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Chapter 1

Basics

As Higgs bosons have a neutral charge, as well as a spin of 0, because of CPT symmetry, a
Higgs boson pair emerging is equivalent to two Higgs bosons colliding with time reversed. As
such, this can be used to better understand Higgs bosons.

Proton-Proton collisions can produce Higgs boson pairs. The most likely way for this to
happen would be a gluon fusion, with a cross section of 36.7+5.8fb at 14TeV (12). Higgs
bosons have a 25.742.5% of branching into W+ W~ and a 5348% of branching into bb (14).
Combined, this results in a 2745% chance for Higgs pairs to decay into W ~bb with an
overall 10.0£1.7fb cross section times branching ratio with gaussian error calculation.

Also, as a Higgs boson has an expected invariant mass of 125.2GeV (14), while a W boson has
an expected invariant mass of 80.4GeV (14), for a Higgs boson to decay into two W bosons,
at least one of the W-bosons has to be off shell.

However, a much more common result of proton-proton collisions with a cross section of
953.6+£38.3pb at 14TeV is a top-antitop pair (7). Top quarks generally decay into a W-boson
and another quark, which in 95.7+3.4% of cases is a bottom quark (14), which results in an
overall cross section times branching ratio of 873.4+5.7pb with gaussian error calculation.

Following this, the ratio of their events is roughly 87.3k tt — W+bW ~b events for 1 HH —
W W ~bb event, so even the fringes of uncertainty for t# can easily overshadow all H H-events.



CHAPTER 1. BASICS




Chapter 2

Dataset Analysis

2.1 Datasets

For H H-pair production events, MadGraph 5 (1) simulates a gluon-gluon fusion resulting in
pp — HH — WHW~bb — qgly;bb with both W+ — Iy, W~ — gg and W~ — Iy, W+ — Gq
considered and ¢, ¢ and [ being first or second generation particles. The cross section times
branching ratio of this is given by MadGraph as 253.34+0.13ab at /s = 14TeV .

diagram 1 HIG=1, HIW=0, QCD=0, QED=5 diagram 3 HIG=2, HIW=0, QCD=0, QED=4
(a) (b)

Figure 2.1: Examples of the Feynman diagrams created for the H H-pair production by
MadGraph. Only the first generation quarks and leptons are displayed, e can also be pu, d
can also be s and u can also be c.

For tt-pair production events, MCatNLO (1) only considers the W~ — I, W — gq case,
however, for simplicity, the other case can be assumed to be symmetrical and as such be
used to represent both, as long as the charge of the W bosons is not used to differentiate
between H H-events and tt-events. MadGraph calculates for the ti-events a cross section times
branching ratio of 209.7+0.17pb. However, as there is a similar process with a cross section
times branching ratio of 246.14+0.71pb, where an additional gluon is released somewhere in
between with a similar cross section, the functional cross section times branching ratio can

be combined to 455.840.74pb.
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diagram 1 QCD=2, QED=4

Figure 2.2: Example of the Feynman diagrams created for the ¢t-pair production by Mad-
Graph. Only the first generation quarks and leptons are displayed, e can also be pu, d can
also be s and w can also be c.

This puts the expected ratio between the events at roughly 1 H H-event to 1.8 million ¢t-
events at /s = 14TeV. This is more than a magnitude bigger than the ratio calculated from
outside sources in Chapter 1.

After generating the wanted decay chains into bbgqly, the events are given to Pythia 6.4 (16),
which models the further decay into particles for the jet reconstruction. This happens with
Final State Interactions and Multiparton Interactions being deactivated.

2.2 Target

As shown in Chapter 1 and Section 2.1, ti-events appear much more often than H H-events,
so events with parameters, that are already much more common among tt-events, can for
simplicity be assumed to be tt.

The first parameters looked at for this are the equivalents to the Higgs boson masses in the
H H-dataset: the bb pair mass and W W™ pair mass, respectively.

(a) WTW ™ pair mass (b) bb pair mass

Figure 2.3: Higgs boson mass equivalent comparison, with 1M t{-events (blue) and 1M H H-
events (red), with logarithmic scaling
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As Figure 2.3 demonstrates, the Higgs boson mass is 125GeV with a small width, as such,
and to leave some space for smearing, the first conditions for the targets are set as

B :100GeV < my; < 150GeV (2.1)

and

W : 100GeV < myy+y— < 150GeV (2.2)

The same goes for the equivalents of the top quark mass and antitop quark mass, which are
the Wb pair mass, and the W ™b pair mass, respectively.

(a) Wb pair mass (b) Wb pair mass

Figure 2.4: Comparison of the Wb pair masses, with 1M tt-events (blue) and 1M H H-events
(red), with logarithmic scaling

Here, events with a mass between 150GeV and 195GeV are excluded for both top and antitop
quarks. Because of the symmetry of both cases, they are combined into one condition:

T : (150GeV < myy+, < 195GeV) A (150GeV < myy—3 < 195GeV) (2.3)

2.3 Increasing the Number of Events on Target

After applying those three restrictions, only a small amount of events are left over, in fact,
of a dataset of 5M tt-events, only 1 event passes all three conditions TBW.

All T B W

Abs 5,000,000 1,224 | 1,241,493 11,932
Rel || 100.00000% || 0.02448% | 24.82986% | 0.23864%
TBW TB ™ BW

Abs 1 263 8 2,399
Rel 0.00002% || 0.00526% | 0.00016% | 0.04798%

Table 2.1: Number of events meeting the target conditions out of 5,000,000 tt-events

As Table 2.1 shows, the biggest reason for the low pass rate are conditions T and W, while
roughly a quarter of the events pass condition B, so, to get a useful amount of events with
these conditions, making more events pass conditions T and W should be a priority.
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As comparison, here are the same conditions TBW applied to a H H-dataset:

All T B W
Abs || 998,162 || 614,090 | 998,162 | 998,162
Rel || 100.00% || 61.52% | 100.00% | 100.00%
TBW TB ™W BW
Abs || 614,090 || 614,090 | 614,090 | 998,162
Rel 61.52% || 61.52% | 61.52% | 100.00%

Table 2.2: Number of events meeting the target conditions out of 998,162 H H-events

As Table 2.2 shows, all HH-events pass conditions B and W, and more than half pass
condition T, much more than tt-events.

2.3.1 Jet Reconstruction

Using an anti-kt jet reconstruction with the minimum jet energy of Ptmin = 5GeV and
AR = 0.4 for removing overlaps between leptons and jets, with FastJet 3.3.4. (3)

Then the Jets get matched to the truth particles of the bottom quarks (b,b), as well as the
decay products from one of the W bosons, (¢, 7). The decay products of the other W-boson
(v,1) are ignored in the jet reconstruction, as [ can be directly detected by a detector and v,
cannot be reliably detected and needs to be reconstructed by energy from all visible particles.
In both cases, the data of the truth particle is used directly instead.
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Figure 2.5: The AR between the respective truth particle and all jets of their event, for 4M
tt-events

Looking at the AR between the particles to be matched and all jets, AR < 0.5 seems like a
sensible cutoff point.

The matching of jets to truth particles works as followed:

A jet is matched to the particle with its smallest AR, ignoring all particles that are already
matched to a jet with a smaller AR to it. If another jet is already matched to that particle,
this displaced jet repeats this process with the rest of the particles. This then repeats, until
either one of the displaced jets finds no particle, it has a smaller AR with, or all four particles
have a new jet. Then the entire process repeats with the next jet, until all jets have gone
through this.
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Figure 2.6: Example of the matching algorithm in action on an event. The numbers are all
AR values. The black columns show the current AR threshold for a new jet to be matched,
the columns between them show the AR of the jets to be matched, "new” is the new jet,
”old” is a displaced jet previously matched to another truth particle. All jets, which have no
AR < 0.5, have been omitted for brevity.

Step Description
0 no jets assigned
1 test jet #1
2 jet#1 assigned
3 test jet #2
4 jets#1,#2 assigned
5 test jet #3
6 jet #3 assigned, reassign jet #1
7 jet #1 assigned, reassign jet #2
8 jets#1,#2,#3 assigned
9 test jet #4
10 jet #4 assigned, reject jet #1
11 jets#2,#3,#4 assigned
12 test jet #5
13 jet #5 assigned, reject jet #2
14 jets#3,#4,#5 assigned
15 test jet #6
16 jets#3,#4,#5,#6 assigned

Table 2.3: Description of steps from Figure 2.6

After that, the results are checked for unmatched Jets with a smaller AR to a particle and
a subsets of the matched particles, which would all achieve smaller ARs by switching their
matched particles. Although the theoretical possibility of this has not been excluded, there
is no event among all the tested datasets where this happens.

The result on the data is a further smearing.



2.3. INCREASING THE NUMBER OF EVENTS ON TARGET

(a) WTW ™ pair mass

(c) Wb pair mass

Figure 2.7: Jet reconstructed mass equivalents comparison, of 1M tt-events (blue) and 1M

H H-events (red), with logarithmic scaling

After the reconstruction, only events, where all four truth particles are matched to jets, are
considered for passing the conditions, as it is not feasible to classify missing values.

(b) bb pair mass

(d) Wb pair mass

All T B W

Abs || 3,718,227 || 275,279 | 848,744 | 151,816
Rel 74.365% || 5.506% | 16.975% | 3.036%
TBW TB ™ BW

Abs 4,543 46,259 21,053 | 36,205
Rel 0.091% || 0.925% | 0.421% | 0.724%

Table 2.4: Number of events meeting the target conditions out of 5,000,000 tt-events after

reconstruction

As Table 2.4 shows, the reconstruction improves the number of tt-events passing the condi-
tions, with large improvements in passing condition T and condition W making up for the

slight worsening of condition B.
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All T B W
Abs || 637,364 || 432,970 | 586,659 | 578,276
Rel || 63.85% || 43.38% | 58.77% | 57.93%
TBW TB ™ BW
Abs || 255,730 || 284,306 | 389,261 | 394,397
Rel || 25.62% || 28.48% | 39.00% | 39.51%

Table 2.5: Number of events meeting the target conditions out of 998,162 H H-events after
reconstruction

A quarter of the H H-events are remaining, mainly, because after reconstruction, not all
H H-events pass condition B and condition W.

