apart from that, it is also investigated which partons merge. In addition, the
topology depending on the transverse momentum of the top quark pT(t)/anti-top quark
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pT(t̄) is studied. These studies are conducted for events of the non-matched category for
which at least one ∆R distance between the partons of the tt̄ system is ≤ 0.8 or in other
words for the merged events of the non-matched category.

Number of partons with a distance of ∆R ≤ 0.8 between each other

As a starting point, the number of ’merged’ partons in one event is plotted. In this context,
’merged partons’ refer to partons originating from the tt̄ system with a distance ∆R ≤ 0.8
to each other. The resulting distribution for the merged events of the non-matched cate-
gory is depicted in figure 6.20.
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Figure 6.20: Number of merged partons, i.e. partons with a ∆R distance of ≤ 0.8 between
each other, in an event considering merged events of the non-matched category (subsection
6.1.3).

In general, up to 6 merged parton-pairs can be found in an event. The largest share is
represented by the 1-merged-parton-case, i.e. events in which exactly one merged parton-
pair can be found. Looking at cases involving more merged partons in an event, a steadily
decreasing number of events can be found.
Based on these observations, three categories are defined containing events with exactly
1-, 2- and 3-merged parton-pairs. These are used later on to enable more detailed investi-
gation. The 4-, 5- and 6-merged-cases are neglected in this context due to a low number
of events which leads to a large statistical uncertainty.
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Number of partons merged to a particular parton originating from the tt̄ system

In a next study, the focus is shifted from the whole event to a particular parton originating
from the tt̄ system. In this context, the number of partons merging to a particular parton
is analyzed. This refers to the number of ∆R distances between the analyzed parton and
all the other partons originating from the tt̄ system which are ≤ 0.8. In figure 6.21, the
resulting normalized distribution is shown examplarily for the b parton (blue)/the W1t
parton (red)/the W2t parton (yellow) as the particular parton using the merged events of
the non-matched category.
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Figure 6.21: Normalized number of partons merged to a particular truth-parton x consid-
ering merged events of the non-matched category (subsection 6.1.3); x refers to either the
b truth parton, W1t truth parton or the W2t truth parton.

For each of the b/W1t/W2t truth partons, there are up to 4 merged partons. The cases
in which no partons merge to the analyzed truth partons represent the largest share. This
case is not excluded in this study as the cut on merged partons requires only at least one
merged parton-pair in the whole event. This pair does not necessarily involve the analyzed
parton. For the cases with 2-, 3- and 4-merged-partons to the analyzed truth partons, the
number of events decreases steadily.
The striking observation in this plot is the significant difference in the number of 1-merged-
parton-cases for the particular partons W1t and W2t. This can be explained by considering
the V-A structure of the electroweak interaction which can be visualized using the cosine
of the helicity angle cos(Θ∗) (subsection 2.1.2).

In subsection 2.1.2, it has been found that in top-quark decays within the SM only left-
handed and longitudinally polarized W bosons are involved in the SM.
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(a) (b)

Figure 6.22: Visualization of the definition of the helicity angle Θ∗ for left-handed (a) and
longitudinally (b) polarized W bosons (subsection 2.1.2).

The situation for left-handed W bosons is depicted in figure 6.22a. Here, it can be observed
that the quark situated closest to the b quark is the down-type quark (W2t). As the up-
type quark (W1t) is emitted into the opposite direction than the down-type quark (W2t) in
the W-boson rest frame considered in the sketch, the b and the up-type quark are situated
farer apart. Consequently, the b quark merges more frequently with the down-type quark
(W2t) than with the up-type quark (W1t). This would explain the mentioned difference
in the 1-merged-parton shares found in figure 6.21.
The situation for a longitudinal W boson is depicted in figure 6.22b. It can be deduced that
the up-/down-type quarks are emitted at helicity angles of about 90◦, i.e. perpendicular to
the b-quark direction. Hence, this cannot explain the observation in figure 6.21.

For this assumption to be true, larger angles Θ∗ and consequently more entries for the
cosine of the helicity angle cos(Θ∗) at a value of -1 are expected for the merged cases
compared to non-merged cases.
To confirm this, figure 6.23 depicts the normalized distributions of the cosine of the helicity
angle cos(Θ∗) for merged (red) and non-merged (blue) events of the non-matched category,
separately for the top quark (figure 6.23a) and the anti-top quark (figure 6.23b) on truth
level. In these plots the outlined behavior is indeed observed.

Merged-parton configurations

Having analyzed the number of partons merged to a particular parton, it is now investigated
which partons merge to the particular parton. For visualization, a matrix is used showing
on the x-axis the particular parton of the tt̄ system which is analyzed. On the y-axis, the
parton of the tt̄ system is shown which merges to the analyzed parton. The resulting shares
in % are given in figure 6.24 together with the statistical uncertainty which is calculated
as the square root of the number of entries.



74 CHAPTER 6. THE MINIMUM-χ2 RECONSTRUCTION

1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1
*)Θcos(

0

5

10

15

20

25

30

35

40

45
3−10×

n
o

rm
al

iz
ed

 t
o

 u
n

it
y

 

ATLAS Work in progress
Simulation

top, truth-level

 merged
 non-merged

 

(a) (b)

Figure 6.23: Normalized distributions of the cosine of the helicity angle cos(Θ∗) (subsection
2.1.2) in the case of merged events and non-merged events for top (a) and anti-top (b) on
truth level using events of the non-matched category (subsection 6.1.3).

Figure 6.24: Visualization of the merged-parton configurations (in %) in matrix form for
all merged events using the merged events of the non-matched category (subsection 6.1.3).

The highest shares are found for the merging between the b/b̄ truth partons and the light
quarks of the same top quark, on the one hand, and for the merging among the light quarks
of the same W boson, on the other hand. Furthermore, it is interesting to see that there
is also a small share of b-b̄ merging.
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Attention should be drawn to the difference in the merging shares of W1t-b (W2t̄-b̄) and
W2t-b (W1t̄-b̄). This is again a consequence of the V-A structure of the electroweak inter-
action and can be explained in the same way as in figure 6.21 considering that W1t/W2t̄
is the up-type and W2t/W1t̄ is the down-type quark.
Comparing all shares to their respective statistical errors, it can be found that all percent-
ages are significant.

To gain further insights, this matrix is redrawn for the cases with exactly 1-, 2- and 3-
merged-partons in the event. The resulting shares in % are shown in figure 6.25 for the
merged events of the non-matched category. Figures 6.25a, 6.25b and 6.25c represent the
results of the 1-, 2- and 3-merged-parton-cases respectively.

(a) 1-merged parton case (b) 2-merged parton case (c) 3-merged parton case

Figure 6.25: Visualization of the merged-parton configurations (in %) in matrix form for
events with exactly 1- (a), 2- (b) and 3- (c) merged-partons in an event using merged events
of the non-matched category (subsection 6.1.3).

At first sight, one notices that the colors change from the 1-merged-parton-case (figure
6.25a) to the 3-merged-parton-case (figure 6.25c). This is due to the increase of the merg-
ing between the decay products of the same top quark. At the same time the b-b̄-merging
share as well as the merging between the decay products originating from different top
quarks decrease. Also the difference between the b-W1t (b̄-W2t̄) and the b-W2t (b̄-W1t̄)
decreases.
Based on these observations, it seems likely that by going from the 1-merged to the 3-
merged-parton-case a transition from a non-boosted to a boosted topology is conducted.
In a boosted topology, the top quark has a high transverse momentum which, according to
momentum conservation, leads to a high pT of the decay products. In consequence, these
are emitted in smaller angles around the top/anti-top quark and thus are situated closer
together. Hence, the merging within the decay products of the top quark is preferred and
also the b-b̄ merging share decreases.
Looking at the denoted error, it can be deduced that all given share values are significant.



76 CHAPTER 6. THE MINIMUM-χ2 RECONSTRUCTION

0 50 100 150 200 250 300 350 400 450 500
) depending on whose decay products merget(truth

t
(t) or ptruth

T
p

0

10

20

30

40

50

3−10×

n
o

rm
al

iz
ed

 t
o

 u
n

it
y

 

ATLAS Work in progress
Simulation

1 merged parton cases
2 merged parton cases
3 merged parton cases

 

Figure 6.26: Normalized distributions of the pT of top-/anti-top quark if their decay prod-
ucts merge for the 1-, 2- and 3-merged-parton-cases for the merged events of the non-
matched category (subsection 6.1.3).

To verify the assumption of a boosted topology, the pT of the top/anti-top quark is plotted
if their decay products merge. This is conducted for the three distinct cases of 1- (yellow),
2- (blue) and 3-merged (red) -partons in the event for merged events of the non-matched
category. The resulting normalized distributions are shown in figure 6.26.

For the 1-merged-parton-cases, a peak at about a transverse momentum of 100 GeV with
a broad decreasing shoulder towards higher pT values can be found. In contrast, the dis-
tributions representing the 2- and 3-merged-parton-cases are a lot broader. This leads to
a mean pT of the top/anti-top quark of 225 GeV for the 2-merged-parton-case. For the
3-merged-parton-case even a peak in the range between 300 and 350 GeV and a broad
shoulder towards lower values can be identified.
Concluding, it can therefore be retained that the mean transverse momentum of the top
quark increases indeed with a larger number of merged partons in the event. Hence, the
assumption of a transition to a boosted topology is supported.

pT(t)/pT(t̄)-dependent topology studies

Based on the previous observation of an increased mean of the top/anti-top quark pT

for a larger number of merged partons in the event, the topology is now further studied
for 4 different pT(t)/pT(t̄) bins: the first bin includes events in which the pT values of
the top/anti-top quark lie between 0 GeV and 100 GeV (blue). The second one includes
pT(t)/pT(t̄) values between 100 GeV and 200 GeV (red). In the third bin (orange), events
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with pT(t)/pT(t̄) values between 200 GeV and 300 GeV can be found while the events with
pT(t)/pT(t̄) values greater than 300 GeV are assigned to the fourth bin (pink).

For each of the 4 pT bins, the angular difference ∆φ between the top quark and the b
quark is plotted in a first step. The resulting normalized distributions using the merged
events of the non-matched category can be found in figure 6.27.
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Figure 6.27: Normalized distribution of the absolute value of ∆φ between the top quark
and the b quark on truth level for 4 different ranges of the pT of the top/anti-top quark
as defined in the text using the merged events of the non-matched category (subsection
6.1.3).

For a higher mean pT of the top/anti-top quark, corresponding to higher merged-parton
cases (subsection 6.2.5), the peak towards lower ∆φ-values becomes sharper. This means
that the higher the transverse momentum of the top quark, the smaller the angle in which
its decay products, in this case the b quark, are emitted. In consequence, the decay prod-
ucts are situated closer together and the merging between the decay products of the same
top quark is preferred. This supports the result found in the context of the merged-parton
configuration studies above.

Finally, the topology of the tt̄Z system is investigated. Therefore, the minimum of the
absolute ∆φ value between the top/anti-top quark and the Z boson is plotted against the
absolute value of the ∆φ between the top and anti-top quark. Figure 6.28 displays the
result for the merged events of the non-matched category.
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Figure 6.28: Scatter plot showing the minimum of the absolute values of ∆φ between the
top/anti-top quark and the Z boson against the absolute value of ∆φ between the top and
the anti-top quark using the merged events of the non-matched category (subsection 6.1.3).
In addition, sketches of the two preferred topologies have been added.

Most of the events gather at two positions with opposed characteristics: one preference is
the topology having a large absolute value of ∆φ between the top/anti-top quark and the
Z boson in combination with a small ∆φ value between the top and the anti-top quark.
This corresponds to the case in which the Z boson recoils against the tt̄ system. The other
preferred topology is the one having a small absolute value of min(|∆φ(t,Z)|, |∆φ(t̄,Z)|)
combined with a large |∆φ(t, t̄)| value. This represents a topology in which the top quark
and the anti-top quark are emitted almost back-to-back.

Redrawing this plot for the first 3 different pT bins4 yields the results shown in figure 6.29.

With a larger mean pT value of the top/anti-top quark, more and more points in figure
6.29c gather at relatively small min(|∆φ(t,Z)|, |∆φ(t̄,Z)|)) values and large |∆φ(t, t̄)| val-
ues. Thus, it can be deduced that the topology in which the top and the anti-top quark
are emitted almost back-to-back is preferred. This can also be quantified by looking at the
mean values and standard deviations in x- and y-direction of figure 6.29:

This is also in line with the observation of a decreasing b-b̄-merging share for events with
a higher number of merged partons per event as the b and the b̄ quark are emitted in
opposite directions in the corresponding topology.

4There is no plot for the fourth pT bin due to a very low number of events which would lead to large
statistical uncertainties.
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Figure 6.29: Scatter plot showing the minimum of the absolute values of ∆φ between the
top/anti-top quark and the Z boson against the absolute value of ∆φ between the top and
the anti-top quark for 3 different pT(t) bins defined in the text using the merged events of
the non-matched category (subsection 6.1.3).

pT bin mean x mean y std. dev. x std. dev. y

0 GeV < pT < 100 GeV 1.514 1.762 0.8322 0.9196

100 GeV < pT < 200 GeV 1.365 2.108 0.7878 0.833

200 GeV < pT < 300 GeV 1.158 2.517 0.6861 0.6869

Table 6.3: Table yielding the mean and standard-deviation values in x- and y-direction of
figure 6.29.

6.3 Conclusion and cut-flow

In this chapter, the χ2 reconstruction as well as a procedure called truth matching were
outlined and applied. It has been shown that the χ2 value calculated in the reconstruction
process can be used to separate the signal tt̄Z process from background processes like the
Z+jets and the dileptonic tt̄ decay. The performance of the minimum-χ2 algorithm has
been analyzed by comparing the selected best χ2 hypotheses to all hypotheses considered
during reconstruction. This has shown a better performance for the selected hypotheses.
However, the resulting share of matched events in the context of truth matching was found
to be with 1.1%5 extremely low which indicates that the reconstruction of hadronic tt̄
systems is not a trivial task. In addition, also the matchable share, i.e. matched

matched+combinatorial

was found to be with about 27% quite low.
Based on these findings, detailed investigation studies were conducted in order to identify
and understand the challenges faced. In this context, some challenges in the form of gluon
jets, switched jets, merging of jets as well as a mix of boosted and non-boosted topologies
have been identified. Furthermore, studies have been conducted to successfully validate

5for an event selection with ≥ 6 jets and ≥ 2 b jets
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the standard choice of the matching condition ∆R < 0.3.
On top of that, a phase-space adaption between reco and truth level has been performed
in order to improve the attainable matching performance. Therefore, a pT cut as well as
an η cut on all truth partons originating from the tt̄ system were selected. In addition,
the challenge of merged partons was addressed with an additional cut to exclude merged
partons on truth level. All these cuts were grouped under the name ’improvement cuts’ as
their application resulted in an increase of the matched share from 1.6% to 5.3%6 as well
as the matchable share ( matched

matched+combinatorial
) of 27.1 % to 34.8%.

The overall reduction of events by the applied cuts is visualized in the cut-flow shown in
figure 6.30.

all events  2 bjets≥ 6 jets, ≥
analysis cuts
SR- and  30 GeV≥) t(part. of t

T
p ) < 2.5t(part. of tη

partons
no merged

0

0.2

0.4

0.6

0.8

1

610×

n
u

m
b

er
 o

f 
ev

en
ts 1127391

247258

99022

29801 27152 7512

ATLAS Work in progress
Simulation

Figure 6.30: Visualization of the reduction of events by applying the event selection pre-
sented in chapter 5 and the improvement cuts found in subsection 6.2.4.

After applying the analysis cuts and the cuts focusing on the signal process (hadronically
decaying tt̄ system and a Z decaying to ee/µµ), 8% of the initial number of events remain.
Setting the improvement cuts, i.e. a pT cut of 30 GeV and an |η| < 2.5 cut on all truth
partons originating from the tt̄ system as well as a cut to exclude merged partons, reduces
the number of events further by 24%. Thus, 0.6% of the initial number of events remain.
For these remaining events, the matched share is then found to be 2.3%7. This is already
better than the 1.1% obtained without the application of the improvement cuts, but is still
extremely bad for a reconstruction algorithm.

6for an event selection of exactly 6 jets and exactly 2 b jets
7for an event selection with ≥ 6 jets and ≥ 2 b jets



Chapter 7

Multivariate reconstruction

In chapter 6 it has been outlined that the reconstruction of hadronically decaying tt̄ sys-
tems in tt̄Z events is an essential, but not at all trivial task. In this context challenges
have been identified which clearly limit the performance of the standard minimum-χ2 re-
construction technique. Improvement cuts are only able to address these up to a certain
point.
For that reason, an alternative reconstruction approach for hadronically decaying tt̄ sys-
tems in tt̄Z events is developed and studied in this chapter. The basis for this approach
is a multivariate (MVA) method. This concept has already been applied in the con-
text of the associated production of a Higgs boson and a leptonically decaying single top
quark [106,107].

In this thesis, a Neural Network (NN) is chosen as a multivariate method. Its application
consists of two steps as described in chapter 4.
First, the NN has to be trained with example data to learn the underlying features. This
is done within the context of supervised learning. Therefore, the examples are required to
be in the form of labeled hypotheses, i.e. the hypotheses need to be classified into a signal
category (well-reconstructed tt̄ systems) and a background category (badly-reconstructed
tt̄ systems). To obtain input data in this form, a suitable method to produce these has to
be selected. This is conducted in section 7.1. Afterwards, also the hypotheses assigned to
the background category have to be studied further as they combine a variety of physical
scenarios. Therefore, different background categories are defined and investigated in sec-
tion 7.2. Finally, the NN is trained on the selected data in section 7.3.
The second step of using an MVA method consists of evaluating the trained model. That
is why the performance of the Neural Network is evaluated on un-labeled hypotheses in
section 7.4.

