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Abstract

Immense research has been conducted on the Higgs Boson since its discovery. However,

the sheer amount of background events in high energy particle colliders complicate the

study of its physical properties. Research on the Higgs self interactions is no exception.

The corresponding cross section is small compared to many competing processes with

similar final states. For example, the top anti-top quark pair decays and the Higgs

self interactions can have equivalent final states such as b+b−W+W−, but their cross

sections are roughly 1 µb and 30 fb respectively, such that the two mass distributions

overlap. To separate these two, feed forward neural networks were applied onto the data

simulated with the MCatNLO event generators Herwig and MadGraph5. However,

given a reasonable computation time, these event generators could not generate enough

top background events to train the neural network. Therefore, certain features of these

data beyond kinematics were modified in order to generate sufficient training data.

Overall, this usage of the neural network was effective in separating the two end states.
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Chapter 1

Introduction

The Higgs boson was first proposed in 1964 as a scalar boson responsible for particle

mass generation in the Standard Model. Its existence was required to explain the

metastability of the electroweak vacuum, and its discovery in 2012 at the Large Hadron

Collider (LHC) was met with relief. Furthermore, it was found that the Higgs boson

has mass (125.11 ± 0.11) GeV, suggesting that the Higgs boson also couples to itself.

However, this self interaction remains unobserved to this day since its occurrence is rare

compared to many competing processes with similar final states. [12] The Top anti-

Top quark pair decay (tt̄) is one example, and this is the background to be separated

in this thesis. To do so, tt̄ backgrounds were first selected from the Monte Carlo

simulated tt̄ events generated by Pythia6. It was not possible to collect enough tt̄

backgrounds in di-Higgs decays given a reasonable computation time. Therefore, the

tt̄ events were analyzed to find under what conditions they could mimic Higgs self

interaction events. These conditions were imposed on all events to create a large

number of tt̄ backgrounds. These tt̄ backgrounds were then used to train feed forward

neural networks. Observables for the jet pairs, such as their masses and their angular

distributions, were constructed to facilitate this process. The ultimate purpose of this

thesis is to support the ATLAS collaboration and its endeavour to measure the Higgs

self coupling constant λ in the Higgs potential. [4] This thesis proceeds as follows.

Chapter 2 discusses the relevant particle physics theory, including gauge theory and

detector physics. Chapter 3, introduces what artificial neural networks are and suggests

how they can be relevant in physics. Chapter 4 explains the procedures to find the

conditions under which the tt̄ decays are likely to mimic the Higgs self interactions.

Chapter 5 discusses the procuring of the datasets fed into neural networks as well as

the training of the neural network to separate tt̄ backgrounds in HH events. Chapter

6 summarizes the thesis and offers possible outlooks. Natural units c = ℏ = 1 are used

all throughout this thesis, with electric charges in the units of electron charge e.

1
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Chapter 2

Particle Physics

The Standard Model (SM) is the most experimentally well-verified model of known

elementary particles and their non-gravitational interactions. Elementary particles are

point-like particles without any known substructure. [7] Among these are Higgs bosons,

and investing their self-interacting properties is the aim of this thesis. To do so, this

chapter first elaborates on the relevant theoretical aspects of the SM. This chapter then

concludes with describing the experimental setup for particle physics.

2.1 Gauge Theory

Two branches of field theory have provided the theoretical foundations for the SM. One

is quantum field theory (QFT), which lies at the interface between quantum mechanics

and special relativity. Quantum fields are field operators on Hilbert spaces, satisfying

the canonical commutation relations from quantum mechanics. Fluctuations around

quantum fields represent particles. QFT is by construct Poincaré invariant like special

relativity: that is, invariant under spacetime translations and Lorentz transformations.

The other branch is gauge theory (GT), where the Lagrangian is invariant under local

gauge transformations. [15] As rotations on fields, gauge transformations are said to

be local if their phases dependent on each point on the manifold, and global if their

phases are constants. The group of gauge transformations that leave the Lagrangian

invariant is called the gauge group. If the gauge group is abelian, then the GT is

said to be abelian. In GT, fields that transform amongst each other under local gauge

transformations form multiplets, identified with charges associated to the gauge group.

This section first presents an overview of the SM: the SM phenomenology is discussed

along with the construction of the SM from QFT. This section then elaborates on

each sectors of the SM from a field theory perspective. This section concludes with

discussing the role of the Higgs field in the SM.

3
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2.1.1 The Standard Model

The first objective of this subsection is to outline the SM phenomenology summarized

in tables (2.1) and (2.2). The SM fermions have spin 1/2 and constitute all known

matter. Each has its own anti-particle with the same mass but with opposite charges.

The SM fermions with color charges red, green, or blue are called quarks, and those

without are called leptons. Both quarks and leptons have six flavors as shown in

table (2.1). Quarks are either up-like with electric charges +2/3, or down-like with

−1/3. Up-like and down-like quarks are each arranged in ascending order of mass, each

forming columns in table (2.1). Leptons are either electron-like with electric charges

−1, or neutrino-like with 0. Electron-like and neutrino-like quarks are each arranged in

ascending order of mass, each forming columns in table (2.1). Each row in table (2.1)

then forms a generation of SM fermions. [7]

At high energies, each SM fermion is either right handed if its intrinisic and orbital

angular momenta are parallel, and left handed if antiparallel. However, right-handed

neutrinos have not yet been observed. The handedness of a fermion is described by a

charge-like quantum number T3, the third component of weak isospin T. Right handed

fermions form weak isospin singlets T = 0. Left handed fermions form weak isospin

doublets T = 1/2, with components T3 = +1/2 for up-like quarks and neutrino-like

leptons, while T3 = −1/2 for down-like quarks and electron-like leptons. [7]

Quarks form colorless bound states called hadrons with the exception of top quarks,

whose lifetimes are too short to form bound states. Hadron types are determined by

their valence quarks. Hadrons with three valence quarks are composite fermions called

baryons. Hadrons with one quark antiquark valence pair are composite bosons called

mesons. Hadrons are assigned charge-like quantum numbers called baryon numbers B :

baryons have B = 1, anti-baryons B = −1, and all other particles have B = 0. Leptons

are given charge-like quantum numbers called lepton numbers L. Each generation of

leptons is given a separate lepton number. [7]

The SM interactions are electromagnetic, strong, and weak. Each of these are mediated

by spin 1 parity odd bosons gauge bosons. The SM gauge bosons are photons, gluons,

and weak bosons. Photons mediate electromagnetic interactions between electrically

charged particles. Photons are electrically neutral and thus do not self-interact. Gluons

mediate strong interactions between color charged particles. Gluons are color charged

and thus do self-interact. Weak bosons W± and Z mediate weak interactions between

SM fermions and among themselves. Z bosons mediate interactions between all SM

fermions. W bosons mediate interactions between electron-like and their neutrino-like

leptons or between up-like and down-like quarks. W bosons interact among themselves

and with Z bosons and photons. Weak interactions conserve weak isospin. [7]
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Quarks Leptons
Name Up (u) Down (d) Electron (e) Neutrino (νe)
Mass 2.16 MeV 4.67 MeV 0.511 MeV < 0.8 eV
Charge +2/3 −1/3 −1 0
Name Charm (c) Strange (s) Muon (µ) Neutrino (νµ)
Mass 1.27 GeV 93.4 MeV 106 MeV < 0.19 eV
Charge +2/3 −1/3 −1 0
Name Top (t) Bottom (b) Muon (τ) Neutrino (ντ )
Mass 173 GeV 4.18 GeV 1.78 GeV < 18.2 MeV
Charge +2/3 −1/3 −1 0

Table 2.1: The masses and the charges of all SM fermions. The values are obtained
from the particle listings in the Particle Data Group. All SM fermions have spin 1/2.
[12]

The SM bosons are either gauge bosons or Higgs bosons, as summarized in table (2.2).

Higgs bosons are spin 0 parity even bosons responsible for particle mass generation,

interacting only with massive particles. Higgs bosons are massive and thus self interact.

Higgs bosons also interact with all fermions and weak bosons but not with photons

and gluons, which are massless.

Electric charges Q, baryon numbers B, and lepton numbers L are conserved in all SM

interactions. However, particle four momenta are not always conserved due to quantum

fluctuations prescribed by the Heisenberg uncertainty principle. Particles that do not

satisfy the relativistic dispersion relations are said to be off-shell. Particles that do are

said to be on-shell. [7]

Gauge Scalar
Name Photon (γ) Gluon (g) W± Boson Z Boson Higgs Boson (H)
Mass 0 GeV 0 GeV 80.4 GeV 91.2 GeV 125 GeV
Charge 0 0 ±1 0 0

Table 2.2: The masses and the charges of all SM bosons. The values are obtained from
the particle listings in the Particle Data Group. The gauge bosons have spin 1, while
the scalar bosons have spin 0. [12]

The second objective of this subsection is to outline the construction of the SM from

QFT and GT. First, impose local gauge invariance on Dirac Lagrangians of free spin 1/2

spinor fields corresponding to SM fermions. This introduces massless vector fields for

each gauge group generators. The massless vector fields contribute additional terms to

the Lagrangian such that the new Lagrangian is gauge invariant. Such terms represent

interactions mediated by the massless vector fields between charged fields. The charged

fields are just the spinor fields if the gauge group is abelian. The charged fields also

include the massless vector fields if the gauge group is non-abelian. The charged fields

interact by coupling to the massless vector fields, and the interaction strengths are
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defined by parameters called coupling constants. Certain massless vector fields become

massive upon spontaneous symmetry breaking (SSB), where the vacuum state breaks

the usual gauge invariance. SSB is implemented by scalar fields called Higgs fields

corresponding to Higgs bosons. The vector fields correctly correspond to the SM gauge

bosons upon SSB. [15]

The resulting Lagrangian is used to find scattering matrix elements, which can be

used to calculate observables. Therefore, if the scattering matrix elements diverge to

infinity, the Lagrangian must be regularized. This involves introducing cutoff energies,

which define the energy scales at which such a Lagrangian is valid. Such is possible

because the Lagrangian is not yet written in terms of physical quantities. Rewriting

the Lagrangian in terms of physical quantities is called renormalization, which involves

redefining the fields and modifying the coupling constants between them such that the

observables remain unaffected. Upon renormalization, the coupling constant acquires

dependence on energy scales: physically, this reflects the variation of measured charges

of particles with distance, which occurs due to vacuum polarization. [15] Furthermore,

observables such as decay widths and cross sections can be computed perturbatively

in powers of the coupling constant, matching experimental results with high accuracy.