2.3.2 Smearing

After Reconstruction, Gaussian smearing applied to the jets, as well as the antineutrino and
lepton truth particles, to simulate the finite resolution of a detector. As experiments with
Vs = 14TeV have not happened yet, for the resolution the equation from (5) for /s = 13TeV
is used:

=—o—aC (2.4)

with adapted parameters C' = 0.03, S = 0.95 and N = 2.1 (5)

the smearing equation itself looks like follows:

Jsmear = .](1 + N(Ov U)) (25)

Where N(0,0) is a normal Gaussian distribution with mean 0 and a width of o.

Negative results in smearing are avoided, by rerolling the function, if it happens.
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(a) WTW ™ pair mass (b) bb pair mass

(c) Wb pair mass (d) Wb pair mass

Figure 2.8: Jet reconstructed smeared mass equivalents comparison, with 1M tt-events (blue)
and 1M H H-events (red), with logarithmic scaling

All T B W
Abs || 3,718,227 || 377,272 | 834,993 | 188,141
Rel 74.365% || 7.545% | 16.700% | 3.763%
TBW TB ™ BW
Abs 6,582 63,850 31,005 | 44,921
Rel 0.132% || 1.277% | 0.620% | 0.898%

Table 2.6: Number of events meeting the target conditions out of 5,000,000 tt-events, after
reconstruction and smearing

This mainly further increases the number of events passing condition T, which along with
a smaller improvement of passing condition W makes up for the slight decrease in passing

condition B.
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All T B W
Abs || 637,364 || 433,580 | 536,356 | 550,353
Rel || 63.85% || 43.44% | 53.73% | 55.14%
TBW TB ™ BW
Abs || 219,423 || 258,164 | 369,132 | 343,210
Rel || 21.98% || 25.86% | 36.98% | 34.38%

Table 2.7: Number of events meeting the target conditions out of 998,162 H H-events, after
reconstruction and smearing

A small decrease in the number of H H-events passing the target conditions T, B and W is
observed.

2.3.3 Widening

To try to get more tt-events to fulfill the conditions and become potential background to the
H H-events, datasets with wider W boson mass distributions and top quark mass distributions
are generated.

The widening of the mass distributions also changes the distributions of many of the particle
energies and momenta.

The mass distributions are given by a Breit-Wigner distribution:

r- Mpeak

_ M2)2 412 M?2

f(M7 Mpeaka P) =
peak)

m((M?

peak

To widen the distribution, the value of I' is increased.

Widening the top quark mass distributions is achieved by increasing their I by a factor of 40
and the W boson mass distributions by increasing their I' by a factor of 10. First separately,
then simultaneously.

(a) Mass of top quark (b) Mass of antitop quark

Figure 2.9: Comparison of 1M top quark masses between the dataset with 40 times larger
top quark width (magenta) and the dataset with standard top quark width (blue), with
logarithmic scaling
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(a) mass of W~-boson (b) mass of W*-boson

Figure 2.10: Comparison of 1M W boson masses between the dataset with 10 times larger W
boson width (orange) and the dataset with standard W boson width (blue), with logarithmic
scaling

(a) Energy of top and antitop quarks (b) Energy of bottom and antibottom quarks

(¢) Energy of hadronic W boson (d) Energy of leptonic W boson

Figure 2.11: Effect on energy curves after increasing the I' of top quarks by a factor of 40
with standard tf-dataset (blue) and widened tt-dataset (magenta), relative to the number of
events
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(a) Energy of top and antitop quarks (b) Energy of bottom and antibottom quarks

(c) Energy of hadronic W boson (d) Energy of leptonic W boson

Figure 2.12: Effect on energy curves after increasing the I' of the W bosons by a factor of 10
with standard t¢-dataset (blue) and widened tt-dataset (orange), relative to the number of
events

To determine, whether the differences in Figure 2.11 and Figure 2.12 are simply a direct
result of the changed mass distributions, or whether there are some side effects leading to a
changed kinematic, the events in the widened dataset can be weighted according to the ratio
between the original and widened distributions. As the top quark masses and the W boson
masses are respectively independent from each other, the weight in each case is simply the
product of the ratios.

tt:
My, M, Lhoori Mz, M, Tt ori
th‘(Mt, Mg) = f( t tpeak t707i’09) ) f( 15 tpeak t,orjg) (27)
f(Mt; Mtpeak 9 Ft7wld€) f(Mt7 Mtpeak , Ftﬂl)’lde)
WTWw—:
M 5 M 5 1—‘ . M -, M , F )
WW*W* (]\4'[/‘/+7 wa) _ f( w+ Whpeak W,orzg) f( w Whpeak I/V,omg) (28)

f(MW+) MWpeak ) FVV,wide) ' f(MW* ) MWpeaku FW,wide)



2.3. INCREASING THE NUMBER OF EVENTS ON TARGET 15

(a) Energy of top and antitop quarks (b) Energy of bottom and antibottom quarks

(¢) Energy of hadronic W boson (d) Energy of leptonic W boson

Figure 2.13: Effect on energy curves by increasing the I' of the top quarks by a factor of 40,
after weighting, with standard tt-dataset (blue) and widened tt-dataset (magenta), relative
to the number of events

Despite the increase in error bars, the matches between the energies of the original and
reweighted wide top quark mass distributions in Figure 2.13 are apparent.
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(a) Energy of top and antitop quarks (b) Energy of bottom and antibottom quarks

(c) Energy of hadronic W boson (d) Energy of leptonic W boson

Figure 2.14: Effect on energy curves by increasing the I' of the I" of the W bosons by a factor of

10, after weighting, with standard tt-dataset (blue) and widened tt-dataset (orange), relative
to the number of events

In the case of the reweighted widened W boson mass distribution, as Figure 2.14 shows, the
energy curves match.

Next, both approaches are combined in a dataset with both widened top quark mass distri-
butions and widened W boson mass distributions.
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(a) Energy of top and antitop quarks (b) Energy of bottom and antibottom quarks

(¢) Energy of hadronic W boson (d) Energy of leptonic W boson

Figure 2.15: Effect on energy curves by increasing the I' of the top quarks by a factor of 40
and the T" of the W bosons by a factor of 10, with standard tt-dataset (blue) and widened
tt-dataset (green), relative to the number of events

As the sum of the masses of the decay products of the top quark can not be larger than the
mass of top quark itself, there is a dependency between the mass of a top quark and its W
boson. As a result, the overall probability of the mass of a W boson being between 0 and the
difference of the mass of the top quark and the mass of the bottom quark has to be 1 for any
specific value of the mass of the top quark larger than the mass of the bottom quark.

Bottom quark mass distributions have a very small width, so this width can be ignored.

Mt_Mbpeak
/ Fwe(My, My, Ty, To)dMyy = f(M;, Ty) (2.9)
0

From this follows:

M, T My, T
th(MW7Mt,PW,Ft) = Mt]it]&b t t)fW( %% W)
Jo et fw (M, Tw ) dMyw

ft(My, Ty) fw (M, T'w) (2.10)
B M (My—M, 22— M2

The weight according to factors My and M; has to be the quotient of their mass distributions
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for the original and the widened datasets.

(M, My, Twa,Ty2)

fwi
Wwe(My, M) = 2.11
welMw, My) fwe(Mw, My, Ty1, i) (2.11)
This puts the overall weight according to all four factors at:
Wiy sw—a(My+, Myy—, My, M) = Wyy—(Myy—, My) - Wyr+i(Myy+, My) (2.12)

(a) Energy of top and antitop quarks (b) Energy of bottom and antibottom quarks

(c) Energy of hadronic W boson (d) Energy of leptonic W boson

Figure 2.16: Effect on energy curves by increasing the I' of the top quarks by a factor of 40
and the T' of the W bosons by a factor of 10, after weighting, with standard t{-dataset (blue)
and widened tt-dataset (green), relative to the number of events

As seen in Figure 2.16, in the combined case, the error bars become too large to visually
compare, as the number of events that are on the peak of each respective mass distribution
becomes much smaller for a case with all four distributions widened. There are 256,539
events, which are within the respective standard I around the peak in all four distributions,
while for the widened dataset this only applies to 34 events. As such, those 34 events weighted
to represent 256,539 exceed everything else and are therefore removed.
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(a) Energy of top and antitop quarks

(¢) Energy of hadronic W boson

(b) Energy of bottom and antibottom quarks

(d) Energy of leptonic W boson

Figure 2.17: Effect on energy curves by increasing the I' of the top quarks by a factor of
40 and the I' of the W bosons by a factor of 10, without the peaks, after weighting, with
standard t¢-dataset (blue) and widened tt-dataset (green), relative to the number of events

Alternatively, it is possible to compare the datasets using the Kolmogorov-Smirnov test. (14)

top bot Whad Wlep
All Events | 0.715785 | 0.728821 | 0.540875 | 0.444878
No Peak | 0.000131 | 0.247097 | 0.274831 | 0.009196

Table 2.8: Kolmogorov-Smirnov Test on the energies of top
hadronic W boson and the leptonic W boson. To make the distribution more compatible
with the test’s requirements, the bin size has been lowered from 5GeV to 1GeV, over and
underflow have not been considered.

quarks, bottom quarks, the

There might actually be a problem, if we ignore the peak, but outside of this, it seems fine,
though we would need more data to be sure.