To remain compatible with the 6j2b signal-region of the 2LOS tt̄Z analysis, a cut on ≥ 6
jets and ≥ 2 b jets is set together with all cuts, in particular the analysis and signal-region
cuts, defined in chapter 5. If not stated otherwise, this event selection is used for the
studies conducted in this chapter and is referred to as ’plain analysis cuts’.

81
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7.1 Obtaining labeled input data for training

In order to perform an NN-based reconstruction of hadronically decaying tt̄ systems in
tt̄Z events, input data in the form of labeled hypotheses are required for the training
process. Therefore, three different methods to produce these are presented in this section.
Subsequently, their performance is compared using two event selections.

7.1.1 Description of three methods to obtain labeled input data
for training

To obtain labeled input data for the training process, three different methods are consid-
ered. These are described below:

• best possible hypothesis on quarklevel (’quarklevel method’)
For this approach based on [108], the jets in the event are grouped into groups of
6 jets. Then, all combinations of placing these onto the positions of the 6 decay
products of the tt̄ system (b, b̄, W1t, W2t, W1t̄, W2t̄) are formed1. For each of
these combinations/hypotheses a ∆Rtotal between the selected jets and the truth
partons originating from the tt̄ system is calculated on quarklevel using the following
definition:

∆Rq
total = ∆RW1t + ∆RW2t + ∆RW1t̄ + ∆RW2t̄ + ∆Rb + ∆Rb̄

Here, the individual ∆R values indicate the distances between the particular jets and
their assigned truth partons.
In the end, the combination/hypothesis with the minimum overall ∆Rtotal is labeled
as the best possible reconstructed tt̄ system and thus the ’signal’. The ’background’
is formed by all the other hypotheses in the event. This procedure is repeated for
every event.

• best possible hypothesis on Wtlevel (’Wtlevel method’)
This method follows the same procedure as described for the quarklevel method.
However, here the ’physical’ particles involved instead of the partons/jets resulting
from their decay are used. In consequence, ∆Rtotal is now calculated on Wtlevel:

∆RWt
total = ∆RW from t + ∆RW from t̄ + ∆Rt + ∆Rt̄

In order to determine the individual ∆R values in this definition, the Lorentz vectors
of the decay partons/jets have to be added up first in order to obtain the Lorentz
vectors for the W bosons/top quarks. Using these, the ∆R values between the W
bosons/top quarks on reco and truth level can be determined.

1In contrast to the minimum-χ2 reconstruction, no b-tagging conditions are set on the b/b̄ positions.
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• ’assign all combinations to categories’ (ctc method)
For this method again all possible groups of 6 jets are formed in an event and all
possibilities to assign these to the 6 decay positions (b, b̄, W1t, W2t, W1t̄, W2t̄) are
constructed2. In the following, every single combination/hypothesis is assigned to
one of the 3 ’truth-matching’ categories (matched, combinatorial and non-matched)
defined in subsection 6.1.3.
Finally, all hypotheses of the ’matched’ category are considered as the signal. The
background is in consequence formed by events of the ’combinatorial’ and ’non-
matched’ categories.

7.1.2 Performance comparison of the three methods

In order to determine the best performing method to produce input data for the training
of the MVA method, the results of the described methods are now compared. Therefore,
selected observables, which represent the fundamental trends best, are investigated.
First, the two ∆Rtotal distributions, i.e. ∆Rq

total and ∆RWt
total, are studied. This targets

the alignment of the truth partons originating from the tt̄ system and the selected jets
or rather the alignment of the truth particles with the reconstructed particles within the
signal hypotheses of the particular method. In a next step, further observables are used
to analyze the extent to which the signal hypotheses are able to reproduce the physical
properties of the tt̄ system. For that purpose, some Wtlevel observables, i.e. observables
related to the reconstructed top quarks/W bosons (mtt̄, cos(Θ∗)), and some quarklevel
observables, i.e. observables related to the separate partons (pT(W1t), is-btagged(b)), are
examplarily presented, covering different physical aspects.

In addition, the methods are not only compared among each other, but also their per-
formance using two event selections is analyzed: On the one hand, the plain analysis
cuts are used which are referred to as ’without improvement cuts’. On the other hand,
the improvement cuts found during the investigation of the χ2-reconstruction method in
chapter 6 are applied on top of the plain analysis cuts which is referred to as ’with im-
provement cuts’.
Towards the end, also the hypotheses yields of the signal and background categories of
the three methods are compared, each using the two event selections. Finally, the best
performing method to obtain labeled input data for the training process is chosen together
with an event selection.

Performance comparison using ∆Rtotal

At first, the normalized ∆Rtotal distributions of the three methods are compared using the
particular signal hypotheses. ∆Rtotal is calculated on quarklevel (∆Rq

total) and on Wtlevel

2In contrast to the minimum-χ2 reconstruction, no b-tagging conditions are set on the b/b̄ positions.
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(∆RWt
total) for all methods in order to allow for a complete comparison. All resulting nor-

malized distributions are depicted for both event selections in figure 7.1.
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Figure 7.1: Normalized ∆Rtotal distributions for the particular signal hypotheses of the
three presented methods (subsection 7.1.1) for the two event selections, without improve-
ment cuts (a) and with improvement cuts (b). ∆Rtotal is calculated on quarklevel (∆Rq

total)
and Wtlevel (∆RWt

total) for every method.

In figure 7.1a the normalized results for the event selection without improvement cuts are
shown. The ∆Rtotal distributions calculated on Wtlevel and quarklevel for the three meth-
ods are depicted in different colors: The distributions produced by the quarklevel method
are indicated in blue and red for ∆Rq

total and ∆RWt
total respectively. The yellow and green

distributions are obtained using the Wtlevel method for a ∆Rq
total and ∆RWt

total respectively.
The two distributions resulting from the use of the ctc method are shown in purple and
black.

Focusing on the distributions obtained by using the ctc method, quite narrow distributions
with a sharp peak at low ∆Rtotal values can be identified. In contrast, the remaining dis-
tributions are broader and some even show long tails towards larger values.
This observation is not surprising as an implicit cut on ∆R < 0.3 between the jet and
the parton is included in the definition of the ’matched category’ (subsection 6.1.3) which
defines the signal of the ctc method. The other two methods only use the best possible re-
constructed tt̄ systems as their signal, i.e. the hypotheses with the lowest ∆Rq

total or rather
∆RWt

total value in the events.
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A striking fact to mention is that the distributions related to a ∆RWt
total are always broader

than those related to a ∆Rq
total. This can be explained by considering that multiple con-

figurations of jets are possible for one particular ∆RWt
total value. This is a consequence of

the fact that the Lorentz vectors of the single jets and partons have to be added up first
before the ∆R and the ∆RWt

total value can be calculated on Wtlevel. Thus, in an extreme
case, two jets with quite large ∆R distances to their assigned truth partons can result in
an acceptable ∆R value between the W bosons/top quarks on reco and truth level as the
deviations might cancel out. The result is then a relatively small ∆RWt

total value.

Another fact worth emphasizing is related to the distributions produced by the quarklevel
method and by the Wtlevel method for ∆Rq

total: both ∆Rq
total distributions have a dip

situated at about a value of 1 followed by a shoulder towards higher values. The value of
the dip also corresponds to the largest value of the distribution obtained by using the ctc
method with ∆Rq

total. Hence, it can be concluded that, if jets originating from the tt̄ system
are considered and assigned to the right positions during reconstruction, they also match
quite closely the truth-parton positions. This results in small ∆R(jet, parton) distances
and leads to small ∆Rq

total values. If jets not belonging to the tt̄ system are considered, the
∆Rq

total values increase considerably. This leads to the formation of the observed shoulder
towards larger values.

In figure 7.1b the normalized results of the event selection with improvement cuts are
shown in the same colors as in figure 7.1a.
All in all, the same basic trends can be observed: Regarding the distributions produced by
the ctc method, a narrow and sharp peak at low values with no tail towards higher values
can be observed for both ∆Rtotal calculations.
The distributions resulting from the use of the quarklevel method and of the Wtlevel
method for ∆Rq

total still exhibit a dip at about a value of 1 and a shoulder towards higher
values. However, this shoulder is reduced considerably by applying the improvement cuts
and also the distributions end at lower values. Moreover, the peak gets sharper and rises
higher at the same time. Especially for the quarklevel method the observed difference is
significant.
From these observations, it can be deduced that applying the improvement cuts clearly
improves the alignment of jets and partons and consequently leads to overall lower ∆Rtotal

values. This is expected as with the application of the improvement cuts an adaption
of reco-level and truth-level phase spaces is implied. It results in an increased matching
probability of the truth partons and the jets. Furthermore also the implied exclusion of
merged-parton scenarios reduces matching ambiguities and supports the aforementioned
trend.

All in all, it can be retained that the distributions resulting from an event selection with-
out improvement cuts are in general broader and reach to higher ∆Rtotal values than those
resulting from an event selection with improvement cuts. Only the distributions produced
by the ctc method stay sharp and also end at the same values in both cases. Thus, the
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ctc method is a good option in combination with both event selections.
Regarding the distributions produced by the quarklevel method and the Wtlevel method,
broader distributions in comparison to the ctc method have been found for both event
selections. Comparing the distributions obtained by using these two methods among each
other, the best result is achieved by the quarklevel distribution in combination with an
event selection including improvement cuts.

Performance comparison using the invariant mass of the tt̄ system mtt̄

In a next step, the Wtlevel observable mtt̄ is used to investigate the ability of the three
methods to reproduce physical information on Wtlevel.
Figure 7.2 shows the normalized distributions of the signal (blue) and the background (red)
hypotheses selected by the three methods. In order to provide a reference, also the truth
information (yellow) for the signal hypotheses is added. This is done for an event selection
with (b, d, f) and without (a, c, e) improvement cuts.

In figure 7.2a and 7.2b the normalized results of the quarklevel method are depicted for
the two event selections. In the case without improvement cuts (figure 7.2a), a significant
discrepancy between the shapes of signal and background can be observed. This indicates
a good separation power of the mtt̄ observable. In addition, also a significant difference
between the shapes of the signal and the truth information can be found. So, it can be
concluded that the quarklevel method used in combination with the event selection with-
out improvement cuts is not very reliable in selecting well-reconstructed tt̄ systems for the
signal category.
With improvement cuts applied (figure 7.2b), the discrepancy between the truth and the
signal distribution vanishes within statistical fluctuations, except at low mtt̄ values. The
separation between signal and background is kept at the same time.
This means that by setting the improvement cuts, the truth information fits the reco infor-
mation better and thus, hypotheses containing well-reconstructed tt̄ systems are selected
more reliably. Furthermore, it can be seen that mtt̄ is a quite well-separating observable.
Referring to the difference between signal and truth information at low mtt̄, it is striking
that it can be found in all 6 cases. The truth distributions always start at a value of about
350 GeV which is about twice the top-quark mass used by the MC generator. Hence, the
deviation can be assumed to result from hadronization.

The normalized results of the Wtlevel method are shown in figure 7.2c and 7.2d. The
situation is similar to the one of the quarklevel method. However, compared to the signal
hypotheses produced by the quarklevel method, those produced by the Wtlevel method
with applied improvement cuts reproduces the truth information slightly worse.

In figure 7.2e and 7.2f the normalized results of the ctc method are displayed. Here, the
truth information matches the signal shape quite perfectly for both event selections. At the
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same time there is a significant separation between the signal and background hypotheses.
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Figure 7.2: Normalized mtt̄ distributions for the particular signal and background hypothe-
ses of the three methods (subsection 7.1.1) in combination with the truth information for
the signal hypotheses for the two event selections without (a, c, e) and with improvement
cuts (b, d, f).
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Concluding, the ctc method is the only method which is able to reproduce the physical ob-
servables on Wtlevel for the event selection without improvement cuts well. When choosing
the event selection with improvement cuts, either the quarklevel or the ctc method should
be used as they reproduce the physical information slightly better than the Wtlevel method.

Performance comparison using the transverse momentum of the W1t jet/parton
pT(W1t)

In a next step, it is checked how well physical information on quarklevel can be reproduced.
Therefore, another kinematic observable, the transverse momentum of the W1t jet/parton,
pT(W1t), is used to compare the three methods and the two event selections. Figure 7.3
displays the normalized distributions of the signal (blue) and background (red) hypothe-
ses for each of the three methods. In addition, also the truth information for the signal
hypotheses (yellow) is included. The results are shown for the event selections without
improvement cuts (a, c, e) and with improvement cuts (b, d, f).

In figure 7.3a the normalized results of the quarklevel method for the event selection with-
out improvement cuts are depicted. Here, the shapes of signal and background are quite
similar which indicates a low separation power of the pT(W1t) observable. The shape of
the truth information is however quite different to the signal one. Especially the discrep-
ancy between the starting point of the truth distribution at 0 GeV and the start of the
signal/background distributions at 25 GeV is eye-catching. This is a result of the different
pT cuts on truth and reco level: While on reco level a cut on pT > 25 GeV is applied, no
pT cut is applied on truth level.
Setting the improvement cuts (figure 7.3b), the observed discrepancy between the start-
ing points of the three distributions is visibly reduced. This is due to the implied pT cut
of 30 GeV on truth level. As a consequence of this adaption, the truth and the signal
distributions are a lot closer together. This indicates a good reproduction of the truth
information by the signal hypotheses which is not the case for the event selection without
improvement cuts. The small remaining differences could be eliminated by optimizing the
improvement cuts for the multivariate reconstruction.
At the same time, the small difference between the signal and the background shapes is
still present. This indicates a low separation power of the pT(W1t) observable also for the
event selection with improvement cuts.

In figures 7.3c and 7.3d the normalized results of the Wtlevel method are displayed for the
two event selections.
In the case without improvement cuts (figure 7.3c), the same discrepancy between the
truth and the signal/background distributions can be found as in figure 7.3a. This is again
due to the missing pT cut on truth level. In contrast to the distributions resulting from
the use of the quarklevel method, also a significant difference between the signal shape and
background shape is found. The truth distribution is in this case better reproduced by the
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background distribution though.
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Figure 7.3: Normalized pT(W1t) distributions for the signal and background hypotheses
of the three methods (section 7.1) combined with the truth information for the signal
hypotheses for an event selection without (a, c, e) and with improvement cuts (b, d, f).
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Applying the improvement cuts (figure 7.3d) reduces the discrepancy between the truth and
the signal/background shapes. However, now the shape of the truth information resembles
the background shape even more. Thus, for both event selections, the Wtlevel method is
obviously not able to select signal hypotheses which reproduce the physical information
on quarklevel properly. This fact is not surprising as the signal hypotheses are selected
based on their low ∆RWt

total value. Thus, information on quarklevel is not used explicitly
and obviously cannot be resolved in consequence. As for the reconstruction process the
best-fitting jets have to be selected, quarklevel information is important. Therefore, the
Wtlevel method should be used cautiously.

Finally, the normalized results of the ctc method are depicted for the two event selections
in figure 7.3e and 7.3f.
In the case without improvement cuts (figure 7.3e) all three distributions start at almost
the same value even though there is no pT cut on truth level. This might be due to the
fact, that here only matched hypotheses are considered as signal for both reco and truth
level. Moreover, in particular the signal and background distributions resemble each other
a lot which indicates a low separation power of the pT(W1t) observable. Overall, the truth
information is reproduced slightly better by the signal information. Thus, signal hypothe-
ses are selected which are also able to reproduce the information on quarklevel.
These trends become even more obvious when applying the improvement cuts (figure 7.3f).
Here, the signal is even closer to the truth information due to the additional pT cut on
truth level and also the signal and background distributions are more similar. Thus, the
ctc method is a suitable option to produce labeled input data for both event selections.

All in all, it can be noted, that the Wtlevel method should not be used for obtaining la-
beled input data. The reason is that the signal hypotheses cannot reproduce the physical
properties on quarklevel3 which is essential for the reconstruction process.
The quarklevel method should only be used in combination with the event selection in-
cluding improvement cuts as in this case the truth information is reproduced well by the
signal hypotheses.
The ctc method shows good results for both event selections and thus is suitable in all
cases.

Performance comparison using is-btagged(b)

In a next step, another (non-kinematic) observable on quarklevel is used: is-btagged(b). It
is a binary observable indicating whether the jet placed on the b reconstruction position
has a b-tag (value of 1) or does not have a b-tag (value of 0). As the b reconstruction
position is considered here, a high share of signal hypotheses for a value of 1 and a high
share of background hypotheses for a value of 0 are expected.
On truth level, the is-btagged observable does not exist as b-tagging is not necessary for

3Further observables were studied showing the same trend.
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truth partons. Therefore, the truth information is not considered in the following. In
consequence, figure 7.4 depicts only the normalized distributions of the signal (blue) and
background (red) hypotheses of the three methods for the two event selections.