This altogether establishes the SM as a SU(3)C×SU(2)L×U(1)Y GT of quantum fields,

where C denotes the color charges, L the left handed fermions, and Y := 2(Q − T3)

the weak hypercharges. There are three parts to the SM Lagrangian. The first part

is the Lagrangian for quantum chromodynamics (QCD), the SU(3)C GT of strong

interactions. The second part is the Lagrangian for electroweak theory, the SU(2)L ×
U(1)Y GT of electroweak interactions. The third part is the Lagrangian for the Higgs

sector, responsible for particle mass generation. Concepts needed for this thesis are to

be further elaborated in the following subsections. [15]

2.1.2 Quantum Electrodynamics

Consider a free spin 1/2 spinor field ψ = ψ(x) with mass m defined on spacetime with

coordinates xµ = (t, x⃗), then its Poincaré invariant Lagrangian is given by the Dirac

Lagrangian of the form:

LD = ψ̄(iγµ∂µ −m)ψ, (2.1)

where the partial derivatives are with respect to xµ, and Einstein notations are assumed.

ψ̄ := ψ†γ0 is the anti-spinor, and the γ matrices satisfy the Clifford algebra:

{γµ, γν} = 2ηµν , (2.2)
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where ηµν = diag (1,−1,−1,−1) is the Minkowski metric. The γ matrices in the Dirac

representation are:

γ0 =

(
12 0

0 12

)
, γi =

(
0 σi

−σi 0

)
, (2.3)

where 1N is the N × N identity matrix and σi the Pauli matrices for i = 1, 2, 3. [13]

Applying the Euler Lagrange equations gives the Dirac equation:

(iγµ∂µ −m)ψ = 0, (2.4)

which has general solutions of the form:

ψ(x) =

∫
d3p⃗

(2π)32E(p⃗)

∑
s=1,2

us(p⃗)as(p⃗)e
−ipµxµ

+ vs(p⃗)b
†
s(p⃗)e

ipµxµ

, (2.5)

where E(p⃗) =
√

p⃗2 +m2, and pµ = (E, p⃗) is the four momentum. as(p⃗) and b
†
s(p⃗) are

creation operators for spinors us(p⃗) and anti-spinors vs(p⃗) respectively, each satisfying

the anti-commutation relations

{as(p⃗), a†s′(p⃗
′)} = {bs(p⃗), b†s′(p⃗

′)} = (2π)32E(p⃗)δss′δ
(3)(p⃗′ − p⃗). (2.6)

Next, consider the behavior of LD under U(1) gauge transformations. Parametrizing

U ∈ U(1) as U = eiθ with θ ∈ R its phase shows that LD is invariant under global

U(1) transformations on ψ :

ψ → ψ′ = ψeiθ =⇒ LD → L′
D = ψ̄′(iγµ∂µ −m)ψ′ = LD (2.7)

but not under local U(1) transformations on ψ :

ψ → ψ′ = ψeiθ(x) =⇒ LD → L′
D = ψ̄′(iγµ∂µ −m)ψ′ = (1 + i∂µθ(x))LD. (2.8)

However, local U(1) gauge invariance can be imposed onto LD by replacing the partial

derivatives ∂µ with the U(1) covariant derivatives Dµ := ∂µ + ieAµ, where e is called

the coupling strength of ψ to Aµ, and Aµ = Aµ(x) is a vector field that transforms

under local U(1) gauge transformations as

Aµ → A′
µ = Aµ −

1

e
∂µθ(x). (2.9)

Aµ with mass M then contributes additional terms given by the Proca Lagrangian:

LP = −1

4
FµνF

µν +
1

2
M2AµA

µ, (2.10)
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where Fµν := (ie)−1[Dµ, Dν ] = ∂µAν − ∂νAµ is the Aµ field strength tensor. The first

term is invariant under local U(1) gauge transformations defined in equation (2.9).

However, the second term is not. Therefore, LP is gauge invariant only if M = 0. [13]

Replacing the partial derivatives ∂µ with the covariant derivatives Dµ = ∂µ+ ieAµ and

introducing a massless vector field Aµ invariant under local U(1) gauge transformations

therefore give the Lagrangian for quantum electrodynamics (QED):

LQED = ψ̄(iγµDµ −m)ψ + LP = ψ̄(iγµ∂µ −m)ψ + eψ̄γµAµψ − 1

4
FµνF

µν . (2.11)

The first term still represents the free propagation of spin 1/2 fermions ψ with mass m.

The physical meaning of e and Aµ can be understood by using the Noether theorem and

referring back to the Lagrangian for classical electrodynamics. By Noether’s theorem,

U(1) transformations on ψ yield the conserved current jµ = eψ̄γµψ with the conserved

chargeQ :=
∫
j0 d3x⃗ = e, which can be computed using equations (2.5) and (2.6). Since

the last two terms in LQED exactly match the Lagrangian for classical electrodynamics,

e can be interpreted as the electric charge of ψ and Aµ the fields for photons. Therefore,

the second term represents the tree level interactions between ψ with electric charge

e and Aµ. The third term represents the free propagation of photons. Therefore, it is

justified to call equation (2.11) the Lagrangian for QED and to denote its gauge group

as U(1)Q. Note that Aµ does not self interact since U(1)Q is abelian. Observables in

QED processes are computed perturbatively in powers of the QED coupling constant

αQ ∝ e2. Since αQ << 1, QED processes can be predicted with high accuracy. [13]

2.1.3 Quantum Chromodynamics

QCD is the SU(3)C GT of strong interactions, where C denotes color charges R,G,B.

There are two kinds of fields with color charges. One consists of spin 1/2 spinor fields

ψj
i with masses mi corresponding to quarks for each flavors j = 1, · · · , 6 and colors

j = R,G,B. These form SU(3)C triplets ψi = (ψR
i , ψ

G
i , ψ

B
i ). The other kind consists of

massless vector fields Gk
µ corresponding to gluons for each SU(3)C generator labelled

by k = 1, · · · , 8 and given by the Gell-Mann matrices λk. G
k
µ’s mediate interactions

between color charged fields, and the color charged fields interact with strong coupling

strengths gS ∈ R. The QCD Lagrangian LQCD is given by:

LQCD =
6∑

i=1

ψ̄i(iγ
µDµ −mi)ψi −

1

4

8∑
k=1

Gk
µνG

kµν , (2.12)

where Dµ := 13∂µ + igSTkG
k
µ is the SU(3)C covariant derivative with Tk := λk/2, and

Gk
µν := (igSTk)

−1[Dµ, Dν ] = ∂µG
k
ν − ∂νG

k
µ − gSf

k
ijG

i
µG

j
ν is the Gk

µ field strength tensor

with fk
ij = −2iTr(T k[Ti, Tj]) the SU(3) structure constants. The first term in equation
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(2.12) represents the free propagation of quarks. The second term represents the free

propagation of gluons. The Gk
µ’s transform under local SU(3)C gauge transformations

such that LQCD is left invariant. [13]

Only some observables in QCD processes can be computed perturbatively in powers of

the strong coupling constant αS ∝ g2S. This is because of asymptotic freedom, where

coupling constants decrease asymptotically with distance: at low energies, αS >> 1

and thus the perturbative approach fails. This results in the confinement of quarks

and gluons into colorless bound states called hadrons, and the formation of hadrons

from quarks and gluons is called hadronization. Therefore, experimental approaches

such as the parton model are required. Partons are point-like constituents of hadrons.

Since partons are not detectable, they are described with the parton density function

(PDF), defined as the probability density of finding a parton with a specific fraction

of the parent hadron’s longitudinal momentum at a certain resolution scale. PDFs are

found by fitting into experimental data from high energy hadron collisions. [12]

In high energy hadron collisions, partons quickly hadronize into stable particles, which

further decay into other stable particles. Such stable particles are detectable, leaving

narrow cones of particle tracks in the detectors. These narrow cones of stable particles

with partons as their vertices are called jets. [12]

2.1.4 The Electroweak Theory

Electromagnetic and weak interactions are unified into electroweak interactions at high

energies. The electroweak theory is the SU(2)L×U(1)Y GT of electroweak interactions,

where L and Y denote fields with weak isospins and weak hypercharges respectively.

There are two kinds of fields with weak isospins. One kind consists of left handed spin

1/2 spinor fields corresponding to the left handed SM fermions. These form SU(2)L

doublets Li
L for leptons and Qi

L for quarks with weak isospin T = 1/2, defined as:

Li
L =

{( νeL

eL

)
,

(
νµL

µL

)
,

(
ντL

τL

)}
, Qi

L =
{( uL

dL

)
,

(
cL

sL

)
,

(
tL

bL

)}
(2.13)

for generation indices i = 1, 2, 3. [15] The right handed spin 1/2 spinor fields corre-

sponding to the right handed SM fermions form SU(2)L singlets defined as:

eiR = {eR, µR, τR}, uiR = {uR, cR, tR}, diR = {dR, sR, bR}. (2.14)

There are no fields corresponding to right handed neutrinos, which have not yet been

observed. The other kind of fields with weak isospins consists of massless vector

fields W k
µ corresponding to electroweak bosons for each SU(2)L generators labelled

k = 1, 2, 3 and given by the Pauli matrices τk. W
k
µ ’s mediate electroweak interactions
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between fields with weak isosopins, and the fields with weak isosopins couple to the

W k
µ ’s with coupling strengths g ∈ R. [15]

On the other hand, all fields in equations (2.13) and (2.14) have weak charges Y. They

couple to a massless vector field Bµ corresponding to another electroweak boson with

coupling strengths g′ ∈ R, and Bµ mediates electroweak interactions between them by

implementing local U(1)Y gauge transformations. Since U(1)Y is abelian, Bµ does not

self interact and corresponds to another electroweak boson.

Then theW k
µ ’s and Bµ contributes two Lagrangians. The first is the kinetic Lagrangian

LK given by:

LK = −1

4

3∑
k=1

W k
µW

kµ − 1

4
BµB

µ, (2.15)

representing the free propagation of electroweak bosons. The second is the interaction

Lagrangian LI given by:

LI = −
3∑

i=1

i
(
L̄i
Lγ

µDµL
i
L+Q̄

i
Lγ

µDµQ
i
L+ē

i
Rγ

µDµe
i
R+ū

i
Rγ

µDµu
i
R+d̄

i
Rγ

µDµd
i
R

)
, (2.16)

where Dµ = ∂µ − igτkW
k
µ + ig′Y Bµ is the SU(2)L covariant derivative with τi = σi/2.

This represents the electroweak interactions between electroweak bosons and all SM

fermions. W k
µ ’s and Bµ transform under local SU(2)L × U(1)Y transformations such

that LK and LI are left invariant. [15]

However, electroweak bosons are different from weak bosons and photons: electroweak

bosons are massless but weak bosons are not. This necessitates the introduction of

Higgs fields H := H(x) defined as the SU(2)L doublet of two complex scalar fields:

H =

(
Hα

Hβ

)
=

1√
2

(
Hα

1 + iHα
2

Hβ
1 + iHβ

2

)
(2.17)

responsible for the weak boson masses. Higgs fields contribute two more Lagrangians.