The results of using the TBW-conditions on tt-events with widened top quark mass and W

boson mass, are:
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All T B A%
Abs | 918,718 || 195,745 | 206,204 | 21,360
Rel || 100.000% || 21.306% | 22.445% | 2.379%
TBW TB W BW
Abs 933 || 39,631 4882 | 4,452
Rel || 0.102% || 4.314% | 0.531% | 0.485%

Table 2.9: Number of events meeting the target conditions out of 918,718 widened tt-events

All T B W
Abs || 686,999 || 206,734 | 145,961 | 43,875
Rel || 74.778% || 22.502% | 15.887% | 4.776%
TBW TB ™ BW
Abs 3,163 39,679 15,963 9,273
Rel 0.344% 4.319% | 1.738% | 1.009%

Table 2.10: Number of events meeting the target conditions out of 918,718 widened tt-events,
after reconstruction and smearing

While 3,163 events is less than passed in Section 2.3.2, it is to note, that the dataset there
has 5M events while this one has only ca. 1M events, so it still represents an increase in
relative terms.

Looking at this, widening helps, but is still not enough to train a neural network.!

2.3.4 Generating a dataset using the condition

As the widening is not enough, as a more drastic measure, four 1M event tt-datasets are
generated, with the widened I's for W boson and top mass distributions, one with top and
antitop quark masses < 150GeV, one with top and antitop quark masses > 195GeV and two
with either top < 150GeV and antitop > 195GeV or vice versa. For the last two, the way they
were supposed to be set, was, one has small topmass and large antitopmass, and the other
large topmass and small antitopmass. This distinction seems to have gone lost somewhere
during generation, so both have both scenarios mixed, with only a slight preference for the
intended one. As they complement each other, when combined, this can be ignored.

!This dataset with wide top and W boson mass distributions is older and was generated with slightly
different settings than the other datasets featured here: /s = 13TeV and Final State Interactions and
Multiparton Interactions switched on, despite this, the major points should not change.
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(a) W~WT pair mass (b) bb pair mass

(c) Wb pair mass (d) Wb pair mass

Figure 2.18: Higgs boson and top quark mass equivalents comparison in logarithmic scaling
between 1M H H-Events (red), and four sets of 1M ¢¢-Events: one with both top and antitop
quark masses small (cyan), one with both top and antitop quark mass large (purple) and two
with one of them small and the other large (green)

After reconstruction, due to there being no events outside the T-restriction moving in to
replace the ones inside moving out, the peak moves away from the gap.
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(a) W~WT pair mass (b) bb pair mass

(c) Wb pair mass (d) Wb pair mass

Figure 2.19: Higgs boson and top quark mass equivalents comparison after jet reconstruction
in logarithmic scaling between 1M H H-Events (red), and four sets of 1M ¢t-Events: one with
both top and antitop quark masses small (cyan), one with both top and antitop quark mass
large (purple) and two with one of them small and the other large (green)

After the datasets go through jet reconstruction, 32,920 events pass the TBW-conditions.

All T B W
Abs || 2,855,412 || 2,032,572 | 566,006 | 221,184
Rel || 71.39% || 50.81% | 14.15% | 5.53%

TBW TB ™ BW
Abs 32,920 391,400 | 170,278 | 43,837
Rel 0.82% 9.78% 4.26% 1.10%

Table 2.11: Number of events with target conditions out of 3,999,999 tt-events

With smearing, that number goes slightly down, to 32,802.
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All T B W
Abs || 2,855,412 || 1,943,094 | 557,686 | 236,823
Rel 71.39% 48.58% | 13.94% 5.92%

TBW TB W BW
Abs 32,802 | 365,981 | 174,214 | 46,275
Rel 0.82% 9.15% | 4.36% | 1.16%

Table 2.12: Number of events with target conditions out of 3,999,999 tt-events

Even though this number is not very large, there is not much more to be done.

2.4 Angle between W bosons

For H H-events, as the invariant mass of a Higgs boson has a peak at 125GeV and the invariant
mass of a W bosons has a peak at 80.42GeV, which forces at least one of the resulting W
bosons to be off shell and also leaves only a small amount of energy over to be converted into
kinetic energy. Thus, a small angle near 0° between the W bosons in the HH rest frame is
preferred (9).

mir =(Pw+ + Pw-)" = miy+ +miy— + 2(Ew+ Ew- — P+ P-) (2.13)
=mi s +miy_ + 2B+ By (1 — B+ By cos ZWH, W) (2.14)
Thus both W bosons are the same weight: myy+ = myy—- = my and following that, because

of conservation of momentum: Ey+ = Ey - = Ey and By + = By- = Bw

m2; = 2m3y, + 2E% (1 — B% cos Z(WH, W) (2.15)
From this follows:
2m?, —m? m2, — 2m?
2 + -y = Mw H _ H W
S/L(IWT W)= ————2F +1=1— —FF——+ 2.16
Biy cos LW, ) 2E2, + 2E2; (2.16)
With 2, > m?, a maximum value for cos Z(W*, W~)B% can be found:
2 _ 92 2
cos Z(WH, W)BZ, > 1 — M =2— mg{ (2.17)
2miy, 2miy,
Putting all masses on-shell.
125GeV \°
LW W)BE, >2-05( ———— ) ~0.7914 2.18
cos LW W) By = (80.4GeV) (2.18)

Though, this scenario is not possible, as the sum of the invariant masses of the W bosons
cannot be larger than the mass of the Higgs boson, they decay from, a scenario, where both
W bosons are 62.5 GeV should also be considered, in which case:

125GeV )2 B

T W)BE, > 2 — GO EC
cos Z(W™, W™)Bjyy >22—-0.5 (62.5G6V

(2.19)
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And as ﬁ%, > 0 by definition, as the value of the velocity has to be a real number, unless
B3, =0, it follows, that cos Z(W+,W~) >0

For tt-events, as top quarks have spin %, and the gluon they come from has a spin of 1, the
W bosons with spin 1 should point apart, leading to a spike at 180°.

Even ignoring the spin, if the kinetic energy of the top quark is much larger than the kinetic
energy released by its decay, the angle between the W bosons in the ¢t rest frame should
be near 180°, the angle of the top quarks to one another in the ¢t rest frame, in the reverse
extreme, it should resemble the relative angle of two random three dimensional vectors, in
which case the angle would peak at 90°, as the cosine between the z-coordinate unit vector
and a another unit vector is:

/02” (/0” e @(¢’9)d9> d¢ = /027r </07r cos (9)d9> dp=0 (2.20)

So in either way, the angle should not be small.

Figure 2.20: Comparison between the cosines of the angles of the W bosons of 1M tt-events
in the ¢t rest frame (blue) and 1M H H-events in the HH rest frame (red).

This difference with the angle between W-Bosons tending to be small in tf-events and large
in H H-events, seems like a good indicator for differentiating between the two in the general
case.

The last test would be, how it looks, after applying all the steps from Section 2.3:
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Figure 2.21: Comparison between the cosines of the angles of the W bosons of the 4M T-
restricted ti-events in the ¢t rest frame (blue) and 1M H H-events in the H H rest frame (red),
after applying jet reconstruction, smearing, and the TBW conditions.

As Figure 2.21 shows, after applying all of the TBW-conditions, as well as jet reconstruc-
tion and smearing on a T-restricted dataset, the difference becomes much less pronounced.
The angle distribution of tt-events becomes much more flat with a small tendency towards
large angles, weakening its usefulness for differentiating between the two different events, but
possibly not eliminating it entirely.

2.5 Angle between bottom quarks

As the bottom quarks have a very small invariant mass of 4.8GeV, for H H-events, the peak
of a Higgs boson at 125GeV, which leaves 57.7GeV for kinetic energy per bottom quark in
the Higgs boson rest frame. To have an angle smaller than 90° between the boosted bottom
quarks, the H H pair needs to have a combined energy of over 353GeV, and even then, only
if the direction of the bottom quarks in the bb rest frame were perpendicular to the direction
of the Higgs boson in the HH rest frame, the energy has to be at least about 3.26TeV, so
the angle between the bottom quarks becomes smaller than 90° for every orientation of the
Higgs boson decay to its direction of movement.

Overall, the equation for the angle between the bottom quarks in the HH rest frame for
decay perpendicular to the direction of the Higgs boson is (derivation of Equation 2.21 can
be found in Appendix C):

2 2
2my — 8my

—_— 2.21
B2, —am? (2:21)

Cos(ebb,perpend) =1-

as for the angle to become 90°, cos(6y,) = 0, Ey is

EH minperpend = ) 2m2; — 4m2 ~ 176.5GeV (2.22)

making Egy ~ 353GeV

If the decay is parallel to the direction of the Higgs boson, the angle between the bottom
quarks in the H H rest frame stays 180°, unless the velocity of the Higgs boson in the H H-
event is larger, than the velocity of bottom quarks, in which case:
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2
m
EH,min,parallel = 27H ~ 1.628TeV (223)
my

making mpypg ~ 3.255T€eV.

Meanwhile, the actual distribution of myy is:

Figure 2.22: The masses of the HH pair of HH-events (red) and the ¢ pair of tt-events
(blue) in comparison, for 1M events

with a peak at roughly 270GeV, where according to Equation 2.21 6y, cannot be smaller than
around 135.5°. Oy, should be expected to peak at a small value near 180°.

For tt-events, as a consequence of the direction of the W bosons tending towards 180° because
of their spins as described in section 2.4, the same applies to bottom quarks, which go into
the opposite direction.

Figure 2.23: Comparison between the cosines of the angles of the bottom quarks of 1M tt-
events in the ¢t rest frame (blue) and 1M H H-events in the H H rest frame (red).