In figures 7.4a and 7.4b the normalized results of the quarklevel method are shown for
event selections without and with improvement cuts.
In the case without improvement cuts (figure 7.4a), the share of b-tagged jets on the b
reconstruction position is 85%. This is quite high as expected. Only about 15% of the
jets placed on the b reconstruction position are not b-tagged. This might be due to the
fact that the b-tagging working point chosen has an efficiency of 77%, i.e. only 77% of
b-quark initiated jets are b-tagged. Another possibility would be that the selected signal
hypothesis contains a jet which does not originate from the tt̄ system or contains a light
jet on the b reconstruction position due to merging.
Regarding the background, there is a 50% chance of finding a b-tagged jet on the b recon-
struction position. The large share of b-tagged jets on the b reconstruction position can
have multiple reasons. One of them is misidentification of charm/light jets as b jets which
happens in about 16% of the cases (subsection 3.2.5). Furthermore, the jet placed on the
b reconstruction position might indeed be the correct one, but some other jets have large
∆R(jet, parton) values. Therefore, this hypothesis is not assigned to the signal category
due to a large ∆Rtotal value. Moreover, the selected signal hypothesis might contain a b
jet not originating from the tt̄ system.

In the case with improvement cuts (figure 7.4b), the signal share of b-tagged jets on the
b reconstruction position rises to about 90%. In consequence, the signal share of jets on
the b reconstruction position without a b-tag decreases to about 10%. Also the share of
background hypotheses with a b-tagged jet on the b reconstruction position is reduced
to about 25%, which corresponds roughly to the misidentification rates mentioned above.
The share of background hypotheses containing a non-b-tagged jet on the b reconstruction
position rises to about 75% correspondingly. This is a result of excluding events containing
merged truth partons which also has an impact on reco level. Furthermore, adapting the
phase spaces on reco and truth level allows for better alignment of the partons and the jets
originating from the tt̄ system.
All in all, the separation power between signal and background distributions is consider-
ably increased by applying the improvement cuts. Furthermore, also the result for this
event selection is closer to the expected situation.

In figures 7.4c and 7.4d the normalized results of the Wtlevel method are shown for the two
event selections. Here, the same basic trends can be found as mentioned in the discussion
of figure 7.4a and 7.4b.
In the case without improvement cuts (figure 7.4c), a lower share of signal hypotheses
having a b-tagged jet on the b reconstruction position (circa 65%) can be found compared
to figure 7.4a (85%). Consequently the share of signal hypotheses yielding a non-b-tagged
jet on the b reconstruction position is increased to about 35% (15%).
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Figure 7.4: Normalized is-btagged(b) distributions for the particular signal and background
hypotheses of the three methods (section 7.1.1) for event selections without (a, c, e) and
with improvement cuts (b, d, f).

Here, an additional reason for this high signal share of non-b-tagged jets on the b recon-
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struction position is the possibility to have multiple jet configurations for one particular
∆Rtotal value on Wtlevel. This is a consequence of the fact that the Lorentz vectors of the
single jets and partons have to be added up first.
For the background hypotheses, there is still a 50% chance to have a b-tagged or non-b-
tagged jet on the b reconstruction position.

For the event selection with improvement cuts (figure 7.4d), the signal share of b-tagged
jets on the b reconstruction position is 80% which is lower than the one for the quarklevel
method (90%). In consequence also the signal share of non-b-tagged jets on the b recon-
struction position rises to about 20%. This roughly doubles the share of the quarklevel
method indicating once again that the Wtlevel method cannot resolve physical informa-
tion on quarklevel well. The background shares are approximately the same as for the
quarklevel method. Based on this, an increased separation power can again be noticed for
an event selection with improvement cuts. In addition, the result for this event selection
is closer to the expected one.

In the last figures 7.4e and 7.4f, the normalized results of the ctc method are shown for
the two event selections. They exhibit again the same basic trends as found in figure 7.4a
and 7.4b.
In figure 7.4e, representing the case without improvement cuts, a larger signal share of
b-tagged jets on the b reconstruction position (92%) is found. Consequently, a lower signal
share of non-b-tagged jets on the b reconstruction position (8%) is found compared to
figure 7.4a. For the background, still half of the hypotheses contain a b-tagged jet on the
b position and the other half does not.
Applying the improvement cuts (figure 7.4f) yields the same signal distribution as for an
event selection without improvement cuts. In contrast, the background share of b-tagged
jets on the b position decreases to about 25%. Analogously to the other two methods,
a huge increase in the separation power between signal and background distributions is
found when applying improvement cuts. Furthermore a constantly good reproduction of
the truth information by the signal hypotheses of the ctc method can be deduced.

Concluding, it can be retained that the expected observation, i.e. a high signal and a low
background share of b-tagged jets on the b reconstruction position, is reproduced best
by the ctc method and the quarklevel method combined with an event selection with im-
provement cuts. As applying these cuts increases the separation power of the is-btagged(b)
observable considerably, the event selection without improvement cuts should not be used.
A significant separation power is important as this enables the NN later on to better dis-
tinguish between signal and background.
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Performance comparison using the cosine of the helicity angle cosΘ∗

As a last observable, the cosine of the helicity angle cos(Θ∗) (subsection 2.1.2) is used for
comparison of the three methods and the two event selections.
In figure 7.5 the normalized distributions of cos(Θ∗) of the top quark4 are displayed for
the signal and background hypotheses of the three methods (in red/blue respectively). In
addition the truth information (yellow) for the signal hypotheses is included. The normal-
ized results of the three methods are depicted for event selections without improvement
cuts (a, c, e) and with improvement cuts (b, d, f).

In figures 7.5a and 7.5b, the normalized results of the quarklevel method are illustrated
for the two event selections.
In the case without improvement cuts (figure 7.5a), a significant difference in truth and
signal shapes can be observed. While the signal distribution is symmetric and centered
around 0, the shape of the truth information is shifted to the left. This difference can
be explained by considering the selection of the down-type quark within the definition of
cosΘ∗ (subsection 2.1.2): On truth level the down-type quark is selected using the pdgId
which is a reliable and precise observable. On reco level, this truth-level observable cannot
be used. Instead, the so-called jet charge (subsection 3.2.6) has to be used to distinguish
between up- and down-type jets. Unfortunately, this observable is not very precise and
thus the left-shift observed for the truth information cannot be resolved on reco level.
Physically, the left-shifted shape of the truth information indicates that the W boson origi-
nating from the top quark is more often left-handed. Thus the down-type quark is emitted
at large angles Θ∗ measured in the rest frame of the W boson. This corresponds to merged-
parton scenarios.
Another striking aspect is the high separation power of the cosine of the helicity angle
regarding signal and background distributions. The values of the background hypotheses
are almost equally distributed and show a symmetric dip around zero. The slight peaks
at values of -1 and 1 indicate, that there are some well-reconstructed top quarks in the
background category. Considering them as signal would help to reduce the significant dif-
ference between the signal and background shape.

Applying improvement cuts (figure 7.5b), it can be found that the shape of the truth infor-
mation matches the signal shape well within statistical fluctuations. It is also eye-catching
that the shape of the truth information is now centered around 0 and shows no longer the
left-shift observed in the case without improvement cuts. This is a result of the implied
exclusion of merged partons within the improvement cuts. The partons belonging to the tt̄
system now originate more often from a longitudinal W boson. Therefore, they are emitted
preferentially perpendicular to the W boson in the rest frame of the W boson. Thus, the
quarklevel method should only be used in combination with improvement cuts to ensure
that the same information is contained in the truth and in the signal hypotheses.

4The same distributions can also be found for the case of the anti-top quark, thus only the results of
the top quark are discussed here.
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Figure 7.5: Normalized cos(Θ∗) distributions for the particular signal and background hy-
potheses of the three methods (subsection 7.1.1) in combination with the truth information
for the signal hypotheses for event selections without (a, c, e) and with improvement cuts
(b, d, f).
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Furthermore, the shapes of signal and truth information are both a lot narrower than in the
case without improvement cuts. This change in shape and the corresponding change of the
physical situation is investigated step by step in figure 7.6 later on. Another observation
to mention in figure 7.5b is that the dip in the background distribution vanishes. This is
assumed to be due to the cut on merged partons. As in these cases the whole event is
rejected, they are no longer present in the background category.

The normalized results of the Wtlevel method are displayed in figure 7.5c and 7.5d. Here,
the same basic trends as for the quarklevel method can be found and therefore are not
discussed again. The only difference is that in the case with improvement cuts, the dis-
crepancy between the shapes of the truth information and the signal is slightly larger than
for the quarklevel method. Thus, the use of the Wtlevel method should be restricted to
the use in combination with improvement cuts.

Figures 7.5e and 7.5f display the normalized results of the ctc method for the two event
selections. This corresponds well to the trends found in the discussion of the quarklevel-
method results (figure 7.4a and figure 7.4b). However, for the event selection without
improvement cuts (figure 7.5e), the truth information matches the signal information a lot
better than for the other two methods.
In the case with improvement cuts the two distributions match perfectly within statistical
fluctuations. The background shape stays the same compared to the other methods.

Concluding, it can be retained that the signal hypotheses of the ctc method reproduce the
truth information well for both event selections. Regarding the other two methods, this is
only the case for an event selection with improvement cuts. Thus, in order to assure that
the signal hypotheses selected by the three methods contain the same information as on
truth level, the event selection with improvement cuts is preferred.

In a next step, the observed change of the shape in cos(Θ∗) of the truth information be-
tween the event selections without and with improvement cuts is investigated in more
detail. For this reason, the improvement cuts are set successively and also different com-
binations of them are used. The normalized distributions of the signal and background
hypotheses (in blue/red respectively) as well as the truth information (yellow) of the signal
hypotheses are examplarily displayed for the quarklevel method for the different cuts.

As a reference, figure 7.6a depicts the normalized results for an event selection without
improvement cuts. Here a left-shifted shape of the truth information compared to a sym-
metric signal shape centered at 0 can be observed.

Figure 7.6b presents the normalized results if only the ηtruth cut is applied. Compared to
figure 7.6a, no significant differences can be found. This indicates that events with truth
partons originating from the tt̄ system situated outside of |η| < 2.5 are not responsible for
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the change in shape.
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Figure 7.6: Normalized cos(Θ∗) distributions for the signal and background class of the
quarklevel method (subsection 7.1.1) in combination with the truth information for the
signal hypotheses for various additional cuts on top of the plain analysis cuts.
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The normalized results of an event selection applying only the ptruth
T cut on top of the plain

analysis cuts are shown in figure 7.6c. In comparison to figure 7.6a, the shoulder in the
signal and truth shapes towards low values is reduced. In consequence, the shapes appear
to be more central. This can be explained by the fact that in the case of a left-handed
W boson the down-type quark is emitted at large angles of Θ∗ in the rest frame of the
W boson and thus in the opposite direction than the direction of motion of the W boson.
Hence, the pT of the down-type quark is lower and can no longer fulfill the additional cut
on ptruth

T . In consequence, entries at low values of cos(Θ∗) are cut off and the shape be-
comes more central. This represents the fact that more decay products from longitudinal
W bosons are used for the reconstruction.
Furthermore, for the signal shape also the small shoulder at high cos(Θ∗) values vanishes.
This can be explained by considering that the ptruth

T cut is applied to all partons originating
from the tt̄ system, thus also to the up-type quark. As events which do not fulfill this cut
on truth level are removed completely, this has also an impact on the reco-level shapes.
All in all, the signal and truth shapes become narrower and are situated more central. The
background shapes are unchanged.

Figure 7.6d displays the normalized results of an event selection excluding merged partons
on truth level on top of the plain analysis cuts.
In comparison to figure 7.6a, a lot of entries are lost at low cos(Θ∗) values, i.e. at large
angles Θ∗. This can be explained by considering that for left-handed W bosons, the down-
type quark and the b quark are situated close together, i.e. in a ∆R distance ≤ 0.8, and
thus merging occurs quite often as found in chapter 6. Thus, the exclusion of merged
partons results in a more centrally situated shape of the truth information.

Regarding the shape of the signal hypotheses it can be observed that the small shoulder
at large cos(Θ∗) values vanishes. Also the depth of the dip in the background shape is re-
duced. As before, this can be explained by the fact, that events which do not pass this cut
on truth level are removed completely and thus an impact can also be observed on reco level.

Combining the merged and the ptruth
T cut yields the normalized results in figure 7.6e. Here,

the separate shapes as well as the deviations between them are almost the same as for an
event selection using all the improvement cuts (7.6f). The small remaining differences are
then removed by the ηtruth cut.
All in all, it has been deduced, that the left-shifted shape of the truth information is mostly
due to events containing merged partons and low-pT partons.

Discussion of hypotheses yields

Finally, the hypotheses yields for both event selections and all three methods are compared.
The resulting numbers are presented in the following tables:
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method signal background

quarklevel 99022 1.95×109

Wtlevel 99022 1.95×109

ctc 17428 1.95×109

(a) without improvement cuts

method signal background

quarklevel 7512 0.18×109

Wtlevel 7512 0.18×109

ctc 3614 0.18×109

(b) with improvement cuts

Table 7.1: Hypotheses yields of the three methods (subsection 7.1.1) and the two event
selections, without (a) and with (b) improvement cuts.

For the event selection ’without improvement cuts’, the number of signal hypotheses is
the same for the quarklevel and the Wtlevel method as expected. Both of them have one
signal hypothesis per event. The number of signal hypotheses for the ctc method is smaller
compared to the other two, as here also the matching probability needs to be taken into
account. In consequence, it is not possible to assign a hypothesis to the matched category
for every event.
The same trends can also be observed for the event selection with improvement cuts.

Focusing on the exact number of signal hypotheses of the different methods, it can be found
that the number of 3614 signal hypotheses obtained by the ctc method in combination with
improvement cuts is far too small to train an MVA method.5 For the training process, this
sample has to be split up into a training and testing subset. Thus, the actual number of
signal events from which the method can learn is only half and thus even smaller. The
number of 7512 hypotheses provided by the Wtlevel and quarklevel method in combination
with applied improvement cuts is already a bit better, but is still at the lower limit.
For the event selection ’without improvement cuts’, the yields are in general larger. The
number of signal hypotheses for the ctc method increases to 17428 and for the Wtlevel and
quarklevel methods increases to 99022. Both yields are one order of magnitude greater
compared to the ones for the event selection ’with improvement cuts’ and thus yield a
more suitable number for training.

Another fact to mention is that for all methods and both event selections the number of
background hypotheses is orders of magnitudes larger than the number of signal hypotheses.
Thus, an additional requirement for the MVA method used for the reconstruction is the
ability to cope with the imbalance between the numbers of signal and background.

5As a rule of thumb about 10000 examples are necessary in order to be able to train an MVA method
which also performs well on new data. [74]
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Conclusion of the performance comparison and selection of a method to obtain
labeled input data

In this section, the three methods investigated - the quarklevel , the Wtlevel and ctc
method - have been compared for two event selections, with and without improvement
cuts.

It has been found that the methods capable of truthfully reproducing the physical proper-
ties are the ctc method for both event selections and the quarklevel method in combination
with applied improvement cuts. The Wtlevel method is excluded as the selected signal hy-
potheses are not able to reproduce physical information on quarklevel well as found for
the transverse momentum pT(W1t). This is essential as within the reconstruction process
the single jets have to be selected on quarklevel. Thus, out of the 6 options 3 remain:
the ctc method in combination without improvement cuts, the ctc method with applied
improvement cuts and the quarklevel method with applied improvement cuts.

In addition, it has been observed in the performed studies that applying the improve-
ment cuts helps selecting good signal hypotheses and leads to a truthful reproduction of
the physical properties as observed for e.g. the helicity angle and the mass of the tt̄ sys-
tem. Furthermore, it improves the separation between the signal and background shapes.
Therefore, preferably a method in combination with applied improvement cuts should be
used. Thus, the final decision has to be made between the ctc method and the quarklevel
method, both used in combination with improvement cuts.

Comparing the hypotheses yields, it has been found furthermore that the ctc method for
an event selection with applied improvement cuts has to be excluded. The reason for this is
the small number of signal hypotheses selected by this method. Even though this method
reproduces the physical information very well, the MVA method needs a sufficiently high
number of signal hypotheses to learn from which this method cannot provide.

Based on this finding, the quarklevel method with applied improvement cuts is finally cho-
sen to produce the labeled input data for the training process in this thesis6.

7.2 Investigation of the background hypotheses

In the previous section, the quarklevel method in combination with the event selection
’with improvement cuts’ has been chosen to produce the input data for the multivariate
method. In this context, a significant difference in the number of signal and background
hypotheses has been found. This is not surprising as all possible combinations are con-

6If instead of a high quality of the input data a larger number of signal hypotheses is preferred, the ctc
method in combination with the event selection ’without improvement cuts’ would also be an option.
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sidered in the process of selecting the signal hypotheses and all non-selected hypotheses
are labeled as background. In consequence, the background category is a collection of
hypotheses containing various physical scenarios.
However, this large discrepancy between the number of signal and background hypotheses
might limit the performance of the multivariate method. As it has been found in the pre-
vious section, that the number of signal hypotheses is already quite low, the background
hypotheses are studied in more detail in this section. In a first step, different background
categories for the specific physical scenarios are defined and the corresponding hypotheses
are assigned to them. Subsequently, the distributions resulting from the hypotheses of the
different categories are compared to the signal distribution in order to assess the extent of
similarity. Therefore, some well-discriminating observables are examplarily investigated.
The plots of further observables can be found in appendix A. The goal is to identify the
categories whose distributions are most similar to the signal as these are expected to be
most difficult for the MVA method to distinguish from the signal.