One is from SSB, where the vacuum state breaks the usual gauge invariance. Such is

given by:

LSSB = (DµH)†(DµH)− V (H), (2.18)

where Dµ is the SU(2)L covariant derivative. The first term represents the kinetic term

for H, and the second represents the potential term. The simplest potential in which

SSB occurs takes the form of the Mexican hat shown in figure (2.1):

V (H) = −µ2|H|2 + λ|H|4, (2.19)

where µ2 > 0 relates to the Higgs mass, and λ > 0 to the Higgs self interactions.
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Minimizing V (H) with respect to H gives the vacuum manifold:

M = {H ∈ C2 : 2 ⟨0|H†H|0⟩ = v2}/(SU(2)L × U(1)Y ), (2.20)

where |0⟩ is the vacuum state, and 0 ̸= v := µ/
√
λ is the vacuum expectation value.

[15]

Re(H)
Im(H)

V (H)
False

True

Figure 2.1: The simplest Higgs potential. The false vacuum is located at the local
minimum, while the true vacuum is located at the global minimum. H transitions from
the false vacuum to the true vacuum upon SSB. This demonstrates the metastability
of the electroweak vacuum.

The ground state Higgs field can then be written in the unitary gauge, defined as:

⟨0|H|0⟩ = 1√
2

(
0

v

)
, (2.21)

where the SU(2)L phase factor eiτkθ
k
is scaled away using the SU(2)L gauge invariance

of H and θk’s correspond to Goldstone bosons for k = 1, 2, 3. There are precisely three

θk’s due to the Nambu-Goldstone theorem, which says that there is a massless spin

0 boson called the Goldstone boson for every spontaneously broken global continuous

symmetry. Specifically, there is no τ ∈ SU(2)L such that τ ⟨0|H|0⟩ = 0 since v ̸= 0,

and this breaks the SU(2)L gauge invariance. Therefore, only one of the four SU(2)L×
U(1)Y generators remains unbroken. The unbroken generator Q satisfies Q ⟨0|H|0⟩ = 0

and can be written in the unitary gauge as:

Q =

(
1 0

0 0

)
. (2.22)

This shows that v ̸= 0 results in the SSB of SU(2)L ×U(1)Y into U(1)Q. Furthermore,

the vector fields upon SSB can be written as linearly independent superpositions:

W±
µ =

W 1
µ ∓ iW 2

µ√
2

, Zµ =
gW 3

µ − g′Bµ√
g2 + g′2

, Aµ =
gBµ + g′W 3

µ√
g2 + g′2

. (2.23)
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W±
µ and Zµ corresponding to weak bosons absorb θk’s as longitudinal polarizations

and thus become massive through a process called the Higgs mechanism. On the other

hand, the unbroken gauge invariance yields a massless vector field Aµ corresponding

to photons and thus Q represents the electric charge in the unitary gauge.

Since the three SU(2)L generators are broken, the Higgs field in equation (2.17) now

has only one physical degree of freedom, which can be represented as perturbations

h(x) around the vacuum:

H =
1√
2

(
0

v + h(x)

)
. (2.24)

Physically, h(x) represents the Higgs boson. Substituting equation (2.24) into equation

(2.19) gives the Higgs potential:

V (h) = µ2h2 +
√
λµh3 +

λ

4
h4, (2.25)

and reading off the h2 term gives the mass of the Higgs boson MH =
√
2µ2 =

√
2λv.

Higher order terms represent Higgs self interactions shown in figure (2.2).

h∗

h

h

h

h

h

h

Figure 2.2: Feynman diagrams for Higgs self interactions. On the left is the trilinear
coupling, and on the right is the quadrilinear coupling.

Furthermore, substituting equation (2.23) into equation (2.18) and collecting terms

quadratic in the vector fields give:

L(2)
SSB =

1

2
g2v2W+

µ W
−µ +

1

8
(g2 + g′2)v2ZµZ

µ, (2.26)

from which the mass terms can be read off as:

MW± =
1

2
gv, MZ0 =

1

2

√
g2 + g′2v, MA = 0. (2.27)

This matches the observed masses forW±
µ and Aµ. There are more terms in LSSB other

than L(2)
SSB, representing electroweak interactions upon SSB.

However, the Higgs potential in equation (2.19) is only the simplest among many

theoretically consistent ones. Since the vacuum expectation value is already measured

to be v ≈ 246 GeV, corrections to equation (2.19) or extensions to the SM would be
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necessary if the measurements for λ do not satisfy mH =
√
2λv from equation (2.25).

Higgs fields also generate spinor field masses through Yukawa interactions, contributing

another Lagrangian:

LY = −Y e
ijĒ

i
LHe

j
R − Y u

ij Q̄
i
LH̃u

j
R − Y d

ijQ̄
i
LHd

j
R + h.c., (2.28)

where tildes denote charge conjugation H̃ = iσ2H
∗, and +h.c. consists of Hermitian

conjugate terms. Y e, Y u, Y d are Yukawa matrices, which have entries given by coupling

strengths of electron-like, up-like, and down-like spinor fields respectively to Higgs

fields. Yukawa matrices for neutrinos are excluded since right handed neutrinos have

not been observed yet. Yukawa matrix entries relate to fermion masses, which become

more conspicuous upon SSB. [15]

Upon SSB, equation (2.28) becomes:

LY = − v√
2

∑
f

f̄LY
ffR + h.c., (2.29)

where f = e, u, d denotes electron-like, up-like, down-like spinor fields respectively.

Since Y fY f† is Hermitian, there exist diagonal matrices M f and unitary matrices U f

such that Y fY f† = U f (M f )2U f† by the spectral decomposition theorem. This implies

that Y f can be written as Y f = U fM fKf† for any unitary matrixKf . After performing

the change of basis fL → U ffL and fR → KffR, equation (2.29) can be written as:

LY = −
∑
f

mf f̄LfR + h.c., (2.30)

wheremf,j = v√
2
M f,jj is the mass of the fermion of type f = e, u, d in generation j. This

demonstrates how Higgs fields generate particle masses. Altogether, the electroweak

Lagrangian LEW can be written as:

LEW = LK + LI + LSSB + LY , (2.31)

where the exact forms of each terms change upon SSB. The SM Lagrangian can then

be written as:

LSM = LEW + LQCD +
6∑

i=1

miψ̄iψi. (2.32)

The last term accounts for the quark mass terms in LQCD, which have already been

included in LY . [15]
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2.2 High Energy Collisions

Many aspects of the Standard Model such as the existence of a Higgs boson has been

precisely tested at the Large Hadron Collider (LHC), a hadron to hadron synchrotron-

type collider operated by the European Organization for Nuclear Research (CERN) at

energy scales of TeV. With 27 kilometers in radius, the LHC goes through multiple

detectors, including A Toroidal LHC ApparatuS (ATLAS). The ATLAS detector is

cylindrical in shape, with multiple layers that each measure different observables needed

to analyze high energy collisions. [4]

This section starts with explaining observables to be measured from particle colliders.

General components of particle detectors as well as their roles in measuring necessary

observables are then presented, with more focus on those of the ATLAS detector. This

section concludes with describing how such measurements are used for analysis.

2.2.1 Collider Observables

High energy collisions are subject to special relativity. In special relativity, Lorentz

transformations Λν
µ are antisymmetric tensors that map four vectors vµ in one reference

frame to four vectors v′ν = Λν
µv

µ in another reference frame such that their Minkowski

norms ||v|| := ηµνv
µvν = vµv

µ are left invariant, with ηµν the Minkowski metric. This

implies that ηµ′ν′ = (ΛT )µµ′ηµνΛ
ν
ν′ . Lorentz transformations include rotations in three

spatial dimensions and the rotation-free ones called boosts.

Furthermore, Λµ
ν = Λµ

ν (β⃗) can be parametrized by boost vectors β⃗, defined as:

β⃗ :=
p⃗

E
, (2.33)

where p⃗ is the momentum and E is the energy of the particle. Closely related to β⃗ are

boost factors γ, defined as:

γ :=
1√

1− β⃗
2
=

E

M
, (2.34)

where M := ||p|| =
√
E2 − p⃗2 is the mass and pµ = (E, p⃗) is the four momentum of

the particle. [7] Lorentz transformations on pµ = (E, p⃗) in one reference frame yield

p′µ = (E, p⃗′) in another given by:

p⃗′ = p⃗+ γ
(γβ⃗ · p⃗
1 + γ

+ E
)
β⃗, E ′ = γE + γβ⃗ · p⃗, (2.35)

demonstrating that γ parametrizes the mixing between the space-like and the time-like

components of four vectors upon Lorentz transformations. [12]
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γ can be written in terms of rapidity w, defined as:

w := cosh−1 γ = tanh−1 |β⃗| = 1

2
ln
E + |p⃗|
E − |p⃗|

. (2.36)

The rapidity difference ∆w between two particles is invariant under longitudinal boosts,

along the axis ẑ of particle beams. Similarly, the beam rapidity wz along ẑ, defined as:

wz := tanh−1 βz =
1

2
ln
E + pz
E − pz

, (2.37)

is also invariant under longitudinal boosts. [12] The transverse momentum pT perpen-

dicular to ẑ and the polar angle ϕ in the transverse plane are both invariant under

longitudinal boosts since pT and ϕ are defined on the plane perpendicular to ẑ. The

components of pµ can then be written as:

px = pT cosϕ, py = pT sinϕ, pz =MT sinhwz, E =MT coshwz, (2.38)

where MT =
√
M2 + p2T is the transverse mass. [12] However, this is not what particle

detectors can measure due to the relativistic speeds involved with high energy collisions.

Instead of wz, the detectors measure the pseudorapidity η, defined as:

η := − ln tan
θ

2
, (2.39)

where θ is the angle between pz and ẑ. Taking the relativistic limit p >> M in equation

(2.37) and defining cos θ := pz/|p⃗| yield η in equation (2.39). η is invariant under

longitudinal boosts since wz is too. Applying p >> M onto equation (2.38) also yields:

px = pT cosϕ, py = pT sinϕ, pz ≈MT sinh η, E ≈ E. (2.40)

The detectors measure pT , ϕ, η, E for all detectable particles. These kinematic variables

are then used to calculate the pµ’s to analyze high energy collisions. Such analysis is

facilitated by introducing the angular distance ∆R, defined as:

∆R :=
√

(∆ϕ)2 + (∆η)2, (2.41)

which is also invariant under longitudinal boosts. Specifically, this is useful in particular

for jet reconstruction at hadron colliders, where the parent jet is deduced from its

daughters by four momenta conservation. [12]

Other than these kinematic variables, particle detectors also measure decay widths and

cross sections. The decay width Γ of a particle is the probability per unit time that

the particle decays and has the units of energy in natural units. Γ defines the particle



16 CHAPTER 2. PARTICLE PHYSICS

lifetime τ := 1/Γ, defined as the time taken for the number of such particles to decay

by a factor of e. Γ also defines the branching ratio Bi := Γi/(
∑

k Γk) of a particular

decay mode i of the particle. Bi can be seen as the likelihood that the particle takes

the decay mode i. On the other hand, the cross section σ in a collision is the area of

impact needed for a process to occur and has the units of barns b = 10−28m2 in SI

units. σ can be seen as a measure of the probability that a particular process occurs

upon collisions between two particles. Both Γ and σ are dependent on energy scales.