In conclusion, the angle between bottom quarks tends to be small for both tt- and HH-
events, making it less useful for differentiating between the two, than the angle between the
W quarks.
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Figure 2.24: Comparison between the cosines of the angles of the bottom quarks of the 4M
T-restricted tt-events in the tf rest frame (blue) and 1M H H-events in the HH rest frame
(red), after applying jet reconstruction, smearing and the TBW-conditions.

And as Figure 2.24 shows, applying jet reconstruction, smearing and the TBW-conditions on
a T-restricted dataset, changes little about this.
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Chapter 3

Neural Network

3.1 Data

Looking at the events passing all the TBW-conditions:

H All Jet H Truth TBW | Jet TBW | Smeared Jet TBW

Standard ¢t || 5,000,000 | 3,718,227 1 4,542 6,582
T-Restricted tt || 3,999,999 | 2,855,412 30,846 32,920 32,802
HH 998,162 637,364 614,090 255,730 219,423

Table 3.1: Overview over the different candidates of datasets considered for training a neural
network

The TBW of the standard ¢t seems like a useful benchmark for a neural network of the
changes to the mass distribution of top quarks and W bosons in the T-restricted tf datasets,
because of this, despite the small hit in the number of events, the smeared reconstructed T-
restricted events passing the TBW-conditions seem like the best candidate to train a neural
network on.

3.2 Structure

The code used for generating the neural network is based on an internal tutorial (10).

3.2.1 Inputs

The 20 parameters chosen for inputs can be sorted into four groups:

-JetP: The kinetic energies in x- and y-direction of the four jets (botPx, botPy, abotPx,
abotPy, qPx, qPy, aqPx, aqPy)

-TruthP: The kinetic energies in x-and y-direction of the two truth particles (lepPx, lepPy,
nyPx, nyPy)

-Rest: The energies of the sum of the jets not matched to any particle (RestPx, RestPy,
RestM)

-Indicators: Parameters, which have shown to behave differently between H H- and tt-Events
(Wangle, topM, atopM, WHiggsM, bHiggsM)

29
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Only the x- and y-directions are used, as the z-direction is affected by the unknown longitu-
dinal boost of the parton-parton collision system.

3.2.2 Nodes
The value a in each node j of a layer i is calculated by:

g

Ait+1,5 = f(Z(wi,jai,j) —b;) (3.1)

j=1

with f(x) here being a leaky ReLU function (2).

with o = 0.1.
The only exception is the output layer, where the softmax function is used instead:
e*i

flz;) = W (3.3)

In every layer, there are 20 nodes, except for the output layer, which has two, one for H H-
events and one for tt-events. For evaluation of the neural network, the output node with the
higher value is treated as the classification for the event by the network.

3.3 Method

First 10% of the HH- and tt-datasets are set aside for validation testing, then the rest is
used for training.

Every hidden node has a 20% chance of Dropout, to combat overfitting.
Every epoch, the training data is split into random batches of a given size.

For every batch, every weight and bias is changed according to the average of their respective
derivative of the loss function, times a constant called the learning rate, which is set to 0.01.

Also, to have a consistent indicator between different training datasets and to make sure,
that the changes done to the datasets in Sections 2.3.3 and 2.3.4 do not mislead the network,
events that pass the TBW-conditions from smeared, jet reconstructed standard H H- and
tt-datasets are used for separate validation in the target area. To prevent overlap between
training sets and the target set, for this, only the last 10k events of the H H-dataset in
particular are used.

The loss function used is PyTorch’s CrossEntropyLoss, with default settings (15).

The cross entropy function can be written as (13):

C
== Ynclog (zn) (3.4)
c=1
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which for two classes can be expressed as the Binary Cross Entropy function:
In = —wn[yn -log(zn) + (1 = yn) - log (1 — zn)] (3.5)
With x = x1,...,2, being the values of the output nodes, y= yi,...,y, representing the

correct values, C' = 2 being the number of output nodes and N being the batch size.

The last batch of the epoch covers the leftover of the events and is smaller, unless the number
of events in the training data is divisible by the batch size.

3.4 Systematic Investigations

The parameters mainly looked at for the evaluation are loss, accuracy, sensitivity, and speci-
ficity. Be t, the true positive, t, the true negative, f, the false positive and f,, the false
negative, with positive being H H-events and negative being tt-events.

Accuracy describes, what percentage of the total events were identified correctly:

tp +tn
tpt+tn+ fpt+fn

accuracy = (3.6)

Loss is the average value of the loss function between all the events, between all the batches
m in an epoch.

o~ (2, 9)

l - mA\ I .

0SS Z % (3.7)
m=1

Sensitivity describes, what percentage of the signal events (H H-events) were identified cor-

rectly:

t
sensitivity = -:f (3.8)
P n

Specificity describes, what percentage of the background events (ti-events) were identified
correctly:

Cp ln
speci ficity = 3.9
0t (3.9)
The three different datasets, where those parameters are looked at, are called training data,
validation test data and target data.

Training data uses the events, the neural network is trained on. The training data is tested
every epoch.

Validation test data uses the validation load, the 10% of events that were separated from
the training data, before training started. This is useful for recognizing overfitting. The
validation test data is tested every 5th epoch.

Target data uses a set of smeared, jet reconstructed, events of standard H H- and tt-events,
that pass the TBW-conditions. It represents the goal of differentiating H H-events from tt-
events in the target area the closest and provides a common benchmark for comparing the
results of neural networks trained with different datasets. To prevent overlap with the other
datasets, the last 10k of the H H-events are used. The target data is tested every 5th epoch.
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3.4.1 Normalization

To simulate tt-events being much more likely than H H-events, the normalization is based on
the full 5M tt-dataset, which is the 1M and 4M t{-datasets combined.

The first choice for normalization seems to be, using the average and variance of the dataset
for each input variable, this however runs into two problems:

-H H-events are much more rarer than tt-events and as such would not have much of an
influence on the overall average in reality.

-After being trained on the T-restricted dataset, the neural network will be also tested on
the events of a standard dataset, the target data. This would not work, if both had different
values at normalization.

Because of this, the values used are instead the ones calculated from the full 5M events of
the standard tt-dataset.

The normalization formula used, is:

T — My

Tnormalized = - (3.10)
With m, = (z) and o, = /(2?) — (z)?
Their values are:
x || botPx | botPy | abotPx | abotPy |
My -1.1463797 | -0.0031285295 | 0.40313664 | -0.0022223252
Oz 59.45657 61.457508 62.31287 62.65113
b H qPx ‘ qPy ‘ aqPx ‘ aqPy ‘
my || -0.16311064 0.03135924 | -0.03135924 | -0.019642025
Oz 52.722122 52.925797 45.418373 45.43017
X H lepPx ‘ lepPy ‘ nyPx ‘ nyPy ‘
My 0.2221839 | 0.0009224076 | 0.27653328 -0.04254994
Oz 46.210194 46.434994 54.953907 55.286407
b H restPx ‘ restPy \ restM \ Wangle ‘
My 0.5324904 0.03802755 458.50708 -0.52072614
Oz 83.37618 83.99087 594.8185 0.503769
b H topM ‘ atopM ‘ WHiggsM ‘ bHiggsM ‘
My 151.68784 165.01224 277.04214 146.92615
Oz 34.211666 23.067703 133.67793 109.85789

Table 3.2: Expected values and width of the parameters of the inputs for 5M standard t¢-
events, used for normalization
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(a) Accuracy training data (b) Loss training data

(c) Sensitivity training data (d) Specificity training data

Figure 3.1: Comparison of the training data of runs normalized (blue) and not normalized
(orange), with 3 hidden layers and batch size 1000, trained on a smeared, jet reconstructed,
T-restricted dataset after applying the TBW-conditions

As Figure 3.1 shows, the normalized run performs better in the training data, though not by
much.
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(a) Accuracy validation test data (b) Loss validation test data

(c) Sensitivity validation test data (d) Specificity validation test data

Figure 3.2: Comparison of the validation test data of runs normalized (blue) and not nor-
malized (orange), with 3 hidden layers and batch size 1000, trained on a smeared, jet recon-
structed, T-restricted dataset after applying the TBW-conditions

Figure 3.2 demonstrates, that this better performance seems to translate over to the validation
test data, showing, the normalized runs performance improvement cannot be solely attributed
to overfitting.
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(a) Accuracy target data (b) Loss target data

(c) Sensitivity target data (d) Specificity target data

Figure 3.3: Comparison of the target data on runs normalized (blue) and not normalized
(orange), with 3 hidden layers and batch size 1000, trained on a smeared, jet reconstructed,
T-restricted dataset after applying the TBW-conditions

But, as Figure 3.3 shows, this difference seems to vanish, when looking at the target data.