7.2.1 Definition of categories for the background hypotheses

In order to identify the background hypotheses most similar to the signal, distinct back-
ground categories are defined in the following.

In a first step, the so-called ’flip categories’ are defined. For that purpose, each jet needs
to be assigned to the best-fitting truth parton with regard to the ∆R distance. Then, it is
counted how many jets are not assigned to the corresponding parton. Based on this num-
ber, a number of ’flips’ is determined which indicates how many switches would be needed
in order to obtain the correct tt̄ configuration. As one switch always involves two jets, the
number of incorrectly assigned jets needs to be divided by two to obtain the number of
flips. In case the number of not correctly assigned jets is odd, the number of flips needs
to be rounded up as there are no ’half flips’. Thus, considering the case in which 5 jets
cannot be assigned to the correct partons, there are 5

2
= 2.5→ 3 flips.

With this in mind, the hypotheses can now be assigned to the different flip categories: If
all jets of the analyzed hypothesis can be assigned to their corresponding truth partons,
the hypothesis is assigned to the 0-flip category. If two jets cannot been assigned to their
corresponding truth partons, the hypothesis is assigned to the 1-flip category as one flip
would be needed to produce the correct configuration. The case in which two flips are
needed to ’restore’ the correct configuration, the hypothesis is assigned to the 2-flip cate-
gory and so on.
If at least two jets fit best with the same truth parton, the hypothesis is assigned to the
merged category (also referred to as category 7 ). This category is orthogonal to the flip
categories.

Figure 7.7 depicts the number of background hypotheses which are assigned to the different
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flip categories and the merged category.
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Figure 7.7: Visualization of the number of hypotheses assigned to the different flip cate-
gories and the merged category defined in the text.

On the x-axis of this plot, the different flip categories and the merged category are shown.
On the y-axis the number of hypotheses assigned to those is plotted.
The first eye-catching aspect is that most hypotheses are assigned to the merged category.
This proves once again that merged partons/jets are a challenge faced in reconstruction.
Another fact worth emphasizing is, that in the worst case up to 3 flips are needed to as-
sign the selected jets to the corresponding truth partons and thus a well-reconstructed tt̄
system. This is explainable considering the fact that the tt̄ system has 6 decay products.
Thus, a maximum number of 6 jets cannot be assigned to the correct truth parton which
implies a maximum number of 3 flips.
Furthermore, the numbers related to the different categories indicate that it is quite likely
that multiple flips are required to obtain the correct configuration. Thus, only considering
the plain numbers, the main challenge for reconstruction seems to be flipped scenarios and
merged cases. The signal-like background hypotheses (0-flip category) have in comparison
a negligible contribution.

In order to gain insight into the specific physical scenarios implied in these flips, further
detailed (sub-)categories are defined based on the 0-flip and 1-flip categories as for these
the physical causes can be well identified:

• category 1 : signal-like background, i.e. all jets are assigned to the corresponding
truth partons (= 0-flip category)

• category 2 : the light jets of the same top quark are switched among each other

• category 3 : the light jets of different top quarks are switched among each other, thus
a light jet of the top quark is assigned to a light parton of the anti-top quark and
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vice versa

• category 4 : one light jet and the b jet of the same top quark are switched

• category 5 : one light jet is switched with the b jet of the other top quark

• category 6 : the b jet and the b̄ jet are switched

The distribution of hypotheses assigned to these (sub-)categories is presented in figure 7.8.
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Figure 7.8: Visualization of the number of hypotheses assigned to the different sub-
categories of the 0-flip and 1-flip categories named categories 1-6 as defined in the text.

The categories 3, 4 and 5 (switching between the light and the b jets of the same/different
top quark and switching among the light jets of one top quark) have with 78012 entries the
largest number of hypotheses. In comparison, the number of 39006 assigned hypotheses
for category 2 (switched light jets of the same top quark), is exactly half of the number as-
signed to categories 3, 4 and 5. The number of hypotheses assigned to category 6 (switched
b-b̄), is exactly a quarter of the number of categories 3, 4 and 5. The lowest number of
hypotheses is assigned to category 1 (signal-like background).

This observation can be explained by using combinatorics and by considering the fact that
the tt̄ system consists of 2 top quarks: For category 2, there are 2 light-quarks involved
which both have one possibility to be switched. Thus, for the 2 top quarks there are overall
2 · 1 · 2 = 4 possibilities. For category 3, there are 2 light quarks for each top quark which
have 2 possibilities for a switch, resulting in 2 · 2 · 2 = 8 possibilities. For categories 4 and
5 two perspectives have to be considered: From the point of view of the b quark there are
2 light quarks per top quark with which it can switch (= 2 exchange possibilities per top
quark). In addition, also the perspective of the light partons has to be considered: there
are 2 light quarks which can both switch with the b quark (1 possibility each). All in all,
there are thus (1 · 2 + 2 · 1) · 2 = 8 possibilities. Last but not least, for category 6 there
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are 2 b quarks which can only be switched among each other, thus resulting in 1 · 1 · 2 = 2
possibilities.

From these calculations, it can be deduced that category 6 is expected to have the lowest
number of assigned hypotheses compared to categories 2 to 5. Category 2 should have
twice as many assigned hypotheses as category 6 and half as many as categories 3 to 5.
This matches exactly the observation found in figure 7.8. As in category 1 no switching
happens, no possibilities can be calculated and the number is identical to the one of the
0-flip category in figure 7.7.

The combinatorics can also be visualized in form of a matrix which is shown in figure 7.9.
Here, in the columns the 6 reco jets of the reconstructed tt̄ system are shown. In the rows,
the 6 truth partons originating from the tt̄ system are given. The cells are then colored
according to the definition of the 6 (sub-)categories. Counting the same-colored squares
then yields the identical numbers as the calculated ones.

jets →
partons ↓ W1t W2t W1t̄ W2t̄ b̄ b

b

b̄

W2t̄

W1t̄

W2t

W1t

Figure 7.9: Visualization of the number of occurrence of the sub-categories based on the
1-flip category: category 2 in yellow (4x), category 3 in red (8x), category 4 in orange (8x),
category 5 in blue (8x) and category 6 in gray (2x).

7.2.2 Observable distributions for different background categories

Having defined different background categories for specific physical scenarios, the extent
of similarity between the distributions belonging to those categories and the signal distri-
bution is now investigated. For this reason, some observables with a clear shape difference
between signal and background have been selected examplarily. Some more observables
can be found in appendix A.
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At first, the mass of the reconstructed top quark mt is investigated. In figure 7.10, the re-
sulting normalized distributions are depicted for the different flip categories (dotted lines)
and the (sub-)categories 1 to 6 (solid lines) in different colors. As a reference, the signal
distributions (green) and the full-background distribution (dark blue) have been included.

Figure 7.10: Normalized distribution of the top-quark mass mt related to the different
background categories defined in section 7.2.

It can be deduced that the most signal-like categories are category 1 (red), category 2
(orange) and category 4 (black).
For category 1 (signal-like background) this is expected. For category 2 and 4 (switching
among the light jets within one top quark/switching among the light jets and the b jet of
the same top quark), a signal-like distribution is expected as well. If two decay products
of the same top quark are switched, the mass remains unchanged.
Furthermore, it can be observed that the distributions of the remaining categories namely
category 3 (yellow), category 5 (red-brown), category 6 (purple) and category 7 (light
blue) are clearly more background-like, i.e. their shapes resemble the one of the overall
background (dark blue). Interestingly, also the 1-flip (grey), 2-flip (light pink) and 3-flip
(dark pink) categories are significantly more background-like. Thus, the combination of all
these separate scenarios should be well-distinguishable from the signal by the MVA method.

Another (non-kinematic) variable considered is the is-btagged variable for the W2t jet. In
figure 7.11 the normalized results are displayed for the different flip categories (dotted lines)
and the (sub-)categories 1 to 6 (solid lines) in different colors. As a reference, the signal
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distributions (green) and the full-background distribution (dark blue) have been included.

Figure 7.11: Normalized distribution of the is-btagged(W2t) observable related to the
different background categories defined in section 7.2.

Here, the most signal-like shapes are those of category 1 (red), category 2 (orange), cat-
egory 3 (yellow) and category 6 (purple). For category 1 (signal-like background) this
behavior is expected. For categories 2 and 3 (switching between light jets) the observation
can be explained by the fact, that even if light jets are switched, there is still a light jet
on the W2t reconstruction position. Thus, the jet is non-btagged as in the signal scenario.
The small share (< 1%) of b-tagged jets on the W2t position is due to misidentification
(subsection 3.2.5). For hypotheses of category 6 (switched b and b̄), the W2t jet is not
involved and thus, the situation for this jet is signal-like.
The most background-like shapes belong to the 3-flip category (pink) and category 7 (light
blue). The shapes of category 4 and category 5 as well as the 1-flip and 2-flip categories
are very background-like as well. In between signal and background lie the 2-flip and 1-flip
category as well as category 4 (black) and category 5 (red-brown). Category 4 and cat-
egory 5 both involve b-light switching and thus more b-tagged jets can be found on the
W2t position compared to the signal. As the switching can in principle involve all jets
considered in the hypotheses, the W2t jet is not necessarily involved. In consequence, the
share of non-b-tagged jets is still quite high.

Finally, an angular variable is considered: the rapidity of the W boson originating from the
anti-top quark. Figure 7.12 displays the normalized distributions for the different back-
ground categories using the same color assignments and linestyles as before. In addition
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also the signal (green) and the full background (dark blue) are included.
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Figure 7.12: Normalized distribution of the rapidity of the W boson originating from the
anti-top quark related to the different background categories defined in section 7.2.

The shapes closest to the signal are those of category 1 (red), category 2 (orange), category 4
(black) and category 6 (purple).
For category 1 (the signal-like background), this is again the expected behavior. For cat-
egory 6 (switched b-b̄) this is also expected as b-b̄ switching does not have an impact on
the W boson properties. For category 2 (switching between the light jets of the same top
quark) the correct decay products have been chosen. Thus, switching implies no change
in the properties of the W boson. Furthermore, also the other W boson can be addressed
by the flipping and thus the analyzed W boson - in particular its rapidity distribution - is
unchanged. For category 4 (switching between the b jet and the light jets of the same top
quark) the signal-like shape is less obvious. It is assumed that the b jets and the light jets
involved in the switching are situated close together and thus the switching hardly affects
the angular position of the jet used for the reconstruction of the W boson.
The shapes of the remaining categories are closer to the background distribution. Interest-
ing here is that the shape of category 3 (yellow) has an even sharper peak centered around
0 than the full background. This means that the hypotheses belonging to category 3 de-
scribe even more centrally produced W bosons.

In summary, it has been found that the shapes of the 1-flip, 2-flip and 3-flip categories are
in all cases well-distinguishable from the signal shape.
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Regarding the (sub-)categories of the 1-flip and 0-flip categories, i.e. categories 1-6, it can
be retained that especially categories 1 and 2 are very signal-like in all cases. For cate-
gory 1 this is obvious as it represents hypotheses of signal-like background thus all jets
have been assigned to the corresponding partons. Category 2 is a challenging category to
separate from the signal, as the light jets can hardly be distinguished between each other
besides from using the relatively unprecise jet charge. Consequently an option could be
to accept this category as signal. This is just mentioned as an outlook here, but is not
pursued further in this thesis.
In addition, different categories have been found to be most signal-like for each of the differ-
ent observables: category 4 for mt, categories 3 and 6 for is-btagged(W2t) and categories
4 and 6 for the rapidity of the W boson originating from the anti-top quark. Thus, to
assure that the MVA method is able to well-distinguish especially between the signal and
the signal-like categories, all of the categories 1-6 are expected to be extremely important
in the training process.

7.3 Training of the Neural Network

Having selected a method to produce labeled input data and having developed a good
understanding of the physical scenarios contained in the background category, it is now
possible to train the MVA method which is the focus of this section.

Basically, there are two ’classic’ MVA methods which can be used for the reconstruction:
the Neural Network (NN) and the Boosted Decision Tree (BDT). However, the NN should
be able to cope better with the imbalanced numbers of signal and background hypotheses
as special weights addressing these can be used [74]. Therefore, a Keras NN [109] with
Tensorflow back-end [110] has been chosen as the MVA method in this thesis. It is imple-
mented in [111].

To train the Neural Network, a decision regarding the input variables and the NN archi-
tecture needs to be taken. Due to memory limitations also the dataset used for training
needs to be selected. The chosen dataset, input variables and NN architecture are pre-
sented in subsection 7.3.1. Having taken these decisions, the training can be conducted.
Its performance is subsequently investigated in subsection 7.3.2.

7.3.1 Input variables, training dataset and Neural-Network ar-
chitecture

To prepare the training process, the dataset, the input variables and the architecture of
the Neural Network have to be determined.
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Training dataset

As described in section 7.1, the quarklevel method combined with the event selection ’with
improvement cuts’ is chosen to produce the labeled input data for the training process.
Unfortunately, using all hypotheses labeled by this method exceeded the memory capac-
ity of the work-station used which is 32 GB. As this is the work-station with the highest
memory capacity at the chair, a possible solution would have been to use the resources of
the computing center LRZ. The preparation for this is very costly in terms of time though.
It was therefore not possible to conduct this within the scope of this thesis.
That is why an alternative approach has been developed: Instead of using the full input
dataset for the training, only a subset is selected. As the number of signal hypotheses is
already low, it seems reasonable to reduce the number of background hypotheses. The
idea is then to train the NN on the whole signal and only on the background categories
most similar to the signal. The final performance evaluation of the NN is subsequently
conducted using the whole dataset as the evaluation is a lot less memory intensive than
the training7.

In the studies conducted in section 7.2, it was discovered that the sub-categories of the
0-flip and 1-flip categories, i.e. categories 1 to 6, are quite signal-like while the multi-flip
categories as well as the merged category are very background-like. In consequence, the
latter are excluded for the training. According to figure 7.7 this also reduced the number
of background hypotheses considerably as desired.

Input variables for the NN training

In a next step, also the observables used as input variables for training have to be selected.
Here, only observables on reco level are chosen as - in case of a good performance - the
NN-based reconstruction is applied to experimental data. For these, no truth information
is available.

The observables used as input variables for the training are summarized in the tables 7.2
and 7.3.

In these tables, the input variables are grouped in different categories: the first two cat-
egories are formed by the kinetic observables, the masses and the transverse momenta.
Furthermore, also angular information is included in the form of the rapidities of the re-
constructed objects, i.e. the rapidities of the W bosons and the top/anti-top quark8. The
angular information provided by η for the single jets9 as well as by φ for the single jets

7For the training, all input data need to be imported as they are reshuffled after each epoch. In this
way, it is assured, that not always the same hypotheses are used for training and testing.

8In this context, a Lorentz-invariant property like the rapidity is required as the reconstructed objects
are quite massive.

9The non-Lorentz-invariant property η can be used for the single jets as they can be approximated to
be massless compared to the reconstructed objects.
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and the reconstructed objects cannot be used here due to the lack of separation power be-
tween signal and background. Moreover, also the is-btagged observable as well as helicity
properties are used.
In general, no criteria to differentiate between the top quark and the anti-top quark have
been used. It would thus be legitimate to think of them as top 1 and top 2 and analogous
for their decay products. Only to determine the down-type quark, the jet charge intro-
duced in subsection 3.2.6 has been used.
To address the identified reconstruction challenge of a changing topology, observables tar-
geting the angular distance between the decay products have been included. As they have
been developed in this thesis, their shapes are investigated in more detail in the following.
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observables description

masses

mt/mt1 mass of the top quark

mt̄/mt2 mass of the anti-top quark

mW from t/mW1
mass of the W boson originating from
the top quark

mW from t̄/mW2
mass of the W boson originating from
the anti-top quark

mtt̄ mass of the top-antitop-quark system

mW1t/mj1 and mW2t/mj2
masses of the jets originating from the W boson
of the top quark

mW1t̄/mj3 and mW2t̄/mj4
masses of the jets originating from the W boson
of the anti-top quark

mb/mj5b
mass of the b jet originating from
the top quark

mb̄/mj6b
mass of the b̄ jet originating from
the anti-top quark

transverse momenta

pT(t)/pT(t1) transverse momentum of the top quark

pT(t̄)/pT(t2) transverse momentum of the anti-top quark

pT(W from t)/pT(W1)
transverse momentum of the W boson originating
from the top quark

pT(W from t̄)/pT(W2)
transverse momentum of the W boson originating
from the anti-top quark

pT(W1t)/pT(j1) and pT(W2t)/pT(j2)
transverse momenta of the jets originating from
the W boson of the top quark

pT(W1t̄)/pT(j3) and pT(W2t̄)/pT(j4)
transverse momenta of the jets originating from
the W boson of the anti-top quark

pT(b)/pT(j5b)
transverse momentum of the b jet originating
from the top quark

pT(b̄)/pT(j6b)
transverse momentum of the b̄ jet originating
from the anti-top quark

rapidities

rapidity(t)/rapidity(t1) rapidity of the top quark

rapidity(t̄)/rapidity(t2) rapidity of the anti-top quark

rapidity(W from t)/rapidity(W1)
rapidity of the W boson originating from
the top quark

rapidity(W from t̄)/rapidity(W2)
rapidity of the W boson originating from
the anti-top quark

Table 7.2: Input variables for the training of the Neural Network (part 1).