2.2.2 Particle Detection

The first objective of this subsection is to outline the observables measured at each

layers of the ATLAS detector. Particles produced in high energy collisions at the LHC

pipes first reach the inner detector, which measures the positions and the momenta

of electrically charged particles. The inner detector has three main species of layers.

The innermost layers constitute the pixel detector, which records the initial positions

of the charged particles. The surrounding layers constitute the semiconductor tracker,

which records the trajectories of the charged particles. Semiconductors are used to

minimize the energy loss and to maximize the detector sensitivity. The outermost layers

constitute the transition radiation tracker, which records the outgoing particle types.

The toroidal magnet surrounding the inner detector helps the tracking of electrically

charged particles. [4]

Particles then reach the calorimeter, which measure their energies. The calorimeter has

two main species of layers. The inner layers constitute the liquid Argon calorimeter,

which measures the energies of electrons, photons, and hadrons. Sheets of heavy metal

are inserted within these layers to absorb incoming particles, creating new particles

with lower energies. These particles then ionize the liquid argon between these layers.

The resultant electric currents are then used to determine the energies of the original

particles. The outer layers constitute the tile calorimeter, which measures the energies

of remaining hadronic particles. Within the tile calorimeter are layers of steel that

produces new particles, and layers of scintillators that produce photons with intensities

proportional to the energies of the original particles. [4]

The calorimeter can stop almost all known particles except muons and neutrinos, which

then reach the muon spectrometer. The muon spectrometer has five kinds of detectors.

One consists of monitored drift tubes, made of aluminum and filled with gas. Muons

passing through the tubes displace electrons from the gas, producing electric signals.

These signals are then used to record the muon trajectories. The other four kinds are

collectively referred to as fast response detectors and consist of resistive plate chambers,

thin gap chambers, small strip thin gap chambers, and micromegas detectors. The first

two provide muon triggers. The last two are used in high intensity LHC collisions to
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quickly detect muons with high precision. The fast response detectors altogether give

an estimate of the muon momenta. The overall structure of the ATLAS detector is

summarized in figure (2.3). [4]

Figure 2.3: A schematic cross section through the ATLAS detector, highlighting its
main components.

There are particles that cannot be detected. For example, neutrinos cannot be detected,

and their kinematics must be inferred from transverse momenta and energy missing

from the total. Quarks and gluons cannot be detected either because they hadronize

before leaving any tracks in detectors. Their behavior can only be modeled using PDFs.

There are also particles like tauons, whose lifetimes are too short to be detected. Such

particles must be reconstructed from their daughters. [12]

2.2.3 Breit Wigner Distributions

Reconstructing an unstable particle from its daughters in high energy collisions yields a

mass distribution that follows the Breit Wigner distribution (BWD) with a probability

density function of the form:

fBW (E) =
K

(E2 −M2)2 +M2Γ2
, (2.42)
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where E is the energy scale, M is the unstable particle mass, and Γ is its decay width.

K is a proportionality constant of the form:

K ∝ µMΓ√
µ+M2

,

where µ =
√
M2(M2 + Γ2). [5] That the mass distributions of unstable particles follow

the BWD can be derived from their S matrix elements, which take the form:

M ∝
√
K

(E2 −M2) + iMΓ
.

Equation (2.42) reflects the idea that an unstable particle with mass M can be seen

as a resonance peaking at E = M with a natural decay width Γ. However, in high

energy collision experiments, particle beams produce such resonances with uncertainties

around the peaks E = M. Such uncertainties follow Gaussian distributions and can

be accounted for in equation (2.42) using Gaussian BWDs (GBWDs), with probability

density functions of the form [5]:

fGBW (E) =

∫ ∞

−∞

K

(E ′2 −M2)2 +M2Γ2

1

σ
√
2π

exp
(E ′ − E)2

−2σ2
dE ′. (2.43)



Chapter 3

Neural Networks

In biological nervous systems, electric signals enter the dendrites through synapses and

travel to the neuron cell body, which then processes them. If the output signals exceed

a certain threshold, the neuron cell body sends them to the axons, which connect

to other neurons through synapses. Nervous systems learn by adjusting the coupling

strengths between neurons. Neural networks (NNs) are idealizations of these biological

observations. For example, biological neuron cells and coupling strengths between them

correspond to activation functions and weights for artificial neurons respectively. [11]

NN based machine learning, or deep learning, has been increasingly successful in both

identifying patterns in given data and generalizing them to unseen data. There are

many kinds of NNs, each specialized for different tasks. For example, feed forward NNs

(FFNNs) are useful for classifying input data. There are also convolutional NNs for

image recognition, recurrent NNs for language processing, and generative adversarial

NNs for generating output data. All of these are made possible by enhanced graphical

processing units, which can simultaneously perform multiple tensor computations in

high dimensional phase spaces. Increased availability of data also played a part. [11]

This chapter elaborates on the general structure of NNs and their learning algorithms,

with more focus on FFNNs. Common problems in their learning processes such as

vanishing gradients and overfitting are also outlined, along with possible solutions such

as regularization and hyperparameter tuning.

3.1 Structure

NNs are graphs with neurons as their nodes. Each neuron i = 1, · · · ,M at a discrete

time step t takes input signals sj(t) for j = 1, · · · , N with weights wij and activates

only when the weighted output
∑M

j=1wijsj(t) exceeds its bias bj as prescribed by its

19
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activation function fi, which outputs:

si(t+ 1) = fi

( N∑
j=1

wijsj(t)− bi

)
. (3.1)

These outputs are then sent to other neurons as inputs until reaching the neurons that

output the final signals. Succeeding neurons intake with their own weights the outputs

from their predecessors. Therefore, the weights of each neuron represent the coupling

strengths between neurons. NNs learn by updating these weights, which amounts to

optimization in weight spaces. The agent must take additional measures to ensure

that the NNs not only learn patterns in given datasets but also generalize to unseen

datasets. Such is called training. [11]

s
(t)
1

s
(t)
2

s
(t)
3

s
(t)
N

s
(t+1)
i

w1jw1j

w2jw2j

w3jw3j

wNjwNj...

= fi

(∑N
j=1wijsj(t)− bi

)

Figure 3.1: An illustration of how a neuron takes inputs s1(t), · · · , sN(t) at a time step
t and outputs si(t+1) at the next time step t+1 subject to the activation function fi
and the bias bi.

Non-interacting neurons that share both inputs and output directions form layers,

which come in three general kinds: the input layer that intakes raw data, the hidden

layers that process the data, and the output layer that outputs the results. Layers

closer to the output layer are said to be deeper and are schematically placed toward

the right. NNs with hidden layers are called deep neural networks (DNNs). [11]

DNNs structured sequentially in terms of layers are called FFNNs. This means that all

connections between neurons are one-way: neurons can only feed their outputs forward,

only to the neurons in the immediately right layer. There are no connections that skip

layers nor those that point backwards. If all signals sj(t) through a layer in a DNN are

updated simultaneously, they can instead be denoted as slj, where l is the layer number

counting from the left. [11]
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Figure 3.2: An example of a fully connected feed forward neural network. Each node
is a neuron. The j-th neuron in the l-th layer is denoted by its output slj.

3.2 Activation Functions

Activation functions are chosen to be non-linear to produce a more complex variety of

outputs. Otherwise, the output would just be a different representation of the inputs

since compositions of linear functions are still linear. For example, consider a sample

with M features and a NN that takes each of the features as input signals. Running

S samples through the NN with a linear function gives a system of S linear equations

with M input variables. If S > M, then this system of linear equations is linearly

dependent, implying that there are no input variables that can produce such outputs

if the activation functions are linear. If the activation functions are non-linear, such

outputs can be produced even when S > M. [11]

This subsection discusses two categories of activation functions. The first includes

Rectified Linear Units (ReLUs), defined as

ReLU(x) = max(0, x), (3.2)

which are commonly chosen for the neurons in DNNs. Note that ReLUs vanish for

negative arguments, so not all neurons are activated simultaneously. In addition, both

ReLUs and their derivatives are monotonic, helping the output converge. For these

reasons, ReLUs are computationally efficient and are thus preferred in DNNs. However,

their insensitivity to negative arguments could result in dead neurons, which return

nothing but zero. Dead neurons are problematic for the whole NN because they no

longer participate in the learning process, affecting all neurons connected to them. Such

unwanted stagnation in the learning process is called the vanishing gradient problem.
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This can be dealt with Leaky ReLUs defined as:

LReLU(x) = max(αx, x), (3.3)

where 0 < α < 1 is the leakage constant to be initialized by the agent. Nonetheless,

there are cases where even Leaky ReLUs fail to respond correctly to negative arguments.

[11]

The second category of activation functions includes Sigmoid functions, defined as

σ(x) =
1

1 + e−x
, (3.4)

which are commonly chosen for the output neurons in binary classification problems

because their outputs can be interpreted as the probabilities of their inputs belonging

to one out of the two classes, as per σ : (−∞,∞) → (0, 1). They are monotonic, with

the derivatives

σ′(x) = σ(x)(1− σ(x)), (3.5)

which are not monotonic and peak at σ′(0) = 1
4
. Their outputs do not converge as

fast as those of ReLUs due to higher computational complexity. Furthermore, their

asymptotic behaviors at limx→∞ σ(x) = 1 and limx→−∞ σ(x) = 0 result in saturated

neurons, which cease to noticeably update the inputs to the subsequent neurons. This

is another case of the vanishing gradient problem. [11]

As generalizations of Sigmoid functions, Softmax functions defined as

σ(x1, · · · , xN)j =
exj∑K
k=1 e

xk

(3.6)

for j = 1, · · · , K are preferred activation functions for output neurons in classification

problems with K classes. Their outputs can also be interpreted as the probabilities

of their inputs belonging to each of the multiple classes. Softmax functions may also

suffer vanishing gradient problems. [11]

3.3 Weights and Biases

As mentioned in section 3.1, NNs learn by updating their weights. One way NNs use

to update weights is backpropagation, which corresponds to learning by trial and error

in biological nervous systems. Backpropagation can be implemented through gradient

descent, while there are other ways to do so. Subsection 3.3.1 explains how weights

and biases are initialized in general. Subsection 3.3.2 discusses how backpropagation

is implemented particularly for the supervised learning of DNNs.
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3.3.1 Initialization

Weights must be initialized first so that the NN updates them as it learns. Optimal

initialization methods depend on activation functions. For example, He-initialization

works best with ReLU variants: the weight distribution W for a NN with M input

neurons is initialized to follow a normal distribution

W ∼ N
(
0,

2

M

)
, (3.7)

with mean 0 and standard deviation 2
M
. On the other hand, Xavier initialization works

best with Sigmoid variants: the weight distribution W for a NN withM input neurons

and N output neurons is initialized to follow a normal distribution

W ∼ N
(
0,

2

M +N

)
, (3.8)

with mean 0 and standard deviation 2
M+N

. In contrast, biases are initialized to zeros

or small random constants in practice. [2]

3.3.2 Backpropagation

Labeled data are raw data pre-identified by the agent to help models produce correct

outputs, and these correct outputs are called targets. Supervised learning (SL) is

learning based on labeled data. In particular, SL for DNNs is about minimizing errors

between the outputs and their targets, and measures for these errors are loss functions.