3.4.2 Layers

Next, it is investigated, if and how the number of hidden layers used affects the performance.
The results of accuracy, loss, sensitivity and specificity of runs with a layer number of 1-5 is
shown, when tested on training data, validation test data and target data.
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(a) Accuracy training data (b) Loss training data

(c) Sensitivity training data (d) Specificity training data

Figure 3.4: Comparison of the training data of runs with different amounts of hidden layers:
1 layer (blue), 2 layers (orange), 3 layers (green), 4 layer (red) and 5 layers (purple); not
normalized and batch size 1000, trained on a smeared, jet reconstructed, T-restricted dataset
after applying the TBW-conditions

As Figure 3.4 shows, for the training data, the 1 layer run seems to perform the worst and
the 3 layer run performs the best.
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(a) Accuracy validation test data (b) Loss validation test data

(c) Sensitivity validation test data (d) Specificity validation test data

Figure 3.5: Comparison of the validation test data of runs with different amounts of hidden
layers: 1 layer (blue), 2 layers (orange), 3 layers (green), 4 layer (red) and 5 layers (purple);
not normalized and with batch size 1000, trained on a smeared, jet reconstructed, T-restricted
dataset after applying the TBW-conditions

Figure 3.5, shows, for the validation test data, the 1 layer runs still performs the worst,
but outside of that, there seems to be no noticeable difference between the runs, suggesting,
that the performance increase for the 3 layer run for the training data was just the result of
overfitting.
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(a) Accuracy target data (b) Loss target data

(c) Sensitivity target data (d) Specificity target data

Figure 3.6: Comparison of the target data on runs with different amounts of hidden layers:
1 layer (blue), 2 layers (orange), 3 layers (green), 4 layer (red) and 5 layers (purple); not
normalized and with batch size 1000, trained on a smeared, jet reconstructed, T-restricted
dataset after applying the TBW-conditions

For the target data, the differences vanish completely in noise. Looking at the accuracy and
loss of the validation test data of some similar runs for batch sizes of 1000 and 2000 with and
without normalization in Figures 3.7 to 3.9

(a) Accuracy validation test data (b) Loss validation test data

Figure 3.7: Comparison of the validation test data of runs with different amounts of hidden
layers: 1 layer (blue), 2 layers (orange), 3 layers (green), 4 layer (red) and 5 layers (purple);
normalized and with batch size 1000, trained on a smeared, jet reconstructed, T-restricted
dataset after applying the TBW-conditions



3.4. SYSTEMATIC INVESTIGATIONS 39

(a) Accuracy validation test data (b) Loss validation test data

Figure 3.8: Comparison of the validation test data of runs with different amounts of hidden
layers: 1 layer (blue), 2 layers (orange), 3 layers (green), 4 layer (red) and 5 layers (purple);
not normalized and batch size 2000, trained on a smeared, jet reconstructed, T-restricted
dataset after applying the TBW-conditions

(a) Accuracy validation test data (b) Loss validation test data

Figure 3.9: Comparison of the validation test data of runs with different amounts of hidden
layers: 1 layer (blue), 2 layers (orange), 3 layers (green), 4 layer (red) and 5 layers (purple);
normalized and with batch size 2000, trained on a smeared, jet reconstructed, T-restricted
dataset after applying the TBW-conditions

Outside of "1 layer” performing worse, any difference in the performance between the different
layers seems to be more noise than any actual difference.

3.4.3 Batch Size

What effect have batch sizes on the runs, this is investigated without normalization and for
3 hidden layers:
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(c) Sensitivity training data (d) Specificity training data

Figure 3.10: Comparison of the training data of runs with different batch sizes: 500 (blue),
1000 (orange), 1500 (dark green), 2000 (red), 2500 (purple), 3000 (brown), 3500 (pink), 4000
(grey), 4500 (olive green) and 5000 (cyan); not normalized and with 3 hidden layers, trained
on a smeared, jet reconstructed, T-restricted dataset after applying the TBW-conditions

For training data, no run seems to really stand out, outside of the batch size 2500 run having
a higher specificity and as a result a slightly better loss and accuracy than the rest. But this
might just be a fluke
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(c) Sensitivity validation test data
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(d) Specificity validation test data

Figure 3.11: Comparison of the validation test data of runs with different batch sizes: 500
(blue), 1000 (orange), 1500 (dark green), 2000 (red), 2500 (purple), 3000 (brown), 3500
(pink), 4000 (grey), 4500 (olive green) and 5000 (cyan); not normalized and with 3 hidden
layers, trained on a smeared, jet reconstructed, T-restricted dataset after applying the TBW-

conditions

For the validation test data, as Figure 3.11 shows, the batch size 2500 run vanishes in the
rest of the runs. In contrast, the new standouts are the batch size 5000 run for performing
slightly worse and the batch size 1000 for performing slightly better than the rest.
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Target accuracy
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Figure 3.12: Comparison of the target data on runs with different batch sizes: 500 (blue),
1000 (orange), 1500 (dark green), 2000 (red), 2500 (purple), 3000 (brown), 3500 (pink), 4000
(grey), 4500 (olive green) and 5000 (cyan); not normalized and with 3 hidden layers, trained
on a smeared, jet reconstructed, T-restricted dataset after applying the TBW-conditions

For the target data, no runs are noteworthy.

3.4.4 Combined

To look, if there are any standouts, a set of runs with all combinations of normalization
on/off, 2 to 4 layers and batch size of 500 to 5000 are done. Looking at all of them together,

yields the following observation:
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Figure 3.13: Comparison of the training data of runs with different settings: batch sizes:
500 (blue), 1000 (orange), 1500 (dark green), 2000 (red), 2500 (purple), 3000 (brown), 3500
(pink), 4000 (grey), 4500 (olive green) and 5000 (cyan); normalized and not normalized;
with 2 to 4 hidden layers, trained on a smeared, jet reconstructed, T-restricted dataset after
applying the TBW-conditions

The only notable run for training data, would be the normalized 3 layer run with batch size
1000, for having a slightly higher specificity than the rest.
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Figure 3.14: Comparison of the validation test data of runs with different settings: batch
sizes: 500 (blue), 1000 (orange), 1500 (dark green), 2000 (red), 2500 (purple), 3000 (brown),
3500 (pink), 4000 (grey), 4500 (olive green) and 5000 (cyan); normalized and not normalized;
with 2 to 4 hidden layers, trained on a smeared, jet reconstructed, T-restricted dataset after

applying the TBW-conditions

The one run, that tends to perform slightly better than the others in validation is the not
normalized 3 layer batch size 1000 run, which is notable, as another run with the same
settings already stood out in Figure 3.11. While it could still be a coincidence, there might

be something about this specific setting.
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Figure 3.15: Comparison of the target data on runs with different settings: batch sizes:
500 (blue), 1000 (orange), 1500 (dark green), 2000 (red), 2500 (purple), 3000 (brown), 3500
(pink), 4000 (grey), 4500 (olive green) and 5000 (cyan); normalized and not normalized;
with 2 to 4 hidden layers, trained on a smeared, jet reconstructed, T-restricted dataset after
applying the TBW-conditions

In the target data, there are no standouts.

For keeping track of the individual runs of this section, see Appendix D.

3.4.5 Dropout

A process to prevent overfitting is called Dropout, it refers to a chance for any input of a
node getting set to 0 for any event, and scales every output in training by 1%}). (15)

Until now, 20% Dropout on every hidden layer has been used, but what about other Dropout
settings?

Three different setting for Dropout are tested, one without, one with 20% Dropout for every
hidden layer from (10) and one with 20% Dropout for the input layer and 50% for every
hidden layer from (8).!

First without Normalization, then with Normalization.

! As the layers in PyTorch seem to define the connections between the nodes, instead of the nodes themselves,
there is one hidden layer more, than directly described in the code, because of this, it is possible, that there
is one hidden layer, which does not have dropout used on it
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Figure 3.16: Comparison of the training data of runs with different dropout settings: no
dropout (blue), hidden layers 20% dropout (orange), input layer 20% and hidden layers 50%
dropout (green); not normalized, with batch size 1000 and 3 hidden layers, trained on a
smeared, jet reconstructed, T-restricted dataset after applying the TBW-conditions

Without Normalization, the stronger Dropout settings seems to lower accuracy and raise loss
for the training data, mainly by lowering specificity with the more drastic Dropout being

stronger.
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Figure 3.17: Comparison of the validation test data of runs with different dropout settings:
no dropout (blue), hidden layers 20% dropout (orange), input layer 20% and hidden layers
50% dropout (green); not normalized, with batch size 1000 and 3 hidden layers, trained on a
smeared, jet reconstructed, T-restricted dataset after applying the TBW-conditions

For the validation test data, the different Dropout settings seem to not change much for
the not normalized runs, in contrast to the training data, this is in line with the purpose of

Dropout minimizing overfitting.
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Figure 3.18: Comparison of the target data on runs with different dropout settings: no
dropout (blue), hidden layers 20% dropout (orange), input layer 20% and hidden layers 50%
dropout (green); not normalized, with batch size 1000 and 3 hidden layers, trained on a
smeared, jet reconstructed, T-restricted dataset after applying the TBW-conditions

For the target data, the different Dropout settings do not seem to change anything in per-
formance for the not normalized runs.
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Figure 3.19: Comparison of the training data of runs with different dropout settings: no
dropout (blue), hidden layers 20% dropout (orange), input layer 20% and hidden layers 50%
dropout (green); normalized, with batch size 1000 and 3 hidden layers, trained on a smeared,
jet reconstructed, T-restricted dataset after applying the TBW-conditions

The normalized runs perform roughly equally in training data for different Dropout settings,
with an improvement to sensitivity making up for a worse specificity.
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Figure 3.20: Comparison of the validation test data of runs with different dropout settings:
no dropout (blue), hidden layers 20% dropout (orange), input layer 20% and hidden layers
50% dropout (green); normalized, with batch size 1000 and 3 hidden layers, trained on a
smeared, jet reconstructed, T-restricted dataset after applying the TBW-conditions

For the validation test data, 20% Dropout for every hidden layer seems to perform better
than the others for normalized runs.
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Figure 3.21: Comparison of the target data on runs with different dropout settings: no
dropout (blue), hidden layers 20% dropout (orange), input layer 20% and hidden layers 50%
dropout (green); normalized, with batch size 1000 and 3 hidden layers, trained on a smeared,
jet reconstructed, T-restricted dataset after applying the TBW-conditions

In target data, the normalized runs also perform equally for different Dropout settings.

Based on this, the Dropout setting of 20% for hidden layers is kept, mainly because of its
better performance in the validation test data for normalized runs seen in Figure 3.20.