112 CHAPTER 7. MULTIVARIATE RECONSTRUCTION

observables description

is-btagged

is-btagged(W1t)/is-btagged(j1)
is-btagged of the jet of the first decay product
of the W boson originating from the top quark

is-btagged(W2t)/is-btagged(j2)
is-btagged of the jet of the second decay product
of the W boson originating from the top quark

is-btagged(W1t̄)/is-btagged(j3)
is-btagged of the jet of the first decay product
of the W boson originating from the anti-top quark

is-btagged(W2t̄)/is-btagged(j4)
is-btagged of the jet of the second decay product
of the W boson originating from the anti-top quark

is-btagged(b)/is-btagged(j5b)
is-btagged of the b jet originating from
the top quark

is-btagged(b̄)/is-btagged(j6b)
is-btagged of the b̄ jet originating from
the anti-top quark

helicity properties

cos(Θ∗)(t)/cos(Θ∗)(t1) helicity angle for the top quark

cos(Θ∗)(t̄)cos(Θ∗)(t2) helicity angle for the anti-top quark

pT(down-type quark of t)/
pT(down-type quark of t1)

transverse momentum of the down-type quark
of the top quark

pT(down-type quark of t̄)/
pT(down-type quark of t2)

transverse momentum of the down-type quark
of the anti-top quark

sum pT (down-type quark) pT(down-type quark of t) + pT(down-type quark of t̄)

angular distance
between the decay products

∆φ(decay products t)/
∆φ(decay products t1)

|∆φ(b,W1t)|+ |∆φ(b,W2t)|+ |∆φ(W1t,W2t)|

∆φ(decay products t̄)/
∆φ(decay products t2)

|∆φ(b̄,W1t̄)|+ |∆φ(b̄,W2t̄)|+ |∆φ(W1t̄,W2t̄)|

∆φ(decay products of t and t̄) ∆φ(decay products t̄) + ∆φ(decay products t)

∆η(decay products t)/
∆η(decay products t1)

|∆η(b,W1t)|+ |∆η(b,W2t)|+ |∆η(W1t,W2t)|

∆η(decay products t̄)/
∆η(decay products t2)

|∆η(b̄,W1t̄)|+ |∆η(b̄,W2t̄)|+ |∆η(W1t̄,W2t̄)|

∆η(decay products of t and t̄) ∆η(decay products t̄) + ∆η(decay products t)

∆R(decay products t)/
∆R(decay products t1)

|∆R(b,W1t)|+ |∆R(b,W2t)|+ |∆R(W1t,W2t)|

∆R(decay products t̄)/
∆R(decay products t2)

|∆R(b̄,W1t̄)|+ |∆R(b̄,W2t̄)|+ |∆R(W1t̄,W2t̄)|

∆R(decay products of t and t̄) ∆R(decay products t̄) + ∆R(decay products t)

Table 7.3: Input variables for the training of the Neural Network (part 2).
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In figure 7.13, the normalized distributions of the ∆η between the decay products of the
top quark (figure 7.13a) and the anti-top quark (figure 7.13b) as well as their event-wise
sum (figure 7.13c) are displayed. Their definition is given in table 7.3. The signal and
background distributions are depicted in blue and red respectively. As a reference, also the
truth information (yellow) is included.
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Figure 7.13: Normalized signal, background and truth distributions of the angular ∆η
distance between the decay products of the top quark (a), the anti-top quark (b) and their
event-wise sum (c).

In both, figure 7.13a and figure 7.13b, the signal distributions peak at a value of about 2.
Consequently, the signal peak is situated at a value of about 5 in figure 7.13c as here the
sum of ∆η between the decay products of the top and the anti-top quark is shown. The
background clearly combines scenarios exhibiting higher distances between the decay par-
ticles.
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Due to the different shapes of the signal and background distributions, a high separation
power can be identified which makes this observable a suitable input variable.
Furthermore, the distribution of the signal is in line with the distribution of the truth in-
formation in all cases. This confirms the choice of the method as the physical information
is reproduced truthfully.

In figure 7.14, the normalized signal, background and truth distributions of the ∆φ be-
tween the decay products of the top quark (figure 7.14a) and the anti-top quark (figure
7.14b) as well as their event-wise sum (figure 7.14c) are depicted in the same colors as in
figure 7.13. Their definition is given in table 7.3.
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(c)

Figure 7.14: Normalized signal, background and truth distributions of the angular ∆φ
distance between the decay products of the top quark (a), the anti-top quark (b) and their
event-wise sum (c).
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Looking at the resulting distributions, a quite exotic shape exhibiting a high and very
sharp peak at a value of exactly 2π (≈ 6.2) in figures 7.14a and 7.14b can be observed. In
figure 7.14c, the peak is situated at exactly 4π (≈ 12.3) as here the sum of the ∆φ between
the decay products of the top and anti-top quark is displayed. Towards lower values of
∆φ, a long and narrow tail ending at values greater 0 can be found in all subfigures.
Apart from that, there is a perfect fit of the truth information and the signal. This confirms
again the choice of the method.
Moreover, also a small signal-background separation is observed which can hardly be spot-
ted due to the high peak in figures 7.14a and 7.14b. The separation becomes more obvious
when looking at figure 7.14c as here the sum is displayed. This implies that not only the
distributions, but also their separation powers are added.

To explain the observed exotic shapes, further investigation is necessary. For this reason,
the truth distribution of the transverse momentum of the anti-top quark10 is plotted for
∆φ(decay products t̄) > 2π ≈ 6.2 (peak) and ≤ 2π ≈ 6.2 (tail). The normalized results
are depicted in figure 7.15.
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Figure 7.15: Normalized truth distributions of the transverse momentum of the anti-top
quark pT(t̄) separately for ∆φ(decay products t̄)> 2π and ≤ 2π.

Here, a clear separation between the pT(t̄) distributions of the 2 ∆φ cases can be observed.
From this, it can be deduced that the peak in figure 7.14 results from (anti-)top quarks
with low pT and that the tail is a result of (anti-)top quarks with high pT.
This is plausible as in general for a (anti-)top quark with low pT the decay products are
emitted in larger angles and thus are spread further. Looking at the positions of the decay

10The distributions are the same for the top quark and the anti-top quark. Therefore, the discussion is
examplarily done based on the pT(t̄).
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products in the η-φ plane, the three jets j1, j2, j3 form a triangle. Figure 7.16 depicts
examplarily the configuration for a vanishing transverse momentum of the top/anti-top
quark.

Figure 7.16: Sketch of the triangle formed by the three decay products of the (anti-)top
quark, referred to as j1, j2 and j3, in the φ-η plane for the case of a vanishing transverse
momentum of the top/anti-top quark.

Considering the projection onto the φ-axis, ∆φ(j1, j3) = π can be determined as φ(j1) = π
and φ(j3) = 0. Analogously, ∆φ(j1, j2) = 0 and ∆φ(j2, j3) = π. Thus, overall ∆φ(decay
products t/t̄) = π + 0 + π = 2π. This is exactly the position of the sharp peak in figures
7.14a and 7.14b.
Furthermore, it is also the maximum distance possible between the decay products of the
top/anti-top quark as φ ranges from −π to π and only the absolute values are considered
in the calculation.
In case the (anti-)top quark has a higher pT, the decay products are emitted in smaller
angles and are in consequence closer together. Thus, a smaller triangle can be found which
results in lower values of ∆φ(between decay products t/t̄). As there are multiple configu-
rations leading to a ∆φ(decay products of t/t̄)< 2π, a continuous and narrow tail can be
found.
Moreover, this visualization also explains why the tail ends at values greater 0. This would
corresponds to a configuration in which the decay products are ’glued’ to each other which
cannot be achieved with a pT(t̄)/pT(t) of maximum 400 GeV using the setup of this thesis.

In figure 7.17, the normalized distributions of the ∆R between the decay products of the
top quark (figure 7.17a) and the anti-top quark (figure 7.17b) as well as their event-wise
sum (figure 7.17c) are displayed in the same color-scheme as in figure 7.13. Their definition
is given in table 7.3.



7.3. TRAINING OF THE NEURAL NETWORK 117

0 2 4 6 8 10 12 14 16 18 20
R(decay products of t)∆

0

10

20

30

40

50

60

70

80

3−10×

n
o

rm
al

iz
ed

 t
o

 u
n

it
y

 

ATLAS Work in progress
Simulation

with improvement cuts

 signal
 background
 truth

 

(a)

0 2 4 6 8 10 12 14 16 18 20
)tR(decay products of ∆

0

10

20

30

40

50

60

70

3−10×

n
o

rm
al

iz
ed

 t
o

 u
n

it
y

 

ATLAS Work in progress
Simulation

with improvement cuts

 signal
 background
 truth

 

(b)

0 5 10 15 20 25 30
)tR(decay products of t and ∆

0

10

20

30

40

50

60

3−10×

n
o

rm
al

iz
ed

 t
o

 u
n

it
y

 

ATLAS Work in progress
Simulation

with improvement cuts

 signal
 background
 truth

 

(c)

Figure 7.17: Normalized signal, background and truth distributions of the angular ∆R
distance between the decay products of the top quark (a), the anti-top quark (b) and their
event-wise sum (c).

In figures 7.17a and 7.17b again some exotic shapes are found. They can be explained
by considering that ∆R is defined as

√
∆φ2 + ∆η2. Thus, figure 7.17a (figure 7.17b) is

roughly the sum of figure 7.13a (figure 7.13b) and figure 7.14a (figure 7.14b).
The exotic shape vanishes in figure 7.17c. This is a result of an event-wise addition of the
∆R values between the decay products of the top quark to those of the anti-top quark.
Obviously in one event, there is always one top quark with a large ∆R value and an anti-
top quark with a low ∆R value or vice versa and thus the sum exhibits only one peak. This
corresponds to one of the two preferred topologies found in chapter 6: if the one of the
top quarks recoils against the other top quark and the Z boson, the ’single’ top quark will
have a higher transverse momentum than the top quark on the Z boson side. As a higher
(lower) transverse momentum leads to decay products which are situated closer together
(farther apart), the top quark with the higher (lower) pT value has also a lower (higher)
∆R value for its decay products.
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Overall, the investigations conducted indicate that all observables targeting the angular
difference between the decay products exhibit a significant separation power and are thus
used for training.

In a next step, also the normalized signal and background distributions are depicted ranked
according to their separation power in figures 7.18 to 7.25.
In this context, the separation power is calculated as follows: first, for all signal bins, the
bin content is divided by the number of bins and referred to as s. The same is done for
the background and referred to as b. Then, the separation power is calculated according

to
∑Nbins

i 0.5 (si−bi)2
(si+bi)

using all bins with si + bi > 0 [98]. The error of the separation power
is calculated according to linear error propagation theory.
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(a) separation power: 0.4275
(0.427 ± 0.006)
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(b) separation power: 0.4271
(0.427 ± 0.006)
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(c) separation power: 0.3982
(0.39815 ± 0.00020)
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(d) separation power: 0.3374
(0.33741 ± 0.00014)

Figure 7.18: Normalized signal and background distributions of the most separating input
variables (listed in table 7.2 and 7.3) for the NN training ordered by decreasing separation
power. (part 1)
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(a) separation power: 0.3076
(0.308 ± 0.005)

0 50 100 150 200 250 300 350 400
)tm(

0

10

20

30

40

50

60

70

80

3−10×

n
o

rm
al

iz
ed

 t
o

 u
n

it
y

 

ATLAS Work in progress
Simulation

quarklevel-method, with improvement cuts

 signal
 background

 

(b) separation power: 0.3071
(0.307 ± 0.005)
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(c) separation power: 0.3059
(0.306 ± 0.005)

0 50 100 150 200 250 300 350 400
)tm(W from 

0

20

40

60

80

100

120

140

3−10×
n

o
rm

al
iz

ed
 t

o
 u

n
it

y
 

ATLAS Work in progress
Simulation

quarklevel-method, with improvement cuts

 signal
 background

 

(d) separation power: 0.3029
(0.303 ± 0.005)
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(e) separation power: 0.2610
(0.26096 ± 0.00017)
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(f) separation power: 0.2595
(0.25948 ± 0.00017)

Figure 7.19: Normalized signal and background distributions of the most separating input
variables (listed in table 7.2 and 7.3) for the NN training ordered by decreasing separation
power. (part 2)
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(a) separation power: 0.2366
(0.23663 ± 0.00008)

0 2 4 6 8 10 12 14 16 18 20
)tR(decay products of ∆

0

10

20

30

40

50

60

70

3−10×

n
o

rm
al

iz
ed

 t
o

 u
n

it
y

 

ATLAS Work in progress
Simulation

quarklevel-method, with improvement cuts

 signal
 background

 

(b) separation power: 0.2311
(0.23115 ± 0.00008)
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(c) separation power: 0.1295
(0.129473 ± 0.000014)
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(d) separation power: 0.1009
(0.1009 ± 0.0025)
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(e) separation power: 0.1007
(0.1007 ± 0.0025)
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(f) separation power: 0.0997
(0.0997 ± 0.0025)

Figure 7.20: Normalized signal and background distributions of the most separating input
variables (listed in table 7.2 and 7.3) for the NN training ordered by decreasing separation
power. (part 3)
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(a) separation power: 0.0906
(0.090648 ± 0.000012)
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(b) separation power: 0.0893
(0.089297 ± 0.000012)
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(c) separation power: 0.0754
(0.07544 ± 0.00005)
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(d) separation power: 0.0753
(0.07530 ± 0.00005)
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(e) separation power: 0.0580
(0.05804 ± 0.00026)
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(f) separation power: 0.0572
(0.05723 ± 0.00026)

Figure 7.21: Normalized signal and background distributions of the most separating input
variables (listed in table 7.2 and 7.3) for the NN training ordered by decreasing separation
power. (part 4)
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(a) separation power: 0.0539
(0.0539 ± 0.0010)
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(b) separation power: 0.0511
(0.0511 ± 0.0010)
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(c) separation power: 0.0496
(0.0496 ± 0.0010)
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(d) separation power: 0.0460
(0.0460 ± 0.0009)
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(e) separation power: 0.0455
(0.0455 ± 0.0009)
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(f) separation power: 0.0447
(0.0447 ± 0.0009)

Figure 7.22: Normalized signal and background distributions of the most separating input
variables (listed in table 7.2 and 7.3) for the NN training ordered by decreasing separation
power. (part 5)
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(a) separation power: 0.0436
(0.0436 ± 0.0009)
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(b) separation power: 0.0415
(0.0415 ± 0.0019)
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(c) separation power: 0.0378
(0.0378 ± 0.0019)
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(d) separation power: 0.0368
(0.0368 ± 0.0019)
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(e) separation power: 0.0355
(0.0355 ± 0.0018)
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(f) separation power: 0.0338
(0.0338 ± 0.0019)

Figure 7.23: Normalized signal and background distributions of the most separating input
variables (listed in table 7.2 and 7.3) for the NN training ordered by decreasing separation
power. (part 6)
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(a) separation power: 0.0332
(0.0332 ± 0.0009)
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(b) separation power: 0.0313
(0.0313 ± 0.0016)
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(c) separation power: 0.0311
(0.0311 ± 0.0009)
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(d) separation power: 0.0232
(0.02317 ± 0.00017)
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(e) separation power: 0.0228
(0.0228 ± 0.0008)
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(f) separation power: 0.0220
(0.02197 ± 0.00017)

Figure 7.24: Normalized signal and background distributions of the most separating input
variables (listed in table 7.2 and 7.3) for the NN training ordered by decreasing separation
power. (part 7)
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(a) separation power: 0.0217
(0.0217 ± 0.0007)
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(b) separation power: 0.0153
(0.0153 ± 0.0006)
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(c) separation power: 0.0143
(0.0143 ± 0.0006)
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(d) separation power: 0.0128
(0.0128 ± 0.0013)
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(e) separation power: 0.0109
(0.0109 ± 0.0012)
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(f) separation power: 0.0067
(0.00667 ± 0.00009)

Figure 7.25: Normalized signal and background distributions of the most separating input
variables (listed in table 7.2 and 7.3) for the NN training ordered by decreasing separation
power. (part 8)
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In order to assure that the Neural Network is able to learn from these diverse observables,
they need to be standardized, i.e. their ranges need to be made comparable. To achieve
this, a standard approach is to transform the input observables in a way that they exhibit
a mean of zero and a standard deviation of 1.
This procedure is essential, as a change of 1 for 2 observables, say first observable ranging
from 0 to 1× 106 and second observable ranging from 0 to 2, has a quite different impact.
The standardization is performed during a step called pre-processing.

NN architecture

Up to now a dataset as well as input variables have already been chosen for the training
process. So, the definition of the final NN architecture is the only open point.
In order to select the most suitable architecture, various hyperparameter combinations have
been tested. The table below shows the hyperparameters (introduced in chapter 4) leading
to the best-performing NN together with the results (area-under-curve (AUC) value of the
receiver-operating-curve (ROC) curve, accuracy, loss):

Hyperparameters

neurons per layer 500

ncycles 100

batchSize 32

dropout 0.5

optimizer adam

activation leaky ReLu

initializer normal

regularizer 0.01

classWeight balanced

learning rate 0.001

decay 0.0001

Results

AUC value train: 0.97, test: 0.97

loss 20.52

accuracy 91.94 %

Table 7.4: Hyperparameters leading to the best-performing NN together with its results.

Investigation of deeper as well as narrower NNs exhibited more overtraining. Varying the
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activation functions has not had a significant impact. So the state-of-the-art activation
function, the leaky ReLu, was chosen. A table summarizing the results (ROC value, loss
and accuracy) of all tested hyperparameter combinations can be found in appendix C.