Choosing a particular loss function among the many depends on the task at hand.

Commonly used is the mean squared loss (MSL), defined as

LMSL =
1

N

N∑
i=1

|Oi − Ti|2, (3.9)

where Oi for i = 1, · · · , N is the output from each of the N output neurons, and Ti is

the corresponding target. Since each Oi is a function of weights and biases, L is too.

As demonstrated, loss functions are generally non-negative functions of the outputs

and are zero only if each output matches its targets. Since all outputs are functions

of weights and biases, loss functions are too. Minimizing a loss function is therefore

equivalent to updating weights and biases accordingly. Weights and biases are updated

by backpropagation, particularly in SL: NNs test how close their outputs with current

weights are to their targets using loss functions, and then update their weights and

biases until the losses are minimized. backpropagation is commonly implemented by

gradient descent (GD): for DNNs, weights wl
ij in all layers l = 1, · · · , L each with Nl
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neurons are updated for each run through all given samples, as per the update rule:

wl
ij → wl

ij − η
〈 ∂L
∂wl

ij

〉
(3.10)

for i, j = 1, · · · , L, where the learning rate η is the step size in each run, and the angular

brackets denote the averages over a fixed number of randomly selected samples. [11]

The bli’s are updated similarly. Each run through all given samples is called an epoch,

and a set of samples processed for updating weights is called a batch. Learning rates,

numbers of epoches, and batch sizes must be properly chosen by the agent. The partial

derivatives are calculated backwards using the chain rule:

∂L
∂wl

ij

=
∂L
∂sLkL

∂sLkL
∂sL−1

kL−1

· · ·
∂sl+1

kl+1

∂slkl

∂slkl
∂wl

ij

, (3.11)

where the repeated indices km = 1, · · · , Nm for m = l, · · · , L are summed over. This

demonstrates that the activation functions must be at least piece-wise differentiable

for GD to be applicable. The name backpropagation comes from this difference, where

the outputs are updated forward, while the losses are updated backwards. GD is best

implemented by ADAM optimization algorithms. [9]

Removing the angular brackets in equation (3.10) gives stochastic gradient descent

(SGD), where weights and biases are updated for each sample. Since there is no longer

a need to compute the average over all samples, SGD is computationally cheaper.

However, this comes at the cost of convergence: outputs obtained with GD are more

likely to be closer to the targets than those obtained with SGD especially in case there

are outliers. For FFNNs in particular, the feed forward structure of the outputs ensures

the convergence of outputs to their targets. [8]

3.4 Regularization

Datasets are samples drawn from unknown data distributions. Learning with datasets

involve extracting trends while neglecting noises. Successful learning models should

be able to generalize these trends to unseen datasets. In that sense, two kinds of

problematic learning models exist: the underfitting ones and the overfitting ones.

Underfitting models are those that fail to learn trends in datasets. Underfitting occurs

because the models are too simple to capture all samples in the datasets. Such can be

solved rather easily by increasing the complexities of the learning models. For DNNs,

this amounts to increasing the number of hidden layers or by increasing the number of

neurons in each layers.

On the other hand, overfitting models are those that are too sensitive to noises that
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they fail to generalize: they learn noises on top of trends so that generalizing to unseen

datasets returns high errors. Overfitting occurs because such models are too complex

compared to the number of samples in the datasets. A range of methods used to reduce

overfitting in learning models is called regularization. Regularization is effectively

implemented by modifying loss functions. For NNs, dropouts are as effective. This

section discusses these commonly used regularization methods in detail.

3.4.1 Modifying Loss Functions

SL models update weights by backpropagation until their loss functions are minimized.

Modifying these loss functions efficiently reduces overfitting by altering the update rule

in equation (3.9). Such is implemented by adding a so-called regularizer L̃ to the loss

function L :

L′ = L+ λL̃, (3.12)

where the regularization strength λ ≥ 0 is a parameter to be determined by the agent.

λ must be carefully adjusted because it affects both model biases and model variances.

The model bias is the systematic error in the model’s outputs compared to their targets.

Said differently, low model bias implies the model’s ability to extract trends. Therefore,

overfitting occurs when the model bias is too low. In contrast, the model variance is

the difference between the model’s outputs over the whole dataset and those over

its subsets. In other words, higher model variance implies the model’s inability to

neglect noises. Therefore, overfitting occurs when the model variance is too high.

Since overfitting models react more sensitively to the changes in their loss functions,

the λ’s need to be small. Such is possible when the model biases are proportional to

the λ’s and the model variances are inversely proportional.

There are more details to equation (3.12): a common choice for L is the MSL defined

in equation (3.9), and L̃ = L̃(wl
ij) is added as a Lagrange multiplier in order to reduce

weights wl
ij. This is because the larger the weights are, the more sensitive the model is

to the changes in its inputs, implying overfitting. Furthremore, there are three common

choices for L̃. The first is the L2 regularizer, defined as:

L̃2 =
∑
i,j,l

|wl
ij|2, (3.13)

which ensures that the average magnitude of all weights is minimized. The second is

the L1 regularizer, defined as:

L̃1 =
∑
i,j,l

|wl
ij|, (3.14)

which allows more weights to be zero, rather than minimizing the average magnitude
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of all weights. The third is the cross entropy regularizer, defined as:

L̃CE =
∑
k

pk ln pk, (3.15)

which is used for classification problems with K classes. pk = pk(w
l
ij) is the probability

that an output belongs to the class k = 1, · · · , K. Furthermore, entropy is maximized in

uniform distributions because all classes occur with equal probabilities. In other words,

cross entropy regularization brings outputs closer to a uniform distribution, where

entropy is maximized. This helps overfitting models to balance out their weights so

that the outputs are more uniformly distributed. Note that cross entropy regularizers

and entropies have opposite signs: this implies that cross entropy regularizers are

minimized when entropies are maximized. [11]

3.4.2 Dropouts

Dropouts are designed to regularize NNs in particular. In dropouts, each neuron is

dropped based on a dropout probability P defined as the likelihood of each neuron to

be deactivated in an epoch. As a result, all neurons are forced to participate equally well

in the training process. This helps the weights even out and thus reduces overfitting.

Higher P generally implies stronger effects on overfitting, but excessively high P results

in underfitting. P must thus be carefully adjusted by the agent. Dropouts are as

effective as modifying loss functions when it comes to regularization because of their

ability to adjust the weights.

Generalizations of dropouts such as dropconnects are also effective in regularizing NNs.

In dropconnects, each connection between neuron is dropped based on a dropconnect

probability, defined as the likelihood of each connection to be deactivated in an epoch.

As a result, all weights are given equal chance to be updated in the training process.

This again helps the weights even out and thus reduces overfitting. [11]

Figure 3.3: An example of a dropout regularization with a dropout probability of 40%.
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3.5 Hyperparameters

As mentioned in section 3.1.1, ReLUs could result in dead neurons, possibly resulting

in the vanishing gradient problem. This arises for example when the learning rate η is

too high in GD: the weights turn increasingly negative, resulting in dead neurons for

ReLUs. At the same time, lower η results in longer training times. Therefore, η must

be properly initialized by the agent. Such overarching parameters to be determined by

the agent are called hyperparameters.

η is not the only hyperparameter that define training processes: epoches and batch

sizes are too. More epoches help loss functions for successful learning models reach

their global minima. Similarly, smaller batch sizes facilitate the training process since

the weights are updated more frequently according to equation (3.10), but this comes

at the cost of longer training times.

There are also hyperparameters that define model complexities: leakage constants for

leaky ReLUs from section 3.2.1, numbers of layers and numbers of neurons in each

layer are some examples. Leaky ReLUs help prevent dead neurons and thus allow for

more model complexities. More layers and more neurons in each layer increase model

complexities and requires longer training times. Furthermore, parameters that define

training strengths are also hyperparameters: regularization strength λ from section

3.4.1 and dropout probability P from section 3.4.2 are some examples.

As demonstrated, hyperparameters influence the training results significantly and thus

must be carefully adjusted. The process of carefully adjusting hyperparameters to

ensure the optimal training results is called hyperparameter tuning. This depends

on the problem at hand and generally requires trial and error. Introducing suitable

performance metrics facilitates the process, which is to be discussed more in chapter 5.

Hyperparameter tuning is often implemented within cross-validation loops to ensure

enhanced performance. One instance isK-fold cross-validation. K-fold cross-validation

starts with dividing the given set into K non-overlapping subsets, one of which is

selected for validating and the rest for training. Repeating this training and validating

procedure for each of the K subsets yields K different trained models, and the one with

the least generalization error is selected. Validating a trained model means ensuring

that its outputs match their targets on unseen samples in the given dataset. K-fold

cross validation also helps detect overfitting: the loss functions of overfitting models

evaluated on validation data diverge away from those evaluated on training data. This

is because overfitting models are too distracted by the noises in the training data that

they fail to generalize in the validation data. Furthermore, K-fold cross-validation itself

has a regularizing effect because training and validating on each of the K partitioned

datasets allows for more self-consistency by reducing model variance. [2]
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Chapter 4

t t̄ Backgrounds in HH Decays

Top pair decays tt̄ and di-Higgs decays HH can have equivalent final states such as

b+b−W+W− with overlapping mass distributions. Such occurs when a tt̄ event emits

twoW bosons in parallel, where one of the twoW bosons has a significantly lower mass.

As a result, tt̄ events can act as backgrounds in HH events. This chapter elaborates

on the methodology used to reach such a result.

4.1 t t̄ and HH Decay Channels

Processes not explicitly forbidden by the conservation laws discussed in section 2.1.1

are allowed as per the totalitarian principle of particle physics. Therefore, particles can

have multiple decay channels with different branching ratios. This section discusses tt̄

and HH decay channels up to leading order (LO), and how the two can have equivalent

final states.

4.1.1 t t̄ Decay Channels

Top quarks are produced in pairs from hadronic collisions dominantly through quark

pair annihilation qq̄ → tt̄ and gluon fusion gg → tt̄ at LO in QCD. Top quarks are

preferably produced in pairs because single top productions yield fewer daughters and

are thus harder to identify among large backgrounds. The qq̄ → tt̄ processes accounted

for≈ 85% of the top quarks produced in proton anti-proton collisions pp̄ at the Tevatron

at the center of mass energy
√
s = 1.96 TeV. The gg → tt̄ processes accounts for ≈ 90%

of the top quarks produced in pp collisions at the LHC at
√
s = 13 TeV.