3.5 Missing Input

To measure, how much the specific inputs matter, runs without those inputs are made. For
a better overview, the inputs are looked at category by category and compared to a run with
all inputs.

3.5.1 JetP

The inputs of the input group ”JetP” are the x- and y-momenta of the bottom quark jet b,
the antibottom quark jet b, the quark jet from the hadronic W boson ¢ and the antiquark
jet from the hadronic W boson 4.
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(a) Accuracy training data (b) Loss training data

(c) Sensitivity training data (d) Specificity training data

Figure 3.22: Comparison of the training data of runs with different inputs of the group
JetP left out: x-momentum of b (blue), y-momentum of b (orange), x-momentum of b (dark
green), y-momentum of b (red), x-momentum of ¢ (purple), y-momentum of ¢ (brown), x-
momentum of ¢ (pink), y-momentum of ¢ (grey) and none (olive green); normalized, with
batch size 1000 and 3 hidden layers, trained on a smeared, jet reconstructed, T-restricted
dataset after applying the TBW-conditions

For training data, no noticeable standout can be found among the missing JetP inputs,
neither from each other, nor from the run without missing inputs.
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(a) Accuracy validation test data (b) Loss validation test data

(c) Sensitivity validation test data (d) Specificity validation test data

Figure 3.23: Comparison of the validation test data of runs with different inputs of the group
JetP left out: x-momentum of b (blue), y-momentum of b (orange), x-momentum of b (dark
green), y-momentum of b (red), x-momentum of ¢ (purple), y-momentum of ¢ (brown), x-
momentum of ¢ (pink), y-momentum of ¢ (grey) and none (olive green); normalized, with
batch size 1000 and 3 hidden layers, trained on a smeared, jet reconstructed, T-restricted
dataset after applying the TBW-conditions

For validation test data, the situation is not much different from the training data, while
single runs seem to perform a bit better or worse than the others, the difference is more likely
to be a result of the smaller size of the validation test data, than anything about the input
data, seen most clearly by the feature, that some runs performed better than the all inputs
control case by a similar amount, as the worse case performed worse.
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(a) Accuracy target data (b) Loss target data

(c) Sensitivity target data (d) Specificity target data

Figure 3.24: Comparison of the target data on runs with different inputs of the group JetP left
out: x-momentum of b (blue), y-momentum of b (orange), x-momentum of b (dark green), y-
momentum of b (red), x-momentum of ¢ (purple), y-momentum of ¢ (brown), x-momentum
of ¢ (pink), y-momentum of ¢ (grey) and none (olive green); normalized, with batch size
1000 and 3 hidden layers, trained on a smeared, jet reconstructed, T-restricted dataset after
applying the TBW-conditions

The target data also seems to have no standout runs.

3.5.2 TruthP

The inputs of the input group ” TruthP” are the x- and y-momenta of the lepton truth particle
from the leptonic W boson [ and the neutrino truth particle from the leptonic W boson v.



3.5. MISSING INPUT 95

(a) Accuracy training data (b) Loss training data

(c) Sensitivity training data (d) Specificity training data

Figure 3.25: Comparison of the training data of runs with different inputs of the group
TruthP left out: x-momentum of ! (blue), y-momentum of [ (orange), x-momentum of v
(green), y-momentum of v (red) and none (purple); normalized, with batch size 1000 and 3
hidden layers, trained on a smeared, jet reconstructed, T-restricted dataset after applying
the TBW-conditions

For the training data, the most that stands out, is, that the run with out x-momentum of
v seems to have a bit lower sensitivity and higher specificity than the others. In terms of
performance nothing stands out as better or worse than the rest.
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(a) Accuracy validation test data (b) Loss validation test data

(c) Sensitivity validation test data (d) Specificity validation test data

Figure 3.26: Comparison of the validation test data of runs with different inputs of the group
TruthP left out: x-momentum of ! (blue), y-momentum of [ (orange), x-momentum of v
(green), y-momentum of v (red) and none (purple); normalized, with batch size 1000 and 3
hidden layers, trained on a smeared, jet reconstructed, T-restricted dataset after applying
the TBW-conditions

For the validation test data, again, while there is seemingly enough difference in the perfor-
mance of the runs to single out single runs, this is likely just the result of the validation test
data being smaller, especially, as the control run lies roughly in the middle. However, it is
noticeable here, that the missing ¥ momenta runs both performed worse than the all inputs
control run, while of the missing [ momenta runs, one performed better and the other roughly
equal to the control run. So, while it is likely just random chance, there is a possibility, that
the ¥ momenta are a bit more important than the [ momenta.
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(a) Accuracy target data (b) Loss target data

(c) Sensitivity target data (d) Specificity target data

Figure 3.27: Comparison of the target data on runs with different inputs of the group TruthP
left out: x-momentum of [ (blue), y-momentum of [ (orange), x-momentum of v (green), y-
momentum of v (red) and none (purple); normalized, with batch size 1000 and 3 hidden
layers, trained on a smeared, jet reconstructed, T-restricted dataset after applying the TBW-
conditions

For the target data, the run performance again seems to have no clear order.

3.5.3 Rest

The inputs of the input group ”"Rest” are the x- and y-momenta, as well as the mass of the
sum of all the jets, that are not matched to a particle.
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(a) Accuracy training data (b) Loss training data

(c) Sensitivity training data (d) Specificity training data

Figure 3.28: Comparison of the training data of runs with different inputs of the group Rest
left out: x-momentum of the sum of the unmatched jets (blue), y-momentum of the sum of
the unmatched jets (orange), mass of the sum of the unmatched jets (green) and none (red);
normalized, with batch size 1000 and 3 hidden layers, trained on a smeared, jet reconstructed,
T-restricted dataset after applying the TBW-conditions

For the training data, there are no runs standing out.
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(a) Accuracy validation test data (b) Loss validation test data

(c) Sensitivity validation test data (d) Specificity validation test data

Figure 3.29: Comparison of the validation test data of runs with different inputs of the group
Rest left out: x-momentum of the sum of the unmatched jets (blue), y-momentum of the
sum of the unmatched jets (orange), mass of the sum of the unmatched jets (green) and
none (red); normalized, with batch size 1000 and 3 hidden layers, trained on a smeared, jet
reconstructed, T-restricted dataset after applying the TBW-conditions

For the validation test data, the order of performance from best to worst seems to be: missing
x-momentum, all inputs, missing mass and missing y-momentum. With the control all input
run not performing best and the best and worst being the x and y momentum, this is likely
just random chance.
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(a) Accuracy target data (b) Loss target data

(c) Sensitivity target data (d) Specificity target data

Figure 3.30: Comparison of the target data on runs with different inputs of the group Rest
left out: x-momentum of the sum of the unmatched jets (blue), y-momentum of the sum of
the unmatched jets (orange), mass of the sum of the unmatched jets (green) and none (red);
normalized, with batch size 1000 and 3 hidden layers, trained on a smeared, jet reconstructed,
T-restricted dataset after applying the TBW-conditions

For the target data, any difference in performance seems to vanish, again.

3.5.4 Indicators

The inputs of the input group ”Indicators” are the angle between the W bosons in the HH
or tt rest frame respectively, the Wb pair mass, the Wb pair mass, the WTW ™ pair mass
and the bb pair mass.
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(a) Accuracy training data (b) Loss training data

(c) Sensitivity training data (d) Specificity training data

Figure 3.31: Comparison of the training data of runs with different inputs of the group
Indicators left out: angle of the W bosons in the HH or t¢ rest frame respectively (blue),
W*b pair mass (orange), W~b pair mass (green), W+W = pair mass (red), bb pair mass
(purple) and none (brown); normalized, with batch size 1000 and 3 hidden layers, trained on
a smeared, jet reconstructed, T-restricted dataset after applying the TBW-conditions

In contrast to the other input groups, for ”Indicators”, missing single inputs seems to sig-
nificantly affect the performance for training data. The run performing by far the worst,
is the run missing the W+W ™ pair mass, with the run missing the bb pair mass being a
distant, but still significant second. The runs missing the Wb pair mass and W ~b pair mass
respectively, perform only slightly but still noticeable worse than control, with only the run
missing the angle between the W bosons having no noticeable performance drop the control
with all inputs.

Looking at the sensitivity and specificity, it becomes apparent, that missing the W W~ pair
mass, mainly makes the sensitivity far worse and with that makes it much harder for the
neural network to correctly detect H H-events, while missing the bb pair mass mainly has a
noticeable impact on the specificity, making the neural network less reliable in excluding false
positives for H H-events.
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(a) Accuracy validation test data (b) Loss validation test data

(c) Sensitivity validation test data (d) Specificity validation test data

Figure 3.32: Comparison of the validation test data of runs with different inputs of the group
Indicators left out: angle of the W bosons in the HH or tt rest frame respectively (blue),
W*b pair mass (orange), Wb pair mass (green), W+W = pair mass (red), bb pair mass
(purple) and none (brown); normalized, with batch size 1000 and 3 hidden layers, trained on
a smeared, jet reconstructed, T-restricted dataset after applying the TBW-conditions

For validation test data, there are no changes to the order of performance from the training
data, though with the exception of the run missing the W W™ pair mass, the spread is
similar to the one in the validation test data of the other groups.
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(a) Accuracy target data (b) Loss target data

(c) Sensitivity target data (d) Specificity target data

Figure 3.33: Comparison of the target data on runs with different inputs of the group Indica-
tors left out: angle of the W bosons in the H H or tt rest frame respectively (blue), Wb pair
mass (orange), Wb pair mass (green), W W™ pair mass (red), bb pair mass (purple) and
none (brown); normalized, with batch size 1000 and 3 hidden layers, trained on a smeared,
jet reconstructed, T-restricted dataset after applying the TBW-conditions

For the target data, again the order of performance is the same as it was for validation test
data and training data, though interestingly, the run missing the bb pair mass does stand out
a bit more, than it did in the validation test data.