Overall, only a limited number of combinations of hyperparameters could be tested within
the scope of this thesis. To optimize the hyperparameter set further e.g. a grid search could
be used. As the focus of this thesis is not the optimization of the multivariate reconstruc-
tion, this has not been conducted.

7.3.2 Training-performance investigation

Having selected the dataset, the input variables and the architecture of the Neural Network,
it is all set to finally perform the training.
To evaluate its performance, multiple visualizations showing the separation power as well
as the extent of overtraining are analyzed. Furthermore, it is investigated which input
variables are most important for the learning process.

Training output plots

The training is evaluated using several different visualizations of the separation power and
the extent of overtraining. The plots discussed below, have already been introduced in
subsection 4.2.

First of all, the train-test plot is considered. Figure 7.26 displays the normalized output-
score EPD (= Event Probability Discriminant) for the signal and the background hypothe-
ses (in red and blue respectively). The filled distributions are the results of the training
process while the points result from the testing process.

Looking at the training results, a clear separation between signal and background can be
observed: Most of the signal hypotheses can be found at a value close to 1 and most of
the background hypotheses have an output-score close to 0. The overlap between the two
distributions is very small. The same trends are also found by looking at the testing results.
Regarding the Signal-to-Background ratio (S/B) calculated from the testing distributions a
steadily rising trend is noticeable which indicates that moving towards an output-score of 1
more signal hypotheses can be found. The bins indicating an output-score EPD greater
than 0.8 have a signal-to-background ratio of greater than 2.

Moreover, the training and testing distributions match each other perfectly. Thus it can
be deduced from this plot that no significant overtraining is happening.
This is also confirmed by the results of the Kolmogorov-Smirnoff test (subsection 4.2.1).
The values of 0.16 for the signal and 0.04 for the background are good results.
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Figure 7.26: Normalized train-test plot (introduced in subsection 4.2.1). The bins indi-
cating an output-score EPD greater than 0.8 have a signal-to-background ratio of greater
than 2.

In a next step, the non-normalized, logarithmic distributions are depicted in figure 7.27
using training and testing data. The latter are weighted and scaled to a luminosity of
140 fb−1. The blue distribution indicates the background while the signal distribution is
shown in red. The label events on the y-axis of this plot refers to the considered hypotheses.

Here, it can be found that indeed most of the signal (background) hypotheses have an
output-score EPD close to 1 (0). In addition, also the imbalanced numbers of signal and
background hypotheses are visualized. This shows quite impressively to which extent the
number of signal hypotheses is swamped by the number of background hypotheses11.
Due to this large number of background hypotheses the background distribution is smooth.
In contrast, the signal distribution is quite ’bumpy’ which indicates that the number of
signal hypotheses is at the lower limit as mentioned in section 7.1. Thus, for optimization of
the Neural Network a higher number of signal hypotheses would be desirable as mentioned
earlier.

To gain further information about the training performance of the NN, the ROC curves
together with the AUC value are analyzed (figure 7.28).

11The small rise of the background hypotheses in the signal bin is assumed to be a result of the chosen
binning.
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Figure 7.27: Logarithmic and weighted training output-score scaled to a luminosity of 140
fb−1 using training and testing data. The label events on the y-axis of this plot refers to
the considered hypotheses.

Figure 7.28: ROC curves of training and testing together with their AUC values as intro-
duced in subsection 4.2.2.

Here, the training and testing curves have both almost a rectangular shape. Thus, the NN
is obviously able to extract useful information during the learning process as the shapes
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are significantly different to the diagonal which would indicate a decision based on luck.
This can also be confirmed by looking at the AUC scores of 0.97 which are very high.
Moreover, the two distributions lie very close to each other which indicates only a small
amount of overtraining.
The fact that there is a small difference in the ROC curves for the same AUC values is a
result of the approximation which has to be chosen in order to numerically calculate the
integral to determine the AUC value.

Another way of visualizing the training performance are the confusion matrices shown in
figure 7.29.
In figure 7.29a, the results of the training process are summarized. Looking at the devia-
tion of the matrix from the unity matrix, it can be deduced that there is a good, but not
perfect, signal-background separation. The same can be observed for the testing results
depicted in figure 7.29b.
Furthermore, small differences between the shares of the training and testing matrices can
be found. This indicates that overtraining is happening to a small extent.
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Figure 7.29: Confusion matrices for training (a) and testing (b) as introduced in subsection
4.2.3.

All in all, evaluating the training performance, good separation between signal and back-
ground and a small amount of overtraining has been found. Furthermore, the high AUC
value of 0.97 indicates a very good performance of the Neural Network.



7.3. TRAINING OF THE NEURAL NETWORK 131

Variable ranking and correlations

To investigate which observables are most helpful for the NN to perform the reconstruction,
the linear correlations among them as well as their linear correlation to the output-score
EPD is investigated. The results are displayed in the correlation matrices in figures 7.30
(signal) and 7.31 (background). The values of the correlation coefficients are not included
in the matrices as this would overload the plot due to the high number of input variables.

The correlation matrix of the signal (figure 7.30) indicates that quite a few observables
are correlated to each other. This is obvious for the different masses and the different
transverse momenta because the masses and the transverse momenta are related by

E = mc2 =
√
~p2c2 +m2

0c
4 =

√
( ~pT + pz)

2 c2 +m2
0c

4 with E/m/~p the energy/mass/momen-

tum of the particle, m0 the rest-mass of the particle and the velocity of light c. The masses
of the top/anti-top quark and the masses of the W bosons are also correlated to the an-
gular differences between the decay products. This can be explained by the formula above
and considering that ~p1 · ~p2 = |~p1| · |~p2| · cosα with α related to φ and η. Interestingly,
the masses of the jets are slightly anti-correlated to the observables targeting the angu-
lar difference between the decay products. For the same reason, also the pT values are
(anti-)correlated to the angular variables, especially ∆φ and ∆R. They are correlated by
the relation ∆R =

√
∆η2 + ∆φ2. Moreover, also a correlation between the helicity prop-

erties and the observables targeting the angular distance between the decay products is
found. This can be explained by the fact that both observables rely on angular information
related to the topology of the system.
Regarding the correlation of the input variables to the output-score EPD, it can be found
that the most contributing observables are the is-btagged(b) and the is-btagged(b̄). Fur-
thermore, also the masses of the top/anti-top quark, the masses of the W bosons as well
as the observables targeting the ∆R and the ∆η between the decay products are quite
strongly (anti-)correlated to the output-score. This agrees well with the high separation
power of these observables found in subsection 7.3.1.
Thus, on top of the information used in the χ2 reconstruction (masses and is-btagged),
also the developed observables targeting the angular distance between the decay products
are important for the NN.
Figure 7.31 shows the correlation matrix of the background. Here, the same basic trends

can be found as for the signal. In contrast to the signal correlation matrix, it can be
observed that the correlation between the masses/transverse momenta and the variables
targeting the angular differences between the decay products get smaller. Moreover, the
mass of the tt̄ system mtt̄ is found to be stronger correlated to the angular observables,
while the transverse momenta of the down-type quarks are less correlated to the observ-
ables targeting the angular distance between the decay products. The correlation between
∆φ and ∆η has vanished as well.
Regarding the correlation between the output-score EPD and the input variables, also the
same correlations can be found. Apart from that, there is a stronger correlation to the
mass of the tt̄ system mtt̄.
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Figure 7.30: Correlation matrix of the signal.
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Figure 7.31: Correlation matrix of the background.
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Another complementary way to discover which observables contribute most to the decision
is to rank the variables. For that purpose, multiple metrics exist. Three of them are shown
in the following, in particular the sum of absolute weights, the sum of squared weights and
the sum of gradients.
For the ’sum of the absolute weights’ ranking, the absolute values of the weights of the
connection between the first hidden layer and the neuron related to the particular variable
in the input layer are added. A similar approach is performed for the ’sum of squared
weights’ ranking with the only difference that here the squared weights are summed up.
For the ’sum of gradients’ ranking, the variation of the output ∂y in the first hidden layer
depending on the particular variable xi is calculated and multiplied with the standard de-
viation of the particular variable σxi . As within the pre-processing the input variables xi
underwent a transformation which resulted in a mean of µxi = 0 and a standard deviation
σxi = 1, only ∂y

∂xi
is used here.

Highly discriminating variables should be ranked quite high for each of the three metrics.

In table 7.5, the 15 most important input variables according to the three metrics are listed.
The results are highlighted in different colors depending on the physical categories: kine-
matic variables (blue and orange), is-btagged (green), helicity properties (magenta/pale
red), angular differences between the decay products (yellow) and the rapidities (gray).
The complete list containing all input variables is contained in appendix B.

Obviously, the most contributing observable is the mass of the tt̄ system mtt̄ being placed
on the top position for all three metrics. According to the two weight-based metrics, the
is-btagged observables as well as the transverse momenta contribute significantly to the
training. Furthermore, also the ∆η differences between the decay products are ranked quite
high. This is reassuring to see as they have been developed especially for the multivariate
reconstruction addressed in this thesis.
From the ranking based on the gradient metric, it can be seen that here the transverse mo-
menta play an important role in the training as well. In contrast to the other two metrics,
the is-btagged observables as well as the ∆η distances between the decay products are not
ranked within the top 15. Rather the masses of the W bosons and the masses of the top
quarks as well as the transverse momenta of the down-type quarks can be found.
Furthermore, it is eye-catching that no rapidities of the top quarks/W bosons are within
the top 15 most contributing observables.

Concluding, it can be retained that besides the masses and the is-btagged observable which
is exactly the information used in the χ2 reconstruction, also the observables targeting the
angular difference between the decay products, transverse momenta as well as the helicity
properties contribute significantly to the training process and hence to the reconstruction
of the hadronic tt̄ systems in tt̄Z events.



7.3. TRAINING OF THE NEURAL NETWORK 135

sum of squared weights sum of absolute weights gradients

1. mtt̄ mtt̄ mtt̄

2. is-btagged(b̄) is-btagged(b̄) mW from t

3. is-btagged(b) is-btagged(b) mt

4. pT(W1t̄) pT(W1t̄) pT(down-type quark t)

5. is-btagged(W1t̄) is-btagged(W1t̄) pT(t)

6. is-btagged(W2t) pT(t) pT(W2t̄)

7. pT(W1t) pT(W1t) pT(t̄)

8. pT(b) pt(b̄) pT(W1t̄)

9. pT(b̄) is-btagged(W2t) pT(W1t)

10. ∆η(decay products of t) pT(b) mW from t̄

11. pT(t) is-btagged(W2t̄) pT(W from t)

12. ∆η(decay products of t̄) pT(W2t) pT(down-type quark t̄)

13. is-btagged(W2t̄) pT(W2t̄) pT(W2t)

14. pT(W2t) mt pT(b̄)

15. mb̄ ∆η(t or t̄ decay) mt̄

Table 7.5: Table displaying the 15 most important input variables ranked according to three
metrics, ’sum of squared weights’, ’sum of absolute weights’ and ’gradients’, highlighted
in different colors depending on the physical categories: kinematic variables (blue and
light orange), is-btagged (green), helicity properties (magenta/pale red) and the angular
differences between the decay products (yellow).
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7.4 Performance investigation of the multivariate re-

construction

In the previous section, the Neural Network has been trained and its training perfor-
mance has been studied. As the investigations indicated a good training performance, the
trained Neural Network is assumed to be able to truthfully classify hypotheses as signal
(well-reconstructed tt̄ systems) and background (badly-reconstructed tt̄ systems). As this
represents the multivariate reconstruction of hadronic tt̄ systems in tt̄Z events, also a good
reconstruction performance is expected.

To verify this, un-labeled data are used which consist basically of the same hypotheses
as the ones obtained by applying the quarklevel method in combination with the event
selection ’with improvement cuts’. The only difference is that no labels have been assigned
to the hypotheses.
To find out how well the classification/reconstruction works, the trained NN is now ap-
plied to these un-labeled hypotheses and is asked to classify them, i.e. to conduct the
reconstruction. This step is referred to as ’evaluation’. Based on the obtained results,
detailed investigations regarding the classification quality/reconstruction performance are
conducted in the following.

In a first study, the hypothesis yielding the highest output-score in the event is selected for
each event. These hypotheses are in the following referred to as the ’best NN hypotheses’
and also represent the best reconstructed tt̄ systems of the multivariate reconstruction.
The output-scores of the best NN hypotheses are plotted in figure 7.32.

It can be observed that the output-score is extremely high for all best NN hypotheses
and thus, according to the NN, they are all extremely signal-like. Based on this, it seems
reasonable to expect that the NN can apply its ’knowledge’ successfully to un-labeled data
and that the multivariate reconstruction works well.

To confirm this, the best NN hypotheses are further investigated. In this context, it is
identified to which categories (signal, flip categories, categories 1 to 6) these hypotheses
were initially assigned, i.e. before training. Thus their ’true’ label is queried. Table 7.6
displays the number of best NN hypotheses carrying a particular ’true’ label.

In contrast to the expectation, the share of the signal is vanishingly small while the share
of the background is extremely large. This indicates that the NN was not able to truth-
fully differentiate between signal (well-reconstructed tt̄ systems) and background (badly-
reconstructed tt̄ systems).
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Figure 7.32: Distribution of the output-score using the hypotheses exhibiting the highest
output-score in the event.

category
number of hypotheses

within best NN hypotheses (7512)

signal 14 (0.2%)

background 7498 (99.8%)

background categories

merged category 4535 (60.4%)

3-flip category 1277 (17.0%)

2-flip category 1361 (18.1%)

1-flip category 323 (4.3%)

0-flip category 2 (0%)

(sub-)categories based on 0-flip and 1-flip categories (325)

category 1 2 (0.7%)

category 2 27 (8.3%)

category 3 279 (85.8%)

category 4 5 (1.5%)

category 5 4 (1.2%)

category 6 8 (2.5%)

Table 7.6: Table indicating the number of best NN hypotheses exhibiting a particular ’true’
label as defined in the text. The different background categories are defined in section 7.2.
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The most represented background categories among the hypotheses with the best output-
scores are the merged category and the multi-flip categories, thus exactly the categories
which were not included in the training. This indicates that the NN obviously does not
know how to handle hypotheses of these categories as it has never ’seen’ them before. The
NN has not recognized that these categories are only combinations of the physical scenarios
used in the training. The fact that their distributions are very background-like, apparently
does not make a difference.
Looking at the categories used for training (0-flip and 1-flip categories), the 1-flip category
holds the largest share. Especially (sub-)category 3 (switching among light jets between
top quarks) and (sub-)category 2 (switching among light jets of the same top quark) are
obviously challenging for the NN. This is indicated by their high misclassification shares.
Hypotheses of these categories are indeed hardly distinguishable from the signal. The only
possibility would be to use the relatively unprecise jet charge (which was not included in
the list of input variables). As already outlined in section 7.2, it might therefore be rea-
sonable to accept category 2 as signal. This is not discussed further and is just mentioned
as an outlook here.
Focusing on the signal-like background (category 1/0-flip category) only a negligible con-
tribution can be found.

These findings can also be visualized using a stack-plot showing the mass of the top quark
and the mass of the anti-top quark. This is shown in figure 7.33.
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Figure 7.33: Stack-plots of the masses of the top quark (a) and the anti-top quark (b)
for the best NN hypotheses initially assigned to a particular category (signal, different
background categories).

Here, the huge impact of both, the multi-flip categories as well as the merged category, on
the overall shape is striking. The impact of the shapes of the 0-flip and 1-flip categories is
negligible.
Furthermore, it is eye-catching that the distribution of the anti-top quark (figure 7.33b)
is significantly broader than the one of the top quark (figure 7.33a). This indicates that
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the NN used is either unable to deal with the huge number of possible combinations or it
erroneously learns to differentiate between the mass of the two top quarks. Thus, it might
be reasonable to use a more sophisticated model for this complex reconstruction problem.
One possible solution could be to use several Neural Networks for the different categories
and then use the combined output for classification. Furthermore, increasing the number
of available signal hypotheses or enable training on all hypotheses might be helpful as well.

To gain further insights about the classification quality or rather reconstruction per-
formance, the focus is shifted. In the following only hypotheses with an output-score
EPD ≥ 0.95 are considered12 and their distribution (representing the situation after eval-
uation) is compared to the distribution of the initial situation, i.e. the distributions before
training (based on all hypotheses of all events).
For this purpose, the distributions of two observables found to be strongly correlated to
the output-score (figures 7.30 and 7.31) are plotted: the mass of the top quark and the sum
of the ∆R values between the decay products of the top quark and the anti-top quark. In
addition, also the distribution of an observable with negligible correlation to the output-
score, i.e. is-btagged(W2t), is drawn.
Querying the ’true’ label of the hypotheses, the distributions are further differentiated.
This is indicated by depicting the distributions of hypotheses with different ’true’ labels in
different colors.

Figure 7.34 shows the normalized distributions of the mass of the top quark before the
training (for all hypotheses of all events, figure 7.34a) and after evaluation separately for
the (sub-)categories and the flip categories (for hypotheses with an output-score ≥ 0.95,
figures 7.34b and 7.34c). In all subfigures, the signal is included as a reference.