There are three possible categories of final states for the leading Top pair production

processes, depending on how the daughter W boson pairs decay. The first is fully

hadronic tt̄ → bW+b̄W− → bqq̄′b̄q′′q̄′′′ with a branching ratio of 45.3%. The second

is semi-leptonic tt̄ → bW+b̄W− → bqq′b̄l−ν̄l + bl+νlb̄q
′′q̄′′′ with 43.8%. The third is

29
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di-leptonic tt̄ → bW+b̄W− → bl+νlb̄l
−ν̄l with 10.5%. Each lepton l = e, µ, τ gives

similar branching ratios for decays involving leptons as per the lepton universality.

More quarks and gluons can be radiated from the colored particles in the tt̄ decays and

appear as jets. The tt̄ decay modes are summarized in table (4.1), and a common tt̄

process is depicted in figure (4.1).

Decay Channels Branching Ratio (%)

tt̄→ bqq̄′b̄q′′q̄′′′ 45.3

tt̄→ bqq′b̄l−ν̄l + bl+νlb̄q
′′q̄′′′ 43.8

tt̄→ bl+νlb̄l
−ν̄l 10.5

Table 4.1: Top quark pair decay channels and their branching ratios, where l = e, µ, τ.
Those with branching rations less than 1% are omitted. [12]

g
t

t̄

g

g

W−

b̄

W+

b

Figure 4.1: A Feynman diagram illustrating a Top pair production from gluon fusion
as well as the Top pair decay into bW+b̄W−.

4.1.2 HH Decay Channels

The Higgs boson dominantly decays into a bottom quark pair H → bb̄ with a branching

ratio of 58%. The next likely fermionic final states are a tauon pair H → τ+τ− with

a branching ratio of 6%, and a charm quark pair H → cc̄ with 3%. An excited higgs

boson H∗ could decay as H∗ → W+W− or H∗ → ZZ, each with branching ratios 21%

and 3%. TheW+ boson then decays leptonically intoW+ → l+νl with a 32% branching

ratio in total. Hadronic decay channels for W+ bosons vary, but their branching ratios

sum up to 67%. The W− decay channels are simply conjugates. The leptonic Z boson

decays of the form Z → l+l− have a total of 10% branching ratio. Hadronic decay

channels for Z bosons vary, but they have a 70% branching ratio in total.

These decays so far are all tree level, without any intermediate loops. However, higher

order decays are also possible. Such could involve massless final states. For example,

the Higgs boson could decay into a gluon pair H → gg with a branching ratio of 8%.

Such is mostly mediated by a top quark loop, but this loop could instead be mediated
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Figure 4.2: A Feynman diagram illustrating a Higgs pair production from gluon fusion
through a top quark loop, as well as the di-Higgs decay into bb̄W−W+.

by bottom and charm quarks 10% and 2% of the times respectively. The branching

ratio increases by 70% from two loop QCD corrections at NLO. The Higgs boson

could also decay into a photon pair H → γγ with a branching ratio of 0.2%. Such is

mostly mediated by W loops and less likely by t loops. The branching ratio increases

by 2% from two loop QCD corrections at NLO. Though rare, H∗ → γγ along with

H → ZZ → l+l−l+l− served as the Higgs discovery channels since these were clearly

identifiable among numerous backgrounds. The HH decay modes are summarized in

table (4.2), and two notable HH processes are depicted in figures (4.2) and (4.3).

Comparing figures (4.2) and (4.3) shows that the final state alone is insufficient for

determining whether a di-Higgs decay involves Higgs self interactions or not. Likewise,

tt̄ and HH decays can also have the similar final states such as bW+b̄W−. Therefore,

separating such events with similar final states requires additional measures, which are

to be discussed in chapter 5. The separation can be greatly facilitated by using Monte

Carlo methods such as MCatNLO and POWHEG, where fully exclusive predictions of

SM processes can be made upto NLO in QCD. [12]

Decay Channel Branching Ratio (%)
H → ZZ 2.6
H → cc̄ 2.9

H → τ+τ− 6.2
H → gg 8.2

H∗ → W+W− 21.5
H → bb̄ 58.4

Table 4.2: Decay channels for Higgs bosons with mH = 125.1 GeV with branching
ratios greater than 1%. The rest are omitted. [12]
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Figure 4.3: A Feynman diagram illustrating a Higgs production from gluon fusion
through a top quark loop, as well as a trilinear Higgs self interaction denoted by its
interaction strength λ.

4.2 Monte Carlo Event Generators

In practice, tt̄ and HH decays are difficult to detect among large QCD backgrounds.

Therefore, the use of Monte Carlo event generators (MCEGs) along with jet clustering

algorithms (JCAs) can greatly facilitate the analysis on such events. Given the initial

and the final particles before hadronization as inputs, MCEGs effectively simulate real

high energy collisions in which the desired rare processes do occur with the irreducible

backgrounds suppressed.

MCEGs do so in three steps. First, MCEGs initialize the input initial particles and

their four momenta out of hard scattering processes and generate showers of particles

including the input final particles. Second, MCEGs compute the four momenta and

the masses of the particle showers using perturbative QCD based frameworks such as

MadGraph [10] and MCatNLO [18]. This is possible because parton showers are closely

packed so that strong interactions are still weak. MadGraph supports perturbations

upto LO and MCatNLO upto NLO. MCEGs also compute cross sections upto this

point using PDFs. Third, MCEGs hadronize quarks and gluons according to string

models or cluster models.

String models are based on linear confinement: two partons with opposite color charges

form the two ends of a flux tube, whose potential energy increases linearly with its

length. Cluster models are based on preconfinement, where colorless combinations of

partons form clusters of finite masses: the number of clusters are determined by their

starting energy scales Q, while their mass distributions depend on their current energy

scales Q0 and the QCD ultraviolet cutoff ΛQCD, where Q >> Q0 >> ΛQCD. PYTHIA

uses string models, while Herwig uses cluster models. Perturbative QCD no longer

applies upon hadronization.

Throughout these three steps, MCEGs take collective QCD effects into account to

better simulate physical events while suppressing irreducible backgrounds. One such

example is color reconnection, where color fields in densely packed color systems re-

couple to nearby color fields. This effect helps model non-perturbative interactions

between color fields during hadronization.
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JCAs are then applied onto such events to make them more accessible for analysis.

Depending on assumptions made about jets, there are largely two kinds of JCAs: cone

algorithms (CAs) and sequential recombination algorithms (SRAs). CAs are built

on the assumption that jets are cones with initial partons as their vertices and final

particles as their bases. CAs recombine nearby particles in conic clusters, which form

rigid circular boundaries in η− ϕ space. While easy to implement, CAs often result in

infrared divergences. On the other hand, SRAs are difficult to implement but free of

infrared divergences.

SRAs are built on the assumption that particles within jets vary in transverse momenta

pT , resulting in jets with fluctuating areas in η − ϕ space. As such, SRAs start with

computing two kinds of distance measures in momentum space. The first kind dij is

the distance between particles i and j, while the second kind diz is the distance between

particle i and the beam axis ẑ. Specifically, these are defined as:

dij = min(pNTi, p
N
Tj)

R2
ij

R
, diz = pNTi, (4.1)

where R is the radius parameter that defines the final jet size, R2
ij = (ηi−ηj)2+(ϕi−ϕj)

2

is the angular distance between the particles i and j, and N determines the SRA type;

for example, the case N = 2 corresponds to the kT algorithm. [3]

Upon computing all {diz, dij}, SRAs find the minimum distance d = minij{diz, dij}
among them. If d = dij for two particles i and j, then the two particles i and j are

replaced with a pseudo jet, which is neither a particle nor a full jet. If d = diz for

some particle i, then the particle i is dropped. These pair replacement processes are

repeated until certain stopping criteria are met. SRAs that stop once the minimum

distance falls below a cutoff parameter dC are said to be exclusive. SRAs that stop once

no more particles remain are said to be inclusive. Inclusive SRAs however require a

parameter pmin
T that defines the minimum transverse momenta for jets to be considered

when computing {diz, dij} in order to avoid infrared divergences in the number of jets

found in an event.

JCAs assign four momenta to pseudo jets according to jet recombination schemes (RSs)

for jet definition. The kT algorithm for example is implemented in RSs such as the ET

scheme, which recombines the four momenta pi and pj of particles i and j into the four

momenta pr of the combined particle r such that

pTr = pT i + pTj, ϕr =
ET iϕi + ETjϕj

ET i + ETj

, ηr =
ET iηi + ETjηj
ET i + ETj

(4.2)

is satisfied. The subscripts T denote transverse variables perpendicular to the beam

axis ẑ. kT algorithms are best implemented by the FastJet package in the ET scheme.
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MCEGs and JCAs are often executed using ROOT, an object-oriented data analysis

program developed by CERN. This yields event logs, which list information such as

the identity, the four momenta, the parent, and the daughters of all particles according

to the Particle Data Group (PDG) conventions. ROOT can then be used to analyze

these events: ROOT offers math libraries that operate on a variety of classes such

as the TLorentzVector class of four momenta, the TRandom class of random number

generators, and the TH1D class of one dimesional histograms. [1] [16]

4.3 Low Mass W Bosons from tt̄ Decays

Section 4.1 has demonstrated that tt̄ and HH decays can have equivalent final states

such as b+W+b̄W−, and section 4.3 aims to show that the two have overlapping mass

distributions. This is kinematically possible when tt̄ events each emit two W bosons

in parallel, where one of the two W bosons has a significantly lower mass. This section

first presents the kinematic reasoning behind this conclusion and then confirms that

such is indeed the case.

4.3.1 Two Body Decays

Consider the decay of a particle with four momentum p = (E, p⃗) into two particles 1

and 2 with four momenta p1 = (E1, p⃗1) and p2 = (E2, p⃗2) respectively. In the parent

rest frame p = (M, 0⃗), four momenta conservation p = p1 + p2 yields the parent mass:

M2 = (E1 + E2)
2 − (p⃗1 + p⃗2)

2 =M2
1 +M2

2 + 2(E1E2 − p⃗1 · p⃗2), (4.3)

where M1 = ||p1|| and M2 = ||p2|| are the daughter masses. Similarly, p1 = p − p2

yields the energy and the momentum of daughter 1 in the parent rest frame:

E1 =
M2 −M2

2 +M2
1

2M
, p1 =

1

2M

√
λ(M2,M2

1 ,M
2
2 ), (4.4)

where λ(α, β, γ) = α2 + β2 + γ2 − 2αβ − 2βγ − 2γα is the Källén function. To obtain

a similar equation for daughter 2, switch the subscripts 1 and 2 in equation (4.4).

Now consider the decay of an on shell Higgs boson into two W bosons. Since MH ≈
125 GeV and MW ≈ 80 GeV, equation (4.3) can only hold if at least one of the W

bosons is off shell with a lower mass. The low mass W boson has the maximum mass

when the angle θ between p⃗1 and p⃗2 is zero, as the term −p⃗1 · p⃗2 in equation (4.3)

implies. This corresponds to the case where the two W bosons are emitted in parallel.