3.5.5 Groups

To check, if the negligible impact of missing single inputs in every category except ”Indicators”
is the result of multiple inputs in the same input group being redundant, there were also runs
made, with entire input groups missing.
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(a) Accuracy training data (b) Loss training data

(c) Sensitivity training data (d) Specificity training data

Figure 3.34: Comparison of the training data on runs with different groups of inputs left out:
none (blue), JetP (orange), TruthP (green), Rest (red) and Indicators (purple); normalized,
with batch size 1000 and 3 hidden layers, trained on a smeared, jet reconstructed, T-restricted
dataset after applying the TBW-conditions

For training data, a clear order can be seen in the performance. From worst to best: miss-
ing Indicators, missing JetP, missing TruthP, missing Rest and the all inputs control run.
However, as with the exception of Indicators, which already showed its large importance in
Section 3.5.4, this order seems to follow the number of inputs in each group, with 8 in JetP,
4 in TruthP and 3 in Rest.

This might possibly be a sign for this difference to simply be a result of overfitting, as, the
more inputs there are for a limited dataset, the more chances there could be for patterns
between them seemingly emerging in random fluctuations for the neural network to pick up
on.
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(a) Accuracy validation test data (b) Loss validation test data

(c) Sensitivity validation test data (d) Specificity validation test data

Figure 3.35: Comparison of the validation test data on runs with different groups of inputs
left out: none (blue), JetP (orange), TruthP (green), Rest (red) and Indicators (purple);
normalized, with batch size 1000 and 3 hidden layers, trained on a smeared, jet reconstructed,
T-restricted dataset after applying the TBW-conditions

Looking at the validation test data, seems to speak for the hypothesis of the trainings data
being a sign of overfitting, as, with the exception of the run missing Indicators, the differences
between the different missing group runs and the all inputs control run seems to vanish, with
the performances being overall closer together, than for the training data, making this being
simply a result of the validation test data being smaller, unlikely.

Outside of that, it is interesting to note, that the gap to the run missing Indicators is so
large, that it seems to converge at a worse performance, than the other runs start at.
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(a) Accuracy target data (b) Loss target data

(c) Sensitivity target data (d) Specificity target data

Figure 3.36: Comparison of the target data on runs with different groups of inputs left out:
none (blue), JetP (orange), TruthP (green), Rest (red) and Indicators (purple); normalized,
with batch size 1000 and 3 hidden layers, trained on a smeared, jet reconstructed, T-restricted
dataset after applying the TBW-conditions

The target data looks basically the same as the validation test data. The run missing Indi-
cators performs much worse than the others, which perform roughly the same.

3.5.6 Only Indicators

The lack of showing any decrease in performance from missing the groups other than Indi-
cators in Section 3.5.5, raises the question, if these other inputs are completely superfluous,
when the Indicators inputs are used.

To check if the other inputs even have any impact on the performance, a run is made, which
uses only the Indicator inputs and is compared with the run missing the Indicator inputs and
the control run with all inputs.
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(a) Accuracy training data (b) Loss training data

(c) Sensitivity training data (d) Specificity training data

Figure 3.37: Comparison of the training data of runs trained on: all inputs (blue), all inputs
except Indicators (orange) and only Indicators (green); normalized, with batch size 1000 and
3 hidden layers, trained on a smeared, jet reconstructed, T-restricted dataset after applying
the TBW-conditions

Looking at the training data, using only the Indicators inputs does seem to perform signifi-
cantly worse than the control run, but not as bad, as missing the Indicator inputs. However,
as Section 3.5.5 has shown, this could simply be the result of the run with only Indicators
having 15 inputs less to overfit on.
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(a) Accuracy validation test data (b) Loss validation test data

(c) Sensitivity validation test data (d) Specificity validation test data

Figure 3.38: Comparison of the validation test data of runs trained on: all inputs (blue), all
inputs except Indicators (orange) and only Indicators (green); normalized, with batch size
1000 and 3 hidden layers, trained on a smeared, jet reconstructed, T-restricted dataset after
applying the TBW-conditions

The validation test data shows, that the worse performance of the run with only Indicators,
is not just a result of overfitting, but the 15 other inputs collectively do have a real impact
on the performance.
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(a) Accuracy target data (b) Loss target data

(c) Sensitivity target data (d) Specificity target data

Figure 3.39: Comparison of the target data on runs trained on: all inputs (blue), all inputs
except Indicators (orange) and only Indicators (green); normalized, with batch size 1000 and
3 hidden layers, trained on a smeared, jet reconstructed, T-restricted dataset after applying
the TBW-conditions

The target data results are basically the same as the validation test data. That the impact,
that the 16 other inputs collective have, translates to the target data, shows, that they are
not completely superfluous, and should be kept for now.

3.6 Evaluation

Before looking at the performance of a neural network trained on a T-restricted smeared jet
reconstructed tt-dataset in absolute terms, it is helpful to compare it to a neural network
trained on a jet reconstructed standard t{-dataset as control point. The size of the datasets
used are 627,364, which is the size of the full HH dataset, minus the 10k events reserved for
the target data.
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(a) Accuracy training data (b) Loss training data

(c) Sensitivity training data (d) Specificity training data

Figure 3.40: Comparison of the training data of a run trained using a T restricted tf dataset
after applying the TBW-conditions and batch size 1000 (blue) with a run trained using a
standard ¢t dataset with batch size 5000 (orange); Both runs are normalized and have 3
hidden layers. All datasets are smeared and reconstructed.

As the two training datas are completely different, any comparison between the two is not re-
ally helpful, however, the control standard settings neural network performs almost perfectly,
with an over 99% accuracy rate, while the T-restricted neural network still has potential
room to be improved, with an accuracy of ca. 83%.
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(a) Accuracy validation test data (b) Loss validation test data

(c) Sensitivity validation test data (d) Specificity validation test data

Figure 3.41: Comparison of the validation test data of a run trained using a T restricted t¢
dataset after applying the TBW-conditions and batch size 1000 (blue) with a run trained
using a standard t¢ dataset with batch size 5000 (orange); both are normalized and have 3
hidden layers. All datasets are smeared and reconstructed.

Not much changes between the training data and test data, but it shows, that the results of
the training data are real.
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(a) Accuracy target data (b) Loss target data

(c) Sensitivity target data (d) Specificity target data

Figure 3.42: Comparison of the target data of a run trained using a T restricted ¢t dataset
after applying the TBW-conditions and batch size 1000 (blue) with a run trained using a
standard ¢t dataset with batch size 5000 (orange); both are normalized and have 3 hidden
layers. All datasets are smeared and reconstructed.

As the target data is based on the same dataset for both, a direct comparison can be made,
the only caveat being, that, as the dataset the target data is sourced from is the same jet
reconstructed standard tt-dataset, the standard settings neural network could perform a bit
better than it actually would. But even if this was the case, in the target data, the standard
dataset neural network ends up with an accuracy of ca. 57%, while the T-restricted dataset
neural network performs much better, ending up with an accuracy of ca. 87%.

The reason for the worse performance of the standard dataset run at the target data seems
to be, that in standard settings datasets the target area is dominated by the H H-events,
leading to the standard settings neural network classifying many tt-events in the target data
as H H-events. This can also be seen in the sensitivity being at almost 1 and the specificity
being around 0.13, for the target data of the standard dataset run.

Meanwhile, the T-restricted dataset run ends with a sensitivity (aka the rate of H H-events
correctly identified) of around 0.87 and a specificity (aka the rate of ti-events correctly iden-
tified) of around 0.89 for the target data. Transferring this to the ratio of the events in
reality:
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| HH | tt |

Cross section times branching ratio Literature 10.0fb | 873.4pb
Cross section times branching ratio MadGraph || 253.3ab | 455.8pb
TBW after Rec and Smear H 21.98% \ 0.132% ‘

Target Performance H 0.87 \ 0.89 ‘

Table 3.3: Overview of the stats relevant for calculating the expected performance of the
neural network trained on a T-restricted dataset, when used on real events in the target area.

Two scenarios are considered, one based on the cross sections and branching ratios found in
Literature (7)(12)(14) seen in Chapter 1 and one based on the cross sections times branching
ratio calculated by MadGraph seen in Chapter 2.

Accuracy then is:
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While the share of actual H H-events among events classified by the neural network as H H-
events is:

tp nggsensitivity sensitivity

ty + fp B ny sensitivity + ng(1 — speci ficity) — sensitivity + %(1 — speci ficity)
(3.12)

And the share of actual tf-events among events classified by the neural network as tt-events
is:

n ngspeci ficity B e spect ficity
th + fn nmu(l — sensitivity) + nyspecificity (1 — sensitivity) + &—t;specificity
(3.13)
In both cases is:
Ny O4F F
o _ ttPTBW,tt (3.14)

NHH OHHPTBW,HH

with ¢ being the respective cross section times branching ratio and prpyw being the respective
percentage of events, that pass the TBW-conditions after smearing and jet reconstruction.
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H Accuracy ‘

tp tn
tp+fp tntfn
Literature 89.00% | 1.49% | 99.97%
MadGraph 89.000% | 0.073% | 99.999%

Table 3.4: Expected performance of the neural network trained on a T-restricted dataset,
when used on real events in the target area

In conclusion, while the approach shows promise, it is by far not good enough, to alone
identify a H H-Event among tt-Events. However, in the target area a neural network trained
on events in the target are by far outperforms a neural network trained on the full datasets,
and this might improve, if given more data in the target area to train on.