Comparing figures 7.34a to figures 7.34b and 7.34c, no significant changes can be observed
apart from statistics which is a result of only displaying the distributions for hypotheses
with an output-score ≥ 0.95. The distributions after training are thus the same as before
the training which contrasts the expectation: As the mass of the top quark has been found
to be a strongly correlated observable, it is assumed that it contributes significantly in the
learning process of the NN. Considering only the most signal-like hypotheses, extremely
similar and signal-like shapes are expected in consequence. As still significant differences
between the shapes of the diverse categories are visible, it can be concluded that the Neural
Network was not able to extract useful information based on this observable to truthfully
differentiate between well-reconstructed from badly-reconstructed tt̄ systems.

12It was not possible to use the best hypotheses for this studies due to their low number and thus large
statistical uncertainties.
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Figure 7.34: Normalized distributions of the top-quark mass mt for the signal and back-
ground category as well as for the different background categories (section 7.2) for the initial
situation (before training) (a) and after the evaluation (b and c). For the distributions
after the evaluation only hypotheses with an output-score ≥ 0.95 have been considered.

This contradiction might seem surprising at first sight. However, a closer look reveals that
only the linear correlation coefficients have been considered in figures 7.30 and 7.31. The
Neural Network is a nonlinear model though as explained in chapter 4. Thus the most
contributing observables exhibiting a large linear correlation coefficient are not necessarily
the observables from which the NN extracts most information.
Furthermore, only hypotheses with an output-score ≥ 0.95 are considered while the corre-
lation matrices have been determined using all hypotheses. Recalculating the correlation
matrices only for this subset of hypotheses might yield some changes in the values of the
linear correlation coefficient. Due to statistical reasons, this has not been conducted here.
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Nevertheless, the NN was obviously not able to extract useful information for truthful clas-
sification during reconstruction. This indicates that a more sophisticated MVA method
would be required in order to improve the reconstruction performance. Another way would
be to increase the number of available signal hypotheses in training or to enable training
using all hypotheses.
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Figure 7.35: Normalized distributions of the sum of the ∆R between the decay products of
the top quark and the anti-top quark the signal and background category as well as for the
different background categories (section 7.2) for the initial situation before training (a) and
after the evaluation (b and c). For the distributions after the evaluation only hypotheses
with an output-score ≥ 0.95 have been considered.

In a next step, the sum of the ∆R values between the decay products of the top quark and
the anti-top quark is studied. Figure 7.35 displays the normalized distributions before the
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training (for all hypotheses of all events, figure 7.35a) and after the evaluation separately
for the (sub-)categories and the flip categories (for hypotheses with an output-score ≥ 0.95,
figures 7.35b and 7.35c). In all subfigures, the signal is included as a reference.
Here, the same trends can be found as for the mass of the top quark in figure 7.34.
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Figure 7.36: Normalized distributions of the is-btagged(W2t) observable for the signal and
background category as well as for the different background categories (section 7.2) before
(a) and after the training (b and c). For the distributions after the training only hypotheses
with an output-score ≥ 0.95 have been considered.

Looking at the results of the is-btagged(W2t) observable in figure 7.36, a different trend
can be found. Here, the distributions after the evaluation (figures 7.36b and 7.36c) exhibit
all the same shape, i.e. the shape of the signal, which is not the case for the distributions
before the training (figure 7.36a). As only very signal-like hypotheses (EPD ≥ 0.95) are
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considered, this is in principle the expected result. Thus, apparently, the NN can extract
some information from this observable during the training process.
However, the is-btagged(W2t) exhibits only a small correlation to the output-score in fig-
ures 7.30 and 7.31 and was consequently expected to contribute negligibly to the learning
process. However, taking into account that the small correlation found refers to the linear
correlation coefficient and the Neural Network is a nonlinear model, the observations are
plausible.

Concluding, it can be retained that even though the output-scores of the best hypotheses in
the event, i.e. the reconstructed tt̄ systems, are extremely high, the chosen Neural Network
is obviously not able to truthfully differentiate between well- and badly-reconstructed tt̄
systems for most hypotheses and thus does not exhibit a good reconstruction performance.
One reason might be that not all hypotheses of the different background categories could be
included in the training due to memory limitations. Those are exactly the ones which could
not be classified well. Furthermore, also the huge number of possible configurations present
in the reconstruction of hadronic tt̄ systems is quite challenging for the chosen NN. It also
seems to learn to erroneously differentiate between the properties of the two top quarks.
Moreover, the chosen NN apparently extracts too little information for classification as
some distributions after the evaluation (based on hypotheses exhibiting an output-score
≥ 0.95) are the same as the initial ones (before the training). This indicates that a
more sophisticated model is needed for truthful classification and for good reconstruction
performance. Another way to improve the reconstruction performance could be to increase
the number of available signal hypotheses for training.

7.5 Conclusion of the multivariate reconstruction

In this chapter, an multivariate reconstruction of hadronic tt̄ systems in tt̄Z events has
been developed and applied using a Neural Network which was trained and evaluated.

As the training was conducted in the context of supervised learning, labeled input data
were required. That is why a method to produce labeled input data was selected in a first
step. In this context, three different methods have been introduced: the Wtlevel method,
the quarklevel method and the ctc method. Their performance was then compared among
each other as well as for two different event selections, i.e. ’without improvement cuts’ and
’with improvement cuts’. Based on this comparison, the quarklevel method in combination
with the event selection ’with improvement cuts’ was found to be the most suitable method
to produce labeled input data for the training process in this thesis.

In a next step, the hypotheses assigned to the background category by the selected method
have been studied in more detail as they combine a variety of physical scenarios. There-
fore, different background categories, the flip categories and the (sub-)categories 1 to 6
have been defined and investigated. In this context, it was found that the 0-flip and 1-flip
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categories are very signal-like and the merged category as well as the multi-flip categories
are background-like.
As only a subset of the labeled input data could be used for training due to memory lim-
itations, the training was conducted on the full signal and only on the most signal-like
background categories, i.e. the (sub-)categories of the 0-flip and 1-flip categories.

Furthermore, for the training of the NN also decisions regarding suitable input variables
and the NN architecture were required. For the input variables, observables covering kine-
matic information (masses and transverse momenta), angular information (rapidities of
the W bosons and the top/anti-top quark), b-tag and helicity information have been cho-
sen. In this context, also input variables especially targeting the identified reconstruction
challenge of a changing topology in chapter 6 were developed and included in the list
of input variables. Regarding the NN architecture, a Neural Network with one hidden
layer containing 500 neurons has been selected based on its good performance regarding
signal-background separation and the exhibited amount of overtraining. Subsequently the
training was conducted and its performance was studied. In this context, a good training
performance of the NN has been found. Furthermore, variables most important for the
training process have been identified. It has been found that, apart from the masses and
the is-btagged observables which are also used in the χ2 reconstruction, the transverse
momenta, the helicity properties and the angular distances between the decay products of
the top/anti-top quark contributed significantly to the learning process.

Finally, the trained NN was then evaluated on un-labeled data and the classification qual-
ity, i.e. the reconstruction performance, was investigated. It was found that the chosen
NN is unfortunately not able to truthfully classify un-labled hypotheses even though the
output-scores of the best hypotheses in the event, i.e. the reconstructed tt̄ systems, were
found to be extremely high.
One possible reason might be the fact that not all hypotheses of the different background
categories could be included in the training due to memory limitations. It was striking that
hypotheses belonging to the excluded categories were exactly the ones which could not be
classified truthfully. Furthermore, also the huge number of possible configurations present
in the reconstruction of hadronic tt̄ systems was found to be challenging for the chosen NN.
While 3 decay products could be handled acceptably well, 6 decay products overchallenged
the chosen NN. In addition, the chosen NN seems to erroneously learn a non-existent dif-
ference in the properties of the two top quarks. Moreover, it was found that the chosen
NN extracts too little information for classification. This might be due to the low number
of signal hypotheses available for training. It might also be an indication for the fact that
a more sophisticated model is needed to perform a good classification/reconstruction.
A possible approach could be to use several NNs for the distinct physical scenarios and
consequently to use their combined output-scores for classification/reconstruction.



Chapter 8

Performance comparison of the
minimum-χ2 and the multivariate
reconstruction

In the previous chapters, two approaches to reconstruct hadronic tt̄ systems in tt̄Z events
have been presented: the minimum-χ2 reconstruction and the multivariate reconstruction
using a Neural Network. Both of them have been investigated in detail and their individual
reconstruction performance has been studied. In this chapter, they are now compared.

In this context, the ’best hypothesis’, i.e. the hypothesis containing the best-reconstructed
tt̄ system according to the particular reconstruction method (minimal χ2 value for the χ2

method and largest output score for the NN-based reconstruction), is selected for each
event. To gain more detailed insights regarding the quality of the input data, also the
quarklevel method is considered which selects its best hypotheses based on the largest
∆Rq

total value (subsection 7.1.1). It is then investigated how often the respective methods
have selected the same best hypotheses.
Moreover, also the matched (truth matching) shares of the different reconstruction meth-
ods are determined by comparing the best hypotheses to the matched hypotheses. These
represent hypotheses which contain tt̄ systems assigned to the matched category (subsec-
tion 6.1.3).

The percentage of cases in which the same best hypotheses are selected by two methods
are visualized in the diagram in figure 8.1.
Focusing on the identical best hypotheses of the NN-based reconstruction and the minimum-
χ2 method, a vanishingly small share of 0.2% can be identified. The same share can be
found comparing the best hypotheses of the NN-based reconstruction to the quarklevel
method, i.e. the method which provides the labeled input data for the NN. Moreover, also
a vanishingly low share (0.1%) of best hypotheses of the NN-based reconstruction coin-
cides with the matched hypotheses. In contrast to this, the share of best hypotheses of the
quarklevel method which are in line with the matched hypotheses is found to be almost
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50% which is in comparison very high.

Figure 8.1: Diagram visualizing the percentage of cases in which the same best hypotheses
were selected by two reconstruction methods. In addition also the matched shares (subsec-
tion 6.1.3) of the best hypotheses of the different methods are determined by comparing
the best with the matched hypotheses.

Looking at the minimum-χ2 reconstruction method and the quarklevel method a small
share (3.8%) of identical best hypotheses has been selected by both methods. Thus, the
different information used in the two approaches apparently results in a selection of differ-
ent hypotheses as best hypotheses in a majority of cases.
Comparing the best hypotheses of the χ2 reconstruction to the matched hypotheses, a
share of 2.3% is found. This coincides with the matched share found in the context of the
truth-matching procedure in chapter 6.

Based on these findings, it can be deduced that using the quarklevel method to produce
the input data for the training is in principle a good approach. However, the reconstruc-
tion performance of the chosen Neural Network is quite bad. Thus, even though its input
data yield great potential for a good truth-matching share, in the end, this reconstruction
approach does not work well.
Unfortunately, the quarklevel method cannot be used as a stand-alone method for recon-
struction as truth information is used. Hence, it is not applicable to experimental data as
for those no truth information is available.

To gain further insights regarding the reconstruction performance of the NN-based ap-
proach in comparison to the minimum-χ2 approach, the distributions of some key observ-
ables are plotted. In this context, only the best hypotheses of the χ2 reconstruction (red)
and of the NN-based reconstruction (blue) are considered.

As a first observable, the mass of the tt̄ system is investigated. The normalized distribu-
tions of the two reconstruction approaches can be found together with the truth information
(yellow) in figure 8.2.
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Here, both distributions based on the best hypotheses of the χ2 reconstruction and of
the NN-based reconstruction have a peak at a value of roughly twice the top-quark mass.
Moreover, they fit each other very well. In comparison, the distribution of the truth
information exhibits a slight right-shift. This might be explicable considering hadronization
which is not taken into account by the distribution of the truth information. It could also
indicate that both reconstruction methods have chosen some hypotheses as best hypotheses
which contain jets not originating from the tt̄ system. Apart from this difference, the mass
of the tt̄ system is very well reproduced.
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Figure 8.2: Normalized distributions of the mass of the tt̄ system for the best hypothe-
ses of the χ2 reconstruction and the NN-based reconstruction. As a reference, also the
distribution of the truth information is included.

In a next step, the mass distributions of the top and the anti-top quark are studied. They
are depicted in figure 8.3 in the same color-scheme as above. The truth information is not
included here in order to assure good visibility of the shape differences.

In contrast to the findings of figure 8.2, significant differences can be identified here: While
the distributions based on the best hypotheses of the χ2 method exhibit nice sharp peaks
with small tails situated around a value of about 173 GeV, thus exactly at the top-quark
mass, the distributions based on the best hypotheses of the NN-reconstructed top quarks
are significantly broader. In particular, they exhibit significantly broader tails towards
larger mass values. This indicates that the Neural Network often selects hypotheses con-
taining wrong configurations of the selected jets as found in figure 7.10.
All in all, this indicates that the best hypotheses of the NN-based reconstruction cannot
reproduce some of the key properties of the tt̄ system and hence that the reconstruction
performance and quality of the NN-based approach is far lower than the one of the χ2
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approach.
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Figure 8.3: Normalized distributions of the mass of the top quark (a) and anti-top quark
(b) for the best hypotheses of the χ2 reconstruction and the NN-based reconstruction.

Comparing the mass distributions of top and anti-top quark among each other, it can be
found that in the case of the NN-based reconstruction, the mass of the top quark is slightly
better reproduced than the mass of the anti-top quark as the latter is found to be a lot
broader. While the maximum of the top-quark mass distribution is situated roughly at
the same value, the maximum of the anti-top-quark mass distribution is situated more at
about 200 GeV. This indicates that a more sophisticated model is required for the mul-
tivariate approach in order to take into account all the necessary information for a good
reconstruction of the complex hadronic tt̄ system. It might also hint at the fact that the
NN erroneously learned to distinguish between the masses of the two top quarks.

This trend becomes even more obvious when looking at the mass distributions of the recon-
structed W bosons in figure 8.4. Here, for the W boson originating from the top quark a
quite sharp peak can be found in comparison to the W boson originating from the anti-top
quark. This supports the finding that the NN can handle two and three decay products
acceptably well, but is overchallenged when having to deal with 6 decay products. Fur-
thermore, false information are extracted allowing the NN to assign different masses to the
top quarks.
In contrast to figure 8.3, the mass distribution of the W boson originating from the top
quark peaks at a value of about 80 GeV, thus the W-boson mass. However, the shapes
related to the χ2 reconstruction still exhibit high and sharp peaks with small tails, while
the shapes related to the NN-based reconstruction are significantly broader. This supports
the result found above.
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Figure 8.4: Normalized distributions of the mass of the W boson originating from the top
quark (a) and originating from the anti-top quark (b) for the best hypotheses of the χ2

reconstruction and the NN-based reconstruction.

Concluding, it can be retained that the minimum-χ2 reconstruction performs significantly
better than the NN-based reconstruction. It was found on the one hand that the best
hypotheses selected by the χ2 reconstruction exhibited a higher matched share than the
hypotheses selected by the NN-based reconstruction. On the other hand, the hypotheses
selected by the χ2 method are able to better reproduce the information of the reconstructed
tt̄ system.
However, based on these findings, the NN-based reconstruction should not be rejected in
general. In principle, the approach of using a multivariate model for reconstruction is
very promising as the matched share for the quarklevel method, i.e. the input data for
the MVA training, was found to be almost 50%, which is very high. It has also been
found that one reconstructed object (top quark or W boson) is better reconstructed than
the other one. Thus, the MVA model used for the multivariate reconstruction is simply
not sophisticated enough. Applying a more sophisticated, well-performing MVA model
on the ’high-quality’ input data, the matched share of almost 50% of the input data
provided by the quarklevel method could be increased. In consequence, a significantly
better reconstruction performance than for the classic χ2 method could be reached.
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Chapter 9

Conclusion and outlook

In order to conduct a precise cross-section measurement of the associated production of a
top-antitop-quark pair and a Z boson (tt̄Z), a good reconstruction of the tt̄(Z) systems is
of utmost importance. This is however quite challenging as it implies selecting the correct
jets among the multiple physical objects produced in a high number of interactions.
That is why in this thesis two methods for the reconstruction of tt̄(Z) systems have been
presented, investigated and compared: the standard minimum-χ2 method and a self-
developed multivariate (MVA) method using a Neural Network. The studies presented
are based on Monte Carlo simulated data for the ATLAS experiment and are conducted
in the context of the full Run-2 (140 fb−1) analysis. They consider tt̄Z systems in which
the top and the anti-top quark decay hadronically and the Z boson decays either in an
electron-positron or muon-antimuon pair.