Therefore, processes such as Top pair decays that emit two W bosons in the same way

can act as backgrounds in Higgs decays since the mass distributions of the W boson

pairs would overlap.
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4.3.2 Overlapping Mass Distributions

The aim of this subsection is to show that tt̄ and HH events do have overlapping

mass distributions. To do so, PYTHIA was used to generate one million tt̄ events with

bW+b̄W− final states. MCatNLO was used to calculate the particle four momenta

upto NLO along the way. FastJet was used to implement the kT algorithm with

pmin
T = 20 GeV, dC = 400 GeV2, R = 0.4 in the ET scheme. The validity of this choice

is shown in figure (4.4). Figure (4.4a) shows the distribution of pT for all jets. Since

there would be too many jets satisfying pT ≤ 20, the choice pmin
T = 20 GeV is justified.

Figure (4.4b) shows the distribution of ∆R between all jets. Since most jet pairs satisfy

∆R = 0.4, the choice R = 0.4 is justified. The choice dC = 400 GeV2 = (pmin
T )2 was

motivated from the definition diz = pNTi in equation (4.1).

Parent particles and jet pairs were then reconstructed using the event logs. Parents

without jet daughters were reconstructed immediately from their daughters listed in

the event logs. Parents with jet daughters were reconstructed by assigning to each jet

daughter an inclusive jet that has the least difference in angular distance.
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Figure 4.4: Figure (4.4a) shows a histogram for the pT distribution for all jets. Figure
(4.4b) shows a histogram for the ∆R distribution for all jets. Both were obtained from
the one million tt̄ events.

Figure (4.5) shows a histogram of theW+W− and the bb̄ pair masses from the tt̄ events.

The red data points in figure (4.5) indicate tt̄ backgrounds in HH events, where both

W+W− and bb̄ pair masses are in the Higgs mass range, from 100 GeV to 150 GeV.

There were only 519 such events among the million tt̄ events. As shown in figure (4.5),

tt̄ backgrounds occur with such low probabilities because the daughter W+W− pair

masses are unlikely to fall in the Higgs mass range, although the daughter bb̄ pair
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masses are much more likely to.

Though tt̄ backgrounds occur with such low probabilities, they are still significant

because the cross sections for tt̄ decays are significantly larger than those for HH

decays. tt̄ decays have a cross section of σ ≈ 1µb, whileHH decays have σ ≈ 30 fb. [12]

Therefore, more events are needed to analyze tt̄ backgrounds in HH decays. However,

enough tt̄ backgrounds cannot be generated within a reasonable computation time using

MCEGs alone, since on average only ≈ 519 backgrounds appear for every million tt̄

events. Generating enough tt̄ backgrounds begins with finding their defining features.

Figure 4.5: A two dimensional histogram of the W+W− and the bb̄ pair masses from
the one million tt̄ events generated by PYTHIA. The data points highlighted in red
are events where both bb̄ and W+W− pair masses fall in the Higgs mass range, from
100 GeV to 150 GeV.

4.3.3 Low Mass W Bosons

The aim of this subsection is to discuss the defining features for tt̄ backgrounds in HH

events. To do so, the kinematic observables such as pT , ϕ, η, E for all particles from tt̄

events were analyzed. The kinematic observables for all particles from tt̄ backgrounds

in HH events were analyzed separately. Comparing the two analyses has shown that

the angle θ between two daughter W bosons is the defining feature for tt̄ backgrounds,

other than the masses of the W bosons. This is not so obvious from figure (4.6) alone:

figure (4.6a) shows the histogram of cos θ for all tt̄ events, and figure (4.6b) shows that

of cos θ for just the tt̄ backgrounds. The two look similar, with most entries present in

the bin with cos θ = 1. However, dividing the two histograms yields figure (4.7), which

shows that tt̄ events that emit twoW bosons in parallel are overwhelmingly more likely

to act as backgrounds in HH events. For example, the case cos θ = 1 occurs ≈ 10 times

more likely than the case cos θ = −1 in tt̄ backgrounds.
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To summarize, three conditions must be met in order for a tt̄ event to mimic HH

events. First, one of the two daughter W bosons must be off shell, with lower mass.

Second, the low mass W boson must be emitted in parallel to the other daughter W

boson. Third, the daughter bb̄ pair masses must also fall in the Higgs mass range.
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Figure 4.6: In figure (4.5a) is a histogram of cos θ for all tt̄ events, with θ the angle
between the three momenta of two daughter W bosons. In figure (4.6b) is a histogram
of cos θ for just the tt̄ backgrounds in HH events. These histograms were obtained
from the one million tt̄ events.
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Figure 4.7: The histogram obtained by dividing the left histogram in figure (4.6) by
the one on the right. This shows that tt̄ backgrounds emit W bosons in parallel.
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Chapter 5

Separating t t̄ Backgrounds from

HH Events

As shown in the previous chapter, tt̄ events that emit a low mass W boson in parallel

to the other daughter W boson can mimic HH events. This chapter first elaborates on

how such tt̄ backgrounds in HH events can be generated in large numbers by rotating

and scaling tt̄ events. This chapter then discusses how the HH events were procured

with Gaussian smearing. This chapter finishes with how the tt̄ backgrounds can be

separated from HH events using FFNNs.

5.1 Rotating and Scaling t t̄ Events

Realistic tt̄ backgrounds in HH events can be mass produced by rotating and scaling

the four momenta of low mass W bosons from tt̄ events. This process of rotating and

scaling shall be called the rotation scaling procedure (RSP). Applying the RSP to a tt̄

event with at least one low mass W boson takes the following seven steps.

First, the whole tt̄ event are boosted into the tt̄ rest frame using equation (2.36). This

step ensures that there are no excess transverse momenta within the tt̄ event. Second,

the t and the t̄ events are boosted into the t and the t̄ rest frames respectively using

equation (2.36). This step boosts the t and the t̄ events into the reference frame where

the two events are back to back. Third, a daughter low mass W event is rotated so

that the three momenta of the two daughter W bosons are parallel. This step ensures

that the two daughter W bosons are parallel in a common reference frame. Fourth,

the mass of the low mass W boson is scaled by a factor of 7/16, which was chosen so

that the bb̄ and the W+W− pair masses peak at the Higgs mass MH ≈ 125 GeV upon

applying the RSP. This step breaks the four momenta conservation in low mass W

events. Fifth, the low mass W event is boosted into the rest frame of the low mass W

39
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boson using equation (2.36). This step is needed since applying equation (4.4) requires

that the parent be in its rest frame. Sixth, now that the low massW boson is in its rest

frame, the four momenta of its daughters are scaled according to equation (4.4). This

step restores the four momenta conservation in low mass W events. Seventh, undo all

boosts in reverse order to return back to the lab frame. This step completes the RSP.

The RSP simply discards the tt̄ events without low mass W bosons.

The RSP was applied onto the one million tt̄ events used in chapter 4, yielding figures

from (5.1) to (5.4). Figure (5.1) shows a histogram of W+W− pair masses before the

RSP in blue and after the RSP in red, with the vertical axis in logarithmic scale;

the green histogram is obtained by multiplying a factor of 200 to the blue histogram,

effectively corresponding to the W+W− pair mass distribution of 200 million tt̄ events

before applying the RSP. The green histogram matches the red histogram up to the

pair mass of ≈ 125 GeV. This follows from the self similarity of GBWDs: the Gaussian

factor in equation (2.43) implies that scaling the W boson masses by a factor less than

1 shifts the W+W− pair mass distributions to the left. Therefore, applying the RSP

has the effect of processing 200 times as many unmodified tt̄ events upto the pair mass

of ≈ 125 GeV, when it comes to producing tt̄ events with low mass W bosons.
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Figure 5.1: The histograms of W+W− pair masses before the RSP in blue and after
the RSP in red. In green is the histogram obtained by multiplying a factor of 200 to
the blue histogram. The vertical axis in logarithmic scale.

Next, figure (5.2) shows a histogram of bb̄ pair masses before the RSP in blue and after

the RSP in red. The red histogram shows that the number of tt̄ events with daughter

bb̄ pair masses in the Higgs mass falls to ≈ 62% after the RSP. However, comparing

figures (5.1) and (5.2) shows that there are still enough of bb̄ pairs in the Higgs mass

range compared toW+W− pairs across all tt̄ events. Furthermore, both red histograms

in figures (5.1) and (5.2) peak at the pair masses of ≈ 125 GeV because the masses of
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the low mass W bosons were scaled by a factor of 7/16 in the fourth step of the RSP.

The effectiveness of the RSP in generating tt̄ backgrounds is visualized in figure (5.3).
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Figure 5.2: The histograms of bb̄ pair masses before the RSP in blue and after the RSP
in red.

Figure (5.3) shows a histogram of the W+W− and the bb̄ pair masses upon applying

the RSP. The red data points in figure (5.3) indicate tt̄ backgrounds in HH events,

where both W+W− and bb̄ pair masses are in the Higgs mass range. There were 28441

such events among the million tt̄ events, demonstrating that the RSP has increased the

likelihood of producing tt̄ backgrounds by a factor of ≈ 55, which is still less than the

≈ 200 times increase in the likelihood of finding tt̄ events with low mass W bosons.

This disparity occurs because not all tt̄ events with low mass W bosons have both

W+W− and bb̄ pair masses that fall in the Higgs mass range. Nonetheless, comparing

the density of the red data points in figures (4.5) and (5.3) demonstrate the effectiveness

of the RSP in generating tt̄ backgrounds.

Figure (5.4) shows the histograms of the Top quark masses reconstructed from their

daughters: the blue histogram shows the Top quark mass distributions before applying

the RSP, and the red histogram shows the Top quark mass distributions after applying

the RSP. Applying the RSP has left the mean unchanged at 170.8 GeV and has slightly

reduced the standard deviation from 8.989 to 8.982 GeV. In other words, tt̄ events that

emit low mass W bosons do not necessarily involve Top quarks with lower masses.

Next, PYTHIA was used to generate 10 million tt̄ events. [6] Along the way, POWHEG

was used to calculate particle four momenta upto NLO. FastJet was used to implement

the kT algorithm with pmin
T = 20 GeV, dC = 400 GeV2, R = 0.4 in the ET scheme.

Finally, the RSP was then applied to obtain new 10 million tt̄ events, which includes

300,053 tt̄ backgrounds in HH events. Procuring the HH events follows next.
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Figure 5.3: A two dimensional histogram of the W+W− and the bb̄ pair masses from
the one million tt̄ events after the RSP. The data points highlighted in red are tt̄ events
where both W+W− and bb̄ pair masses fall in the Higgs mass range, from 100 GeV to
150 GeV.
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Figure 5.4: The reconstructed Top quark mass histograms from the one million tt̄
events. In red is the histogram before applying the RSP, and in blue is the histogram
after applying the RSP.

5.2 Gaussian Smearing on HH Events

Higgs bosons do not have color charges. Therefore, the decays of Higgs bosons with

quarks or gluons in the final states have excess color charged fields that recouple to

other nearby color charged fields as per color reconnection discussed in subsection 4.2.