Appendix A

Herwig

Originally Herwig 6.520 (6) (11) was used for the further generation of tt-events after taking
them from NCatNLO. The switch to Pythia happened, after attempts of generating datasets
with wide top quark mass distribution lead to diminished returns in the numbers of events:
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Figure A.1: Overview of the percentage of tt-events of the target amount generated with
different top quark width, Herwig with small boundaries for top mass (blue), Herwig with
large boundaries for top mass (green), Pythia for top mass (yellow), the two data points of
Pythia have different settings, with small boundaries (left) and with large boundaries (right);
The x-axis here has the absolute value of I', with, instead of relative term used in Chapter
2, the conversion factor here is 1.33. The original target amount for events generated is 1M
for every dataset except the thin Herwig with I' = 1.33, where it is 12.5M.

As seen in Figure A.1, the ti-datasets generated with Pythia are less affected by this loss of
events. Pythia goes down to around 92% of the target amount of events, where Herwig only
generates around 11% of the target amount of events.

For Pythia the already small loss of events eventually vanished almost completely, as can be
seen by the Datasets of Sections 2.2 and 2.3.4 being unaffected, so there is a possibility, that
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this could also be fixable for Herwig.



Appendix B

Rotation

There were also attempts to improve the number of tt-events passing the TBW-Conditions,
by rotating the top quark decay products to reduce the W W~ pair mass. Based on the code
of (4), though with all scaling factors set to 1, different rotation settings are systematically
explored, as well as other improvements.

It basically works by looking at each W boson in the rest frame of its respective top quark,
measuring the angle between those two W-boson vectors and then reducing that angle by a
factor called 7scqe by rotating the top quark decay products around the cross product of the
W bosons by (1 — 7scqie) times the angle.

The code goes through all different values of ry.qe between 0 and 1 in 0.01 increments and
looks at, how many events pass the conditions B and W, which are the conditions directly
affected by this rotation, as well as how many events pass condition T in addition to that.

To note here is, that this code works on the datasets events as they were spit out by
MCatNLO, unaffected by Pythia, which saves computation time, but also means, that the
effects of smearing or jet reconstruction can not be studied here, as those are only applied in
a later state in the pipeline.

First, the 5M events standard tt-dataset:
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Figure B.1: Effect of 74,4 on the number of events among a 5M standard t¢-dataset passing
the BW-conditions (continuous line), and the TBW-conditions (dotted line)

While the number of events passing conditions B and W seems to peak somewhere around
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Tscale = 0.5, there are too few events passing the TBW-conditions, to make any further
comments on this.

How does the widening of the dataset from section 2.3.3 affect this:
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Figure B.2: Effect of 74,4 on the number of events among a ca. 919k tt-events dataset with
widened top quark and W boson mass distributions passing the BW-conditions (continuous
line), and the TBW-conditions (dotted line)

For the widened dataset, the number of events also peaks somewhere around 754 = 0.5,
though here there are enough events passing the TBW-conditions to say, that they seem to
also peak somewhere around there.

And last the T-restricted datasets from Section 2.3.4:
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Figure B.3: Comparison, between the effects of r.4e on the number of events passing the
TBW-conditions among different 1M T-restricted tt-events datasets with widened top quark
and W boson mass distributions: one with both top and antitop quark masses small (cyan),
one with both top and antitop quark mass large (purple), two with one of them small and
the other large (green) and their 4M events sum (black).

To note here is that, as all T-restricted events pass the T-condition before reconstruction
and smearing by definition, there have to be no separate listings for passing the TBW- and
BW-conditions.

The different T-restricted datasets peak at different values of 744, With the one for small
top and antitop quark masses being at its best in the control case of rg.qe = 1.
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The sum of the datasets has a peak somewhere around 7.4 = 0.7, but the amount of events
won by the rotation is much smaller than before the T-restriction.

The diminishing returns of Rotation for a T-restricted tt-dataset, the difficulty of studying
the effects of it after smearing and jet reconstruction and the found possible relevance of the
angle between the W bosons in distinguishing tt-events from H H-events in section 2.4, lead
to the decision of not pursuing the use of rotation to increase the number of tf-events in the
target area further.
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Appendix C

Derivation of Equation 2.21

Be 6 the angle between both bottom quarks in the HH rest frame. Everything here is in the
HH rest frame, unless it is marked by bb, in which case it is in the bb rest frame.
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For comparison, the general case with 6,; being the angle between the bottom quark in the
bb rest frame and the Higgs boson in the HH rest frame:
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Appendix D

Combined Run options Overview

D.1 2 Hidden Layers
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(c) Sensitivity training data

(d) Specificity training data

Figure D.1: Comparison of the training data of runs with different settings: batch sizes: 500
(blue), 1000 (orange), 1500 (dark green), 2000 (red), 2500 (purple), 3000 (brown), 3500 (pink),
4000 (grey), 4500 (olive green) and 5000 (cyan); not normalized, with 2 hidden layers, trained
on a smeared, jet reconstructed, T-restricted dataset after applying the TBW-conditions
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(g) Sensitivity target data
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(h) Specificity target data

Figure D.2: Comparison of the validation test data (a-d) and target data (e-h) of runs with
different settings: batch sizes: 500 (blue), 1000 (orange), 1500 (dark green), 2000 (red),
2500 (purple), 3000 (brown), 3500 (pink), 4000 (grey), 4500 (olive green) and 5000 (cyan);
not normalized, with 2 hidden layers, trained on a smeared, jet reconstructed, T-restricted

dataset after applying the TBW-conditions
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(d) Specificity training data

Figure D.3: Comparison of the training data of runs with different settings: batch sizes: 500
(blue), 1000 (orange), 1500 (dark green), 2000 (red), 2500 (purple), 3000 (brown), 3500 (pink),
4000 (grey), 4500 (olive green) and 5000 (cyan); normalized, with 2 hidden layers, trained on

a smeared, jet reconstructed, T-restricted dataset after applying the TBW-conditions
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Figure D.4: Comparison of the validation test data (a-d) and the target data (e-h) of runs
with different settings: batch sizes: 500 (blue), 1000 (orange), 1500 (dark green), 2000 (red),
2500 (purple), 3000 (brown), 3500 (pink), 4000 (grey), 4500 (olive green) and 5000 (cyan);
normalized, with 2 hidden layers, trained on a smeared, jet reconstructed, T-restricted dataset
after applying the TBW-conditions
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D.2 3 Hidden Layers
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Figure D.5: Comparison of the training data of runs with different settings: batch sizes: 500
(blue), 1000 (orange), 1500 (dark green), 2000 (red), 2500 (purple), 3000 (brown), 3500 (pink),
4000 (grey), 4500 (olive green) and 5000 (cyan); not normalized, with 3 hidden layers, trained

on a smeared, jet reconstructed, T-restricted dataset after applying the TBW-conditions
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Figure D.6: Comparison of the validation test data (a-d) and the target data (e-h) of runs
with different settings: batch sizes: 500 (blue), 1000 (orange), 1500 (dark green), 2000 (red),
2500 (purple), 3000 (brown), 3500 (pink), 4000 (grey), 4500 (olive green) and 5000 (cyan);
not normalized, with 3 hidden layers, trained on a smeared, jet reconstructed, T-restricted
dataset after applying the TBW-conditions
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Figure D.7: Comparison of the training data of runs with different settings: batch sizes: 500
(blue), 1000 (orange), 1500 (dark green), 2000 (red), 2500 (purple), 3000 (brown), 3500 (pink),
4000 (grey), 4500 (olive green) and 5000 (cyan); normalized, with 3 hidden layers, trained on
a smeared, jet reconstructed, T-restricted dataset after applying the TBW-conditions
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Figure D.8: Comparison of the validation test data (a-d) and the target data (e-h) of runs
with different settings: batch sizes: 500 (blue), 1000 (orange), 1500 (dark green), 2000 (red),
2500 (purple), 3000 (brown), 3500 (pink), 4000 (grey), 4500 (olive green) and 5000 (cyan);
normalized, with 3 hidden layers, trained on a smeared, jet reconstructed, T-restricted dataset
after applying the TBW-conditions
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Figure D.9: Comparison of the training data of runs with different settings: batch sizes: 500
(blue), 1000 (orange), 1500 (dark green), 2000 (red), 2500 (purple), 3000 (brown), 3500 (pink),
4000 (grey), 4500 (olive green) and 5000 (cyan); not normalized, with 4 hidden layers, trained
on a smeared, jet reconstructed, T-restricted dataset after applying the TBW-conditions
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Figure D.10: Comparison of the validation test data (a-d) and the target data (e-h) of runs
with different settings: batch sizes: 500 (blue), 1000 (orange), 1500 (dark green), 2000 (red),
2500 (purple), 3000 (brown), 3500 (pink), 4000 (grey), 4500 (olive green) and 5000 (cyan);
not normalized, with 4 hidden layers, trained on a smeared, jet reconstructed, T-restricted
dataset after applying the TBW-conditions
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Figure D.11: Comparison of the training data of runs with different settings: batch sizes: 500
(blue), 1000 (orange), 1500 (dark green), 2000 (red), 2500 (purple), 3000 (brown), 3500 (pink),
4000 (grey), 4500 (olive green) and 5000 (cyan); normalized, with 4 hidden layers, trained on

a smeared, jet reconstructed, T-restricted dataset after applying the TBW-conditions
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Figure D.12: Comparison of the validation test data (a-d) and the target data (e-h) of runs
with different settings: batch sizes: 500 (blue), 1000 (orange), 1500 (dark green), 2000 (red),
2500 (purple), 3000 (brown), 3500 (pink), 4000 (grey), 4500 (olive green) and 5000 (cyan);
normalized, with 4 hidden layers, trained on a smeared, jet reconstructed, T-restricted dataset

after applying the TBW-conditions
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