In the first part, the standard minimum-χ2 reconstruction was the focus of investigation.
This method calculates a χ2 value for every possible combination of jets to form a tt̄ system
in each event. The combination/hypothesis with the minimal χ2 value is then considered
as the reconstructed tt̄ system. In addition, this χ2 value can also be used to separate the
signal tt̄Z process from dominant background processes like the Z+jets and the dileptonic
tt̄ decay as confirmed in a first study.
The performance of the minimum-χ2 reconstruction was analyzed by comparing the se-
lected best χ2 hypotheses to all hypotheses considered during reconstruction. This ex-
hibited a better performance for the selected hypotheses as expected. The performance
was then further quantified by applying a procedure called truth matching which tests the
alignment of the χ2-selected jets and the truth partons. In this context, three categories
- ’matched’, ’combinatorial’ and ’non-matched’- have been defined based on two criteria:
it is checked if the distance ∆R of the jet to the assigned truth parton is smaller than
0.3 and if the assigned truth parton is also the corresponding one. For tt̄ systems of the
matched category both criteria are fulfilled for all 6 selected jets. For the combinatorial
category all 6 selected jets have a distance ∆R smaller than 0.3 to their partons, but at
least one truth parton is not the corresponding one. In case at least one jet has a distance
∆R ≥ 0.3 to the assigned truth parton, the tt̄ system and thus also the event is assigned
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to the non-matched category. Applying this procedure to tt̄Z events resulted in a share of
1.1%1 of matched events. This is extremely low and indicates that the reconstruction of
hadronic tt̄ systems is not a trivial task.
Based on these findings detailed investigation studies were conducted which identified some
challenges faced in reconstruction: the erroneous selection of gluon jets, the presence of
switched jets and merged partons/jets as well as the mix of boosted and non-boosted
topologies. As in this context the question arose whether the choice of the matching condi-
tion ∆R < 0.3 was justified, further studies were conducted which validated it successfully.
To improve the attainable matching performance, a phase-space adaption between reco
and truth level was performed. For this purpose, a pT cut as well as an η cut on all truth
partons originating from the tt̄ system were selected. In addition, the challenge of merged
partons was addressed with an additional cut to exclude merged partons, i.e. partons with
a distance ∆R < 0.8 to each other, on truth level. All these cuts were grouped under the
name ’improvement cuts’ as their application resulted in an increase of the matched share
from 1.6% to 5.3%2. Regarding the matchable share, i.e. the ratio of matched to the sum
of matched and combinatorial events, an increase from 27.1% to 34.0% was achieved. As
these cuts represent only exploratory choices, further optimization of the cuts is expected
to lead to an additional increase in the matched and matchable shares.

To further improve the (χ2-)reconstruction, the remaining challenges identified above need
to be addressed: in order to reduce the contribution of gluon jets a quark-gluon tagger
could be developed and applied. Regarding the switching between the light jets as well as
the mix of boosted and non-boosted topologies, incorporating observables sensitive to these
challenges in the reconstruction process is expected to reduce their impact. To address the
switching between the light jets, the jet charge could be a suitable choice. To target the
changing topology, the angular distances between the decay products of the top quarks
could be included.

As improvement cuts are only able to address the identified reconstruction challenges up
to a certain point, an alternative reconstruction approach based on an MVA method was
developed and studied. The latter was chosen to be a Neural Network in this thesis. Its
application consists of two steps: training and evaluation.

To conduct the training in the context of supervised learning, labeled input data were
required. Therefore, a method to produce labeled input data had to be selected. In this
context, three methods were developed: the Wtlevel method, the quarklevel method and
the ctc method. Both the Wtlevel and the quarklevel method calculate a ∆Rtotal value for
every possible combination to form a tt̄ system in each event. This ∆Rtotal value is deter-
mined by considering the distances ∆R either between the 6 jets and their assigned partons
or between the 4 reconstructed objects (two top quarks and two W bosons) on truth and

1for an event selection with ≥ 6 jets and ≥ 2 b-jets
2for an event selection of exactly 6 jets and exactly 2 b jets
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reco level. The combination/hypothesis with the minimal ∆Rtotal value is then labeled as
signal while all other hypotheses are labeled as background. In contrast, the ctc method
assigns every possible combination to form a tt̄ system to the three categories defined for
the truth-matching process. Here, the signal is represented by hypotheses of the matched
category while the combinatorial and non-matched categories form the background.
The performance of these three methods was compared among each other as well as for
two different event selections, i.e. ’without improvement cuts’ and ’with improvement cuts’.
Based on this comparison, the quarklevel method in combination with the event selection
’with improvement cuts’ was found to be the most suitable method for the goal of this
thesis.
Driven by the huge number of background hypotheses provided by this method which ex-
ceeded the number of signal hypotheses by orders of magnitude, the former were studied in
more detail. For this reason, the background category was split up into more detailed cat-
egories representing diverse physical scenarios: the flip categories and the (sub-)categories
1 to 6. Investigation of them laid out that the 0-flip and 1-flip categories were very signal-
like and the merged category as well as the multi-flip categories were background-like.
As only a subset of the labeled input data could be used for training due to memory lim-
itations, the training was conducted on the full signal and only on the most signal-like
background categories, i.e. the (sub-)categories of the 0-flip and 1-flip categories. They
were assumed to be most challenging for the Neural Network to distinguish from the signal.

Before finally conducting the training of the Neural Network also its architecture and suit-
able input variables had to be specified. For the input variables, observables covering
different kinds of physical information (kinetic, angular, b-tag and helicity) were chosen.
In this context, also 6 input variables especially targeting the identified reconstruction
challenge of a changing topology were developed and included in the list of input variables.
In particular, they are ∆R/∆φ/∆η between the decay products of the top/anti-top quark
and their event-wise sum. Regarding the NN architecture, a Neural Network with one
hidden layer containing 500 neurons with a leaky ReLu activation function was selected
based on its good training performance in terms of signal-background separation and the
exhibited small amount of overtraining. Furthermore, the most important observables for
the training process were identified: apart from the masses and the is-btagged observables,
which were also used in the χ2 reconstruction, the transverse momenta, the helicity prop-
erties and the angular distances between the decay products of the top/anti-top quark
contributed significantly to the learning process.

In the second step of the application of the MVA method, the performance of this re-
construction approach was investigated by evaluating the trained Neural Network on un-
labeled data. Investigation of the classification quality or rather the reconstruction perfor-
mance, showed that the chosen Neural Network was not able to truthfully classify unlabeled
hypotheses, even though the output-scores of the best hypotheses in the event, i.e. the re-
constructed tt̄ systems, were found to be extremely high.
One possible reason could have been the fact that not all hypotheses of the different back-
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ground categories were included in the training due to memory limitations. It was striking
that hypotheses belonging to the excluded categories were exactly the ones which could
not be classified truthfully. Furthermore, also the huge number of possible configurations
present in the reconstruction of hadronic tt̄ systems was found to be challenging for the
chosen Neural Network. While 3 decay products could be handled acceptably well, 6 decay
products overchallenged the selected Neural Network. Moreover, it was found that the
chosen Neural Network extracted too little and also erroneous information for classifica-
tion. A reason for this could have been the low number of signal hypotheses available for
training. This could also be regarded as an indication that a more sophisticated model is
needed to achieve a good classification/reconstruction performance.

The final performance comparison of the two approaches exhibited a significantly better
performance for the minimum-χ2 reconstruction: the best hypotheses selected by the χ2

reconstruction yielded a higher matched share and were also able to better reproduce the
information of the reconstructed tt̄ system.
Nevertheless, the NN-based reconstruction should not be rejected in general: It has also
been found that one reconstructed object (top quark or W boson) of the tt̄ system was
better reconstructed than the other one. Thus, the model used for the multivariate re-
construction is obviously not sophisticated enough. Furthermore, by comparing the best
NN hypotheses to all hypotheses before training, it was found that a lot of observable
shapes stayed unchanged. This indicates that the training needs to be improved, so that
the NN can extract enough information for classification. Thus, with application of a more
sophisticated and well-performing Neural Network on the ’high-quality’ input data, their
matched share of almost 50% could be increased. In consequence, a significantly better
reconstruction performance than for the classic χ2 method could be realized.

To achieve this, there are various options. One is to provide sufficient memory capacity
in order to be able to train on the whole dataset. This would assure that the Neural
Network is exposed to all possible configurations and thus should know how to handle all
of them. A challenge which could arise in this context is the highly imbalanced number of
signal and background hypotheses. A way to circumvent this could be to still train on the
whole signal, but randomly choose the background hypotheses from the different categories.

Another option could be to increase the number of signal hypotheses available for training.
In this context, it would be reasonable to change the method which provides the labeled
input data for the Neural Network training: Instead of using the quarklevel method in
combination with the event selection ’with improvement cuts’, it could be worth to con-
sider also the ctc method in combination with the event selection ’without improvement
cuts’. This would slightly decrease the reproduction quality of the input data, but would
at the same time increase the number of available signal hypotheses for training by one
order of magnitude. With the higher number of signal hypotheses available for training,
also the full power of Neural Networks could be exploited: In general, deeper Neural Net-
works are known to be more powerful assuming that a large number of (signal) hypotheses
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is available. Otherwise, significant overtraining will be observed as it was the case in this
thesis for the discarded Neural Networks.
To support this, also the signal definition of the ctc method could be investigated further:
it might also be reasonable to accept the combinatorial category or some parts of the latter
as signal. This would also reduce the imbalance in the number of signal and background
hypotheses.
A disadvantage of this approach could be that even more memory capacity would be re-
quired. A randomized selection of background hypotheses of the different background
categories could be a possible solution.
If one wants to stay with the quarklevel method in combination with the event selection
’with improvement cuts’, it could be worth thinking about possibilities to obtain a larger
dataset in order to be able to increase the number of signal hypotheses. One option could
be to use smeared truth-MC data for training. If the number of signal hypotheses is then
large enough, an approach worth considering could be to accept only signal hypotheses
with a ∆Rtotal value ≤ 1 as signal. The reason is that for this value a dip was found which
clearly separates well- from badly-reconstructed tt̄ systems. This would improve the qual-
ity of the input data even further and might also yield promising results in combination
with the event selection ’without improvement cuts’.
In addition also the improvement cuts could be optimized further to better suit the needs
arising in the context of producing labeled input data.

Moreover, it could also be worth to consider ’multiclassification’, i.e. simultaneous classifi-
cation into more than two classes. Here, in contrast to the ’classic’ Neural Network, there
is no longer only one output node stating if the hypothesis is signal (output-score ≥ 0.5)
or background (output-score < 0.5). Instead, there is one output node per defined class
which indicates for each input value with which probability it belongs to the particular
class. A challenge which could arise in this context is again related to the low number
of signal hypotheses. As extracting enough information was already challenging for the
classic Neural Network, it would now be tasked with performing multiple classifications
related to the different output classes.
To overcome this, an alternative idea is to train different Neural Networks for the separate
background categories. This would have the advantage that all categories could be included
in the training while at the same time, the Neural Network would not be overchallenged by
having to deal with all possible configurations at the same time. The distinct classes could
be trained separately and hence could be better learned in the different Neural Networks.
Furthermore also the imbalanced number of signal and background hypotheses would be
addressed. In the end, the output of the different Neural Networks could be used in com-
bination for classification/reconstruction: either another Neural Network could be used
which obtains the outputs of the different Neural Networks as an input or one could also
combine the different output-scores using a likelihood method.
A challenge which could arise in this context is that the training will be very costly in
terms of time. In this case it could be a solution to use GPU computers, which accelerate
the processing.
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Concluding, it can be retained that using a multivariate approach for the reconstruction of
hadronically decaying tt̄ systems in tt̄Z events has been found promising. Even though the
χ2 reconstruction performed better in direct comparison with the reconstruction using the
chosen Neural Network, reconstruction based on a more sophisticated and well-performing
multivariate method has high potential to achieve a better performance.
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Additional plots for the investigation
of the background categories
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Figure A.1: Normalized distribution of the cosine of the helicity angle of the top quark
cos(Θ∗) related to the different backgroundmcategories defined in section 7.2.
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Figure A.2: Normalized distribution of the event-wise sum of the ∆η between the decay
products of the top- and anti-top quark (defined in section 7.3) related to the different
background categories defined in section 7.2.
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Figure A.3: Normalized distribution of is-btagged(W1t) related to the different background
categories defined in section 7.2.
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Figure A.4: Normalized distribution of the W-boson mass originating from the top quark
mW from t related to the different background categories defined in section 7.2.
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Figure A.5: Normalized distribution of the mass of the top-anti-top-quark system mtt̄

related to the different background categories defined in section 7.2.
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Figure A.6: Normalized distribution of the rapidity of the top quark related to the different
background categories defined in section 7.2.



Appendix B

Complete variable ranking

sum of
squared weights

sum of
absolute weights

gradients

1. mtt̄ mtt̄ mtt̄

2. is-btagged(b̄) is-btagged(b̄) mW from t

3. is-btagged(b) is-btagged(b) mt

4. pT(W1t̄) pT(W1t̄) pT(down-type quark t)
5. is-btagged(W1t̄) is-btagged(W1t̄) pT(t)
6. is-btagged(W2t) pT(t) pT(W2t̄)
7. pT(W1t) pT(W1t) pT(t̄)
8. pT(b) pt(b̄) pT(W1t̄)
9. pT(b̄) is-btagged(W2t) pT(W1t)
10. ∆η(decay products of t) pT(b) mW from t̄

11. pT(t) is-btagged(W2t̄) pT(W from t)
12. ∆η(decay products of t̄) pT(W2t) pT(down-type quark t̄)
13. is-btagged(W2t̄) pT(W2t̄) pT(W2t)
14. pT(W2t) mt pT(b̄)
15. mb̄ ∆η(t or t̄ decay) mt̄

16. cos(Θ∗)(t̄) ∆η(decay products t̄) pT(tt̄)
17. pT(W2t̄) pT(t̄) pT(W of t̄)
18. pT(down-type quark t) ∆η(decay products t) mW1t

19. ∆η(t or t̄ decay) sum pT(down-type quarks) pT(b)
20. mb pT(down-type quark t) mb

21. pT(t̄) mW of t̄ mW2t

22. mt mW of t mW1t̄

23. mW of t̄ mb̄ ∆η(t or t̄ decay)
24. ∆R(decay products t) mt̄ mb̄

25. pT(W of t) pT(W of t) ∆η(decay products of t̄)
26. mt̄ cos(Θ∗)(t̄) ∆R (t or t̄ decay)
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27. cos(Θ∗)(t) pT(down-type quark t̄) sum pT(down-type quarks)
28. pT(down-type quark t̄) ∆R(decay products t̄) mW2t̄

29. ∆φ(t or t̄ decay) ∆φ(t or t̄ decay) ∆φ(decay products t)
30. is-btagged(W1t) is-btagged(W1t) ∆R(decay products t̄)
31. rapidity(W of t̄) mb ∆η(decay products t)
32. sum pT(down-type quarks) ∆φ(decay products t̄) ∆R(decay products t)
33. mW of t rapidity(W of t̄) cos(Θ∗)(t)
34. ∆φ(decay products t̄) cos(Θ∗)(t) cos(Θ∗)(t̄)
35. mW2t ∆R(t or t̄ decay) ∆φ( t or t̄ decay)
36. ∆R(decay products t̄) mW2t rapidity(W of t̄)
37. mW1t̄ ∆R(decay products t̄) rapidity(t)
38. rapidity(t) pT(tt̄) rapidity(W of t)
39. mW1t mW1t̄ is-btagged(W1t̄)
40. ∆R(t or t̄ decay) mW2t̄ is-btagged(W2t̄)
41. pT(tt̄) pT(W of t̄) rapidity(tt̄)
42. rapidity(t̄) mW1t is-btagged(b)
43. pT(W of t̄) rapidity(t) is-btagged(b̄)
44. mW2t̄ ∆φ(decay products t) is-btagged(W1t)
45. ∆φ(decay products t) rapidity(t̄) rapidity(t̄)
46. rapidity(tt̄) rapidity(W of t) is-btagged(W2t)
47. rapidity(W of t) rapidity(tt̄) ∆φ(decay products t̄)



Appendix C

List of discarded Neural Networks

neurons per layer 128 356 356,128 128, 128 500

ncycles 100 100 100 100 100

batchSize 32 32 32 32 32

dropout 0.5 0.5 0.5 0.5 0.5

optimizer adam adam adam adam adam

activation ReLu ReLu ReLu ReLu ReLU

initializer normal normal normal normal normal

regularizer 0.01 0.01 0.01 0.01 0.01

classWeight balanced balanced balanced balanced balanced

learningRate 0.001 0.001 0.001 0.001 0.001

decay 0.0 0.0 0.0 0.0 0.0

ROC 0.97 (0.96) 0.96(0.96) 0.96 (0.96) 0.96 (0.96) 0.99 (0.98)

accuracy 86.62% 90.77% 83.01% 87.82% 88.11%

loss 32.23% 26.7% 136.98% 57.23% 36.99%
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172 APPENDIX C. LIST OF DISCARDED NEURAL NETWORKS

neurons per layer 128 356, 128 356 500 800

ncycles 100 100 100 100 100

batchSize 32 32 32 32 32

dropout 0.5 0.5 0.5 0.5 0.5

optimizer gradient descent adam adam adam adam

activation ReLu ReLu ReLU ReLu ReLu

initializer normal normal normal normal normal

regularizer 0.01 0.01 0.01 0.1 0.01

classWeight balanced balanced balanced balanced balanced

learningRate 0.001 0.001 0.001 0.001 0.001

decay 0.0 0.0 0.0 0.0 0.0

ROC 0.98 (0.97) 0.98 (0.97) 0.97 (0.98) 0.97 (0.97) 0.98(0.97)

accuracy 93.26% 91.22% 91.79% 91.94% 91.87%

loss 16.59% 21.84% 20.62% 20.52% 20.48%

neurons per layer 500 500 128 128

ncycles 100 100 100 100

batchSize 32 32 32 32

dropout 0.5 0.5 0.5 0.5

optimizer adam adam adam adam

activation ReLu ReLu sigmoid tanh

initializer normal normal normal normal

regularizer 0.1 0.001 0.01 0.01

classWeight balanced balanced balanced balanced

learningRate 0.001 0.001 0.001 0.001

decay 0.0 0.0 0.0 0.0

ROC 0.5 (0.5) 0.98 (0.96) 0.98 (0.97) 0.98(0.97)

accuracy 99.81% 93.62% 93.53% 91.74%

loss 3.04% 16.07% 16.82% 20.94%
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