This complicates the reconstruction of particles from their daughters, which was not

the case for tt̄ events because Top quarks themselves have color charges. To resolve
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this complication with color reconnection, Herwig was used to generate one million HH

events with bb̄W+W− final states with color reconnection settings off. [17] Madgraph

was used along the way to calculate particle four momenta upto LO. FastJet was used

to implement the kT algorithm with pmin
T = 20 GeV, dC = 400 GeV2, R = 0.4 in the

ET scheme: these parameter choices are again justified by the same reason illustrated

in figure (4.4).

However, Herwig takes into account the natural decay width ΓH ≈ 4 MeV of Higgs

bosons while generating events. [12] Such decay widths are much smaller than the

energy scales relevant for this thesis. Therefore, the decay widths of the HH decay

products must be broadened with Gaussian distributions to reflect their experimental

resolutions. Such a process is called Gaussian smearing (GS).

For simplicity, GS was applied only onto the direct daughters bb̄W+W− of the HH

events to reflect their experimental uncertainties, realistically ranging from ≈ 10 to

≈ 20 GeV. This proceeded as follows: first, a Gaussian distribution was initialized for

each component of all bb̄W+W− four momenta, and a random number was selected

from each Gaussian distributions using the Gaus method of the TRandom3 class. Then,

such randomly selected numbers were scaled by their GS factors. These GS factors were

added to 1, and the results were finally multiplied to each component of all bb̄W+W−

four momenta. The GS factors were chosen such that the reconstructed Higgs mass

distributions had means at ≈ 125 GeV with standard deviations ranging from ≈ 10 to

≈ 20 GeV.

As a result, the GS factor of 1% was each applied to the px, py, E components of

the bb̄W+W− four momenta, and the GS factor of 2% was each applied to the pz

components in order to account for the natural difficulty of measuring variables along

the beam axis ẑ. The kinematic observables associated to the Higgs bosons from their

bb̄W+W− daughters after GS are shown in figures (5.5) to (5.7) in blue, along with the

kinematic observables associated to the tt̄ events after the RSP in red. Figure (5.5)

shows the W+W− pair masses on the left and the bb̄ pair masses on the left. Figure

(5.6) shows the W+W− pair transverse momenta on the left and the bb̄ pair transverse

momenta on the left. Figure (5.7) shows the W+W− pair pseudorapidity on the left

and the bb̄ pair pseudorapidity on the left. The pair polar angles were distributed

homogenously and thus were omitted. This shows that the daughter pairs from both

the HH events and the tt̄ backgrounds have the same angular distributions. Figures

(5.5) to (5.7) show that there is a significant overlap between tt̄ backgrounds and HH

events in the phase space of kinematic observables. This necessitates their comparison

using neural networks, which follows next.



44 CHAPTER 5. SEPARATING t t̄ BACKGROUNDS FROM HH EVENTS

0 50 100 150 200 250
MW+W−

1

10

210

310

410

510

#
 
E

n
t
r
ie

s

Higgs M_WW

Top Background M_WW

(a)

0 50 100 150 200 250
M
bb̅

10

210

310

410

510

#
 
E

n
t
r
ie

s

Higgs M_bb

Top Background M_bb 

(b)

Figure 5.5: Shown in figure (5.5a) in blue is the W+W− pair mass histogram from
the one million HH events. Shown in figure (5.5a) in red is the one from the ≈ 0.3
million tt̄ backgrounds. Shown in figure (5.5b) in blue is the bb̄ pair mass histogram
from the one million HH events. Shown in figure (5.5b) in red is the one from the
≈ 0.3 million tt̄ backgrounds. The vertical axis of all histograms in figure (5.5) are
drawn in logarithmic scale.
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Figure 5.6: Shown in figure (5.6a) in blue is the W+W− pair transverse momentum
histogram from the one million HH events. Shown in figure (5.6a) in red is the one
from the ≈ 0.3 million tt̄ backgrounds. Shown in figure (5.6b) in blue is the bb̄ pair
transverse momentum histogram from the one million HH events. Shown in figure
(5.6b) in red is the one from the ≈ 0.3 million tt̄ backgrounds. The vertical axis of all
histograms in figure (5.6) are drawn in logarithmic scale.
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Figure 5.7: Shown in figure (5.7a) in blue is the W+W− pair polar angle histogram
from the one million HH events. Shown in figure (5.7a) in red is the one from the
≈ 0.3 million tt̄ backgrounds. Shown in figure (5.7b) in blue is the bb̄ pair polar angle
histogram from the one million HH events. Shown in figure (5.7b) in red is the one
from the ≈ 0.3 million tt̄ backgrounds.

5.3 Comparison Using Neural Networks

The objective of this section is to elaborate on the separation of tt̄ backgrounds from

HH events using FFNNs. Such begins with describing the performance measures used

to evaluate the NN training results. The specifics of the NN and the input datasets

are then presented. The analysis on the NN’s success in separating the tt̄ backgrounds

in HH events are finally elaborated.

5.3.1 Performance Measures

Given a classification problem with the target class called positive (P ) and the others

called negative (N), a NN can produce outputs that fall into precisely one of the four

following cases. The first case is true positive (TP ), where the NN correctly outputs P.

The second case is true negative (TN), where the NN correctly outputs N. The third

case is false positive (FP ), where the NN incorrectly outputs P. The fourth case is false

negative (FN), where the NN incorrectly outputs N. This categorization can be used

to define performance measures that evaluate the ability of a NN to solve classification

problems. One such performance measure is accuracy, defined as:

Accuracy =
#TP +#TN

#TP +#TN +#FP +#FN
, (5.1)

representing the fraction of correctly identified outputs; the # in front of each case

denotes its number of occurrence. Given a properly trained NN, accuracy tends to rise
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steeply at earlier epoches and stagnates at later epoches. However, accuracy is blind to

overfitting because it simply stagnates or slightly oscillates as loss functions increase in

value. Therefore, training methods like cross validation along with other performance

measures like loss functions are still necessary.

Other performance measures include precision, recall, and specificity, each defined as:

Precision =
#TP

#TP +#FP
(5.2)

Recall =
#TP

#TP +#FN
(5.3)

Specificity =
#TN

#TN +#FP
. (5.4)

Precision represents the fraction of outputs correctly identified as P among all outputs

identified as P. Recall represents the fraction of outputs correctly identified as P among

all outputs that should be identified as P. Specificity represents the fraction of outputs

correctly identified as N among all outputs that should be identified as N. Though not

as judgemental as accuracy is, these are needed for a complete evaluation of the NN

performance. For example, these three performance measures can be used for further

evaluation once desired losses and accuracies are reached.

5.3.2 Set Up

There were two input datasets. One consisted of ≈ 0.3 million tt̄ backgrounds selected

from the ten million tt̄ events with the RSP applied. The other consisted of one million

HH events with the GS applied. The four kinematic observables M, pT , η, ϕ for each

W+W− and bb̄ were given as input features, so the two datasets were identified with

eight features in total. The ideal input features would be M, pT , η, ϕ for all daughters

bb̄W+W− such that the exact configurations of tt̄ backgrounds and HH events can

be compared. However, this was not possible because PYTHIA and Herwig initializes

the particle masses in a different way so that the NN can immediately tell apart the

tt̄ backgrounds and HH events. Regardless, separating the tt̄ backgrounds and HH

events apart using NNs reduces to a binary classification task: for this task, the tt̄

backgrounds were given labels 0, and the HH events were given labels 1. Validation

splits of 0.2 were given to test different NN specifics. Testing different NN specifics

has shown that the best performing NN was chosen for the classification task. Such

analysis took place using a Python framework called PyTorch. [14] The specifics of the

best performing NN are described as follows.

The NN used for this analysis was a FFNN with five layers. The non-output layer

had eight neurons and LReLU activation functions with slope 0.1, while the output

layer had two neurons and Sigmoid activation functions. He-initialization was used for
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the non-output layer weights, and Xavier initialization was used for the output layer

weights. Cross entropy loss functions were used. Dropout regularization with dropout

ratio 5% was used. The NN was trained over 200 epoches, with batch sizes of 700

and learning rates of 5 × 10−5 in order to solve the binary classification problem of

separating tt̄ backgrounds from HH events.

5.3.3 Analyzing the Training Results

Figure 5.8: The training accuracy in separating the two datasets, as a function of 200
epoches.

Figure 5.9: The loss functions evaluated on the training datasets in blue the loss
functions evaluated on the validation datasets in yellow, as functions of epoches.

The NN was trained with the specifics detailed in the previous subsection. The results

are shown in figures (5.8) and (5.9). Figures (5.8) shows the training accuracy as

a function of epoches: over 200 epoches, the NN has reached a separation accuracy
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of 95%, which is well above the separation accuracies of ≈ 70% obtained in similar

papers. The training accuracy plateaus over epoches larger than 200 and stays at

≈ 94%. Figure (5.9) compares the loss functions evaluated on the training datasets

to the loss functions evaluated on the validation datasets: the convergence of the two

leads to the conclusion that the NN was properly regularized. The plateauing of the

training accuracy as well as the bottoming of the loss functions over larger epoches

justify that the separation accuracy of 95% is not a mistake.

However, such a high separation accuracy is not satisfactory because the pair mass and

the transverse momentum distributions of the two datasets as shown in figures (5.5)

and (5.6) are easily distinguishable even to the human eye. One possible cause for this

noticeable difference in such pair distributions is the application of GS onto the HH

events: the RSP could have been applied instead so that the daughter bb̄W+W− masses

on the two datasets match. Another possible cause for such a noticeable difference could

have been reduced by carefully choosing the RSP scaling factors, the GS factors, and

the Higgs mass range. This may be minor but could lead to at least a good match in

the distributions from the two datasets when restricting to the Higgs mass range.



Chapter 6

Conclusion

While tt̄ decays are rare, their large cross sections contribute significant backgrounds to

the HH decays. Separating tt̄ backgrounds is therefore necessary when analyzing Higgs

self interactions among numerous backgrounds. The separation process corresponds to

solving binary classification problems using neural networks. As such, this thesis has

successfully separated the tt̄ backgrounds in HH decays using feed forward neural

networks with a high training accuracy of 95% in separating tt̄ backgrounds from HH.

The separation process has exploited event modification methods such as the rotation

scaling procedure based on the decay kinematics. However, the training results are not

completely reliable because of the different mass settings involved in generating input

datasets using Monte Carlo event generators. Attempts have been made to reduce such

differences in mass settings by introducing Gaussian smearing. However, this alone was

not enough since the mass distributions and the transverse momentum distributions

were noticeably different, even to the human eye. This issue could have been avoided

completely eliminating the differences in settings by exploiting the rotation procedure.

This issue could have been avoided at least in some peak around the Higgs mass by

carefully choosing the parameters of the rotation scaling procedure and of Gaussian

smearing. However, these approaches could not be implemented in time to obtain a

more reliable separation accuracy.

49